
An Adaptive Requirement Framework for SCUDWare Middleware in
Ubiquitous Computing

Qing Wu, Danzhen Wang

Institute of Computer Application Technology
Hangzhou Dianzi University

Hangzhou, Zhejiang
P.R. China

http://www.hdu.edu.cn

Abstract: - Due to high dynamic computing environments of ubiquitous computing, it poses many challenges
for software middleware technologies. The component-based middleware systems should possess self-adjusting
functions for adapt to internal and external environments variation. This paper firstly describes a middleware
called SCUDWare for smart vehicle space in ubiquitous Computing. Then we propose a middleware
requirement model including users’ and resources’ variable requirements. After that, a component dynamic
behavior model is presented. Next, an adaptive requirement framework is given in detail, which can
automatically tune middleware configuration parameters, and conduct a safe and dynamic component
composition to preserve the middleware QoS requirements. Finally, it is prototyped and validated by using a
mobile music program to analyze performance of this framework.

Key-Words: - Ubiquitous Computing, Adaptive middleware, Component-based technology

1 Introduction
Ubiquitous computing [1] aims at pursuing
naturalness and harmony, which poses software
middleware systems operating under highly
unpredictable and changeable conditions. Today, a
large number of smart and embedded devices come
into our life such as mobile phones, PDAs, and
smart cameras. Increasingly, the physical world and
information space fuse naturally and seamlessly.
This computation becomes more embedded and
ubiquitous, and provides more facilities and
comforts for people. Therefore, it results in many
problems in software middleware design,
development and running, which should be aware of
dynamic computing contexts and could reconfigure
its resources to maintain the best application
performance in variable environments. We consider
‘adaptation’ is the key issue for software
middleware to meet the changing environments and
the diverse run-time contexts. In addition,
component-based software architecture provides a
novel infrastructure and a development platform for
ubiquitous computing. We think that component-
based adaptation is more important for software
middleware.

On the other hand, vehicles have played an
important role in our daily life. People want to
require more safety, comfort, and facilities in
vehicles. Therefore, we select a vehicle space [2] as

a representative scene to study ubiquitous
computing. Philip K. Mckinley [3] presents that
adaptation should be safe and performed in a
disciplined manner. Based on their contributions,
our current work focuses at integrating safe and
dynamic adaptation into SCUDWare [4]
middleware for smart vehicle space. This paper
mainly presents an adaptive requirement framework
of SCUDWare middleware. Especially, a safe and
dynamic component composition method is detailed
by analyzing the component run-time behaviors and
interdependence relationships. An experiment
prototype called ‘mobile music system’ is built in
smart vehicle space to demonstrate the feasibility
and reliability of our methods and techniques.

The remainder of the paper is organized as
follows. Section 2 presents the SCUDWare
middleware platform including smart vehicle space,
CORBA Component Model specification overview,
and SCUDWare middleware architecture. Then a
middleware requirement model, including user and
resource requirements, is proposed. In section 4, we
present component dynamic behaviors in detail.
Then a safe and dynamic component composition
method is proposed in section 6. After that, we
introduce an adaptive requirement framework of
SCUDWare middleware. In section 7, we give a
case study and evaluate performance of the

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 163 Issue 1, Volume 8, January 2009

framework and methods. Finally, we draw a
conclusion in section 8.

2 SCUDWare Middleware Platform
Conformed to the CORBA component model
specification, we have built a SCUDWare
middleware platform for smart vehicle space
naturally and adaptively. We use the adaptive
communication environment and it’s ORB, which is
a real-time object request broker, developed by
Washington University. According to the
application domain of smart vehicle space, we
reduce this ORB selectively and add some adaptive
services such as adaptive resource management
service, context service, and notification service.

2.1 Smart Vehicle Space
Now many developers have applied embedded,
biology authentication and AI technologies to
vehicles. The drive capability, dependability,
comfort, and convenience of the vehicle are
improved greatly. When people go into smart
vehicle space, they find many intelligent devices
and equipments around them. They communicate
with these tools naturally and friendly. It forms a
harmonious vehicle space where people, devices,
and environments co-operate with each other
adaptively.

Smart vehicle space consists of four parts and is
defined as SVS=(CA, CR, AC, CP). CA is a context
acquisition system. CA=(∆State(pe,de,en), (sen, cam,
sou)) aims at sensing status changes of people,
devices, and environments in the vehicle, including
sensors, cameras, and sound receivers. CR is a
context repository reasoning system. CR=(context,
ontology, domain, inference) uses the correlative
contexts and application domain ontology to make
the manipulating strategy for adaptation. AC is an
auto controlling system. AC=(ste, com, ent, nav, sec)
consists of steering, communication, entertainment,
navigation, and security subsystem. CP is a
centralized processing system. Particularly, CP is a
kernel of the smart vehicle space, which controls
above third parts co-operating effectively.

2.2 CCM Overview
CORBA is one of software middleware, which
provides language and operating system
independences. CORBA component model (CCM)
is an extension to CORBA distributed object model.

CCM prescribes the specifications of component
designing, programming, packaging, deploying and
executing stages. CCM specification defines
component attributes and ports. Attributes are
properties employed to configure component
behavior. Specially stated, component ports are very
important, which are connecting points between
components. There are four kinds of ports: facets,
receptacles, event sources, and event sinks. Facets
are distinct named interfaces provided by
component for client interaction. Receptacles are
connection points that describe the component's
ability to use a reference supplied by others. Event
sources are connection points that emit events of a
specified type to one or more interested event
consumers, or to an event channel. Event sinks are
connection points into which events of a specified
type may be pushed.

2.3 SCUDWare Middleware Architecture
SCUDWare architecture consists of five parts
defined as SCUDW = (SOSEK, ACE, ETAO,
SCUDCCM, SVA). SOSEK [5] denotes SMART
OSEK, an operating system of vehicle conformed to
OSEK specification developed by us. ACE denotes
the adaptive communication environment, providing
high-performance and real-time communications.
ACE uses inter-process communication, event
demultiplexing, explicit dynamic linking, and
concurrency. In addition, ACE automates system
configuration and reconfiguration by dynamically
linking services into applications at run-time and
executing these services in one or more processes or
threads. ETAO extends ACE ORB and is designed
using the best software practices and patterns on
ACE in order to automate the delivery of high-
performance and real-time QoS to distributed
applications. ETAO includes a set of services such
as the persistence service and transaction service. In
addition, we have developed an adaptive resource
management service, a context service and a
notification service. Specially, the context service [6]
is based on semantic information. SCUDCCM is
conformed to CCM specification and consists of
adaptive component package, assembly, deployment,
and allocation at design-time. Besides, it comprises
component migration, replacement, updating, and
variation at run-time. In addition, the top layer is
SVA that denotes semantic virtual agent [7]. SVA
aims at dealing with application tasks. Each sva
presents one service composition comprising a
number of meta objects. During the co-operations of
SVA, the SIP (Semantic Interface Protocol) set is

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 164 Issue 1, Volume 8, January 2009

used including sva discovery, join, lease, and self-
updating protocols.

3 Middleware Requirement Model
Middleware requirement model includes user and
resource requirement model. QoS is the outcome of
the interaction of user, resource requirement, and
system behavior. Uncontrollable QoS will be caused
by unknowing about any one of three factors. Only
accurately describe these factors and their
dependency relationship, can the best application
performance be achieved.

3.1 User Requirement
User constraints can be divided into soft constraint
and hard constraint [8]. Hard constraint emphasizes
certain performance index must be achieved. It is
the bottom line that user can tolerate. The soft
constraint stands for the anticipated application
performance. The more the application is close to it,
the greater utility this application will achieve, and
user will get more contentment from it. The service
supplied based on context, mainly focuses on two
universal performance indexes:

Definition 1. The average service-response time
Rs. The average time spent on requesting a service
from server and responding to client after
processing service.

Definition 2. The average service throughput Ts.
The amount of the service having been performed in
the unit time.

Among all performance indexes, what the users
are concerned about is the maximum average
response time sRmax and the minimum average

throughput sTmin . sRmax denotes the maximum
average service-response delay time which user can
tolerate. sTmin denotes the lowest capability of
service execution which users can tolerate. Thus
both sRmax and sTmin describe the hard constraint of
the application performance. It is described by
formula as follows.

)()(minmax
ssss TTRR ≥∩≤ (1)

It defines performance deviation which expresses
the deviation extent of the actual value of
performance index to the value of hard constraint.
Thus response time deviation here can be defined as
follows.

ssss RRRR maxmax /)(−=∆ (2)

Simultaneously throughput deviation here is
defined as follows.

ssss TTTT minmin /)(−=∆ (3)
On the basis of performance deviation, it defines

function Utility to describe the soft constrain. Utility
here is defined as follows.

∑
∈

∆×+∆××=
Ss

s
T
ss

R
ss TwRwwUtility)((4)

From Utility function, which is described by
simply using the linear relationship of performance
deviation, it can be found that when the response
time become less, the throughput will become more,
the performance deviation will become bigger and
the value of Utility will be greater. This analysis
shows that the value of Utility can directly reflect
the satisfaction degree of the soft constraint. In
formula Utility, S denotes the services set which
component-based applications provide, and sw
denotes the weight of different service.

∑
∈

=
Ss

sw 1 (5)

For each service s, R
sw and T

sw respectively
reflect different preference on throughput and
response time.

1=+ T
s

R
s ww (6)

3.2 Resource Requirement
For the component technology based on container
architecture, each component runs in corresponding
container. Application server use container to
manage the execution of components. Container
processes all component behaviors including
interaction with external system and manages all
kinds of system resources. Therefore the
performance of the component-based application
not only depends on itself, but also depends on the
middle system where the application is deployed.
Meanwhile the performance of middleware system
depends a great extent on correct resource
parameters configuration. The performance of
component behavior depends on resource
configuration which its container has applied for it.
Concurrently access resource can lead to their
competition, and this will have influence on
requesting processing. As a result, the most
important part of system performance is modeling
their relationships.

Definition 3. Assume that a composite service is
composted by n service components, then DG=(SC,
E) denotes the function relationship of composite

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 165 Issue 1, Volume 8, January 2009

service.
}1,{ niscSC i ≤≤= , }1),,{(niscscE ji ≤≤=

Fig.1 One example of the resource dependency of

components.
One example is shown in fig. 1. Every directed

edge between two nodes represents existing control-
flow or data flow. In addition to meet function
dependency between components, each composite
service still has to meet QoS requirement between
each component. In general, QoS characteristic of
component can be described by triple
as Re),,(outin QoSQoSQoS = .

),...,,(21 s
inininin qqqQoS = denotes the QoS list whose

adjacent component instance have to be achieved
when running a component instance.

),...,,(21 m
outoutoutout qqqQoS = denotes the QoS list

whose adjacent component instance provides when
running a component instance. Re denotes the
demand of system resource like CPU, memory,
network bandwidth and so on, when running a
component instance. The relationship among inQoS ,

outQoS , and Re is that the attribute value of QoS in

outQoS depends on attribute value of correlated Re

and inQoS . In addition, iQM denotes the QoS

model of component. The different values of iQM
mean the different demands of resource of this
component. For example, the CPU utilization of one
component can be 10%, 15% or 20%, and then this
component has three different QoS models. Under
which model the component will run depends on the
status of system resource at that time.

Definition 4.),...,(Re 21 krrr= is a resource
requirement list of a service component. Among
them, k denotes k different styles of available
resource like CPU, memory and network bandwidth
and so on.)1(kiri ≤≤⋅ , a specific value, describe

the quantity needed for resource of number i like
rcpu=20% or rmemory=2kb.

Definition 5. Assume that n service components
are running in system and each component has k
different styles of resource requirement, then the
total of resource of these n components request can
be described in following formula.

∑ ∑∑∑
===

=)...,,,(Re
11

2
1

1

n

i

i
k

n

i

i
n

i

i rrr (7)

Definition 6. Assume that n service components
are running in the system, available resources can
be described like RA=(ra1, ra2,…, rak,). And the
needed resource of service component ∑Re is
calculated according to formula (7). If these n
service components can be instantiated and can run
in the system, following formulas holds.

))(()Re(
1

1)1(⋅≤⋅∀∩≤ ∑∑
=

≤≤⋅

n

i
j

i
kjj rarRA (8)

In other words, only resource requirement of
running service component in equipment be
satisfied as above inequality, this service could be
deployed successfully.

Definition 7. A service composted by n service
components has k different styles of resource
requirements, and then SRC is defined as follows.

∑∑
≠

≤≤=

×+×=
ji

nji

k
sc

k
k

i

ii
ij

rwrwSRC
,11

 (9)

Among them, wi denotes the resource weight
which means importance degree of i resource. This
indicates that the value of wi become bigger, this
kind of resource will have more difficulty in

applying. ∑
=

≤≤⋅=
k

i

ii ww
1

)10(1 . scij denotes

dependency relationship between component sci and
scj. If sci and scj are deployed on same equipment
then 0=k

scij
r , otherwise k

scij
r denotes the network

bandwidth occupied by these two components for
their communication. The value of SRC depends on
ri, weight w and k

scij
r . In general, the higher demand

level of QoS, the better quality of the service, the
more demand quantity for resource, the bigger value
of SRC. But the distributed resource is often very
limited and therefore the amount of distributed
resource is often less than the best quality of service
demands. From the above analysis, it can easily be
found out that when the value of SRC becomes
bigger, the time waiting for satisfying with needed
amount of resource will be longer. Waiting time

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 166 Issue 1, Volume 8, January 2009

become longer means the response time of service
increases and the quality of service decreases. As a
result, the value of SRC can be used as a reference
point for assessing resource allocation strategy.

4 Component Dynamic Behavior
In terms of the resource abstract framework [9], we
develop an adaptive component management
service for the safe and dynamic component
composition. According to the changing run-time
contexts, this service is responsible for managing
the component behaviors in an appropriate way
including component addition, removal, updating,
replacement, and transfer. This section discusses the
adaptive component model and its run-time
behaviors.

4.1 Adaptive Component Model
Adaptive component, the key element of
middleware, is encapsulated as an entity
communicate with outside only with interface. It
divides two species of single component and
composite component.

Definition 8. Adaptive component t::= single
component | composite component

Port consisted by channels constitutes interface.
Channel plays an important role to receive and sent
data information. Connector is deemed as a special
component takes a role as bridge between
components. The dynamic requirement is concerned
with the following systems structural changes:
change of the connection between elements in the
system, create and delete new components as well
as new ports and channels dynamically. Garamarical
specification of dynamic behavior of component is
described as follows:

Definition 9. choreographer ::=
attach.choreographer | detach.choreographer |
Create.choreographer | Destroy.choreographer |
Ecomputation.choreographer | inaction | replicate

Definition 10. detach ::= detach
ComponentInstanceName^ PortName from
ConnectorInstanceName ^ PortName | detach
ComponentInstanceName ^PortName ^
ChannelName from ConnectorInstanceName ^
EportName ^ EchannelName

Attach is used to create new connector, detach to
delete connector. They are both modeled as α
change-name operation in high-order multi-type π
calculus.

Definition 11. Create ::= new [01
ComponentInstanceName:] ComponentName([0 +
Actual-parameter]) | new
[01ConnectorInstanceName:] ConnectorName ([0 +
Actual-parameter]) | new[01 PortName:] PortType
name | new [01PortName ^ ChannelName:]
ChannnelType name

Component behavior is modeled as process Pa.
Pa = Pa1 +Pa2. Pa1 represents component's
computing behavior (routing behavior), Pa2 means
evolving behavior predefined by choreographer
specification. Running-environments behavior is
modeled as Pb in high-order multi-type π calculus. ζ
represents the virtual channel for communication
between component and running environments. If
choreographer specification intends to create new
component instance or connector instance,
following process formula, according to high-order
π calculus, expresses it well.

)|()(212 aaa PPxxP +⋅= ζ , bcb PPP ⋅=
−

)(ζ
Pc represents behavior of pending component

preparing to create. If choreographer specification
intends to create new port or channel.

System behavior means composite component
behavior combines running-environments behavior
to run concurrently. With choreographer to create
component instance or connector instance, system
behavior can be described like this:

bcaaba PPPPPP ⋅+=
−

)(|)(| 21 ζ

bcaaaba PPPpxxPPP ⋅+⋅+=
−

)(|))|()((| 211 ζζ
According to specification R-COM, a

specification from high-order multi-type π, above-
mentioned formula can convert to this one:

baa PxPP ++ }/0){(21
Composite component (composite connector)

behavior evolves to this one: (Pa|Pa1+Pa2),
meanwhile computing behavior of composite-
component can evolve from Pa1 to Pc|Pa1. This
evolution means composite-component (composite-
connector) creates a new component instance (new
composite-connector instance) whose behavior is Pc.
With Choreographer to create port and channel,
system behavior can be described like this:

baaba PPPPP ⋅+=
−

)0(|)(| 21 ζ

baaaba PPpxxPPP ⋅+⋅+=
−

)0(|))|()((| 211 ζζ
Above formula also can evolve to this one:

baa PxPP |}/0){(21 +

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 167 Issue 1, Volume 8, January 2009

It means composite-component (connector)
create a new port (channel) 0. Destroy is used to
delete component instance, connector instance, port
and channel. With following the thought of dealing
with Create, Destroy also can be explained as
process in high-order π calculus.

4.2 Component Run-time Behaviors
According to the CCM specification, there are five
essential component run-time behaviors in
SCUDWare. Those are component addition,
removal, updating, replacement, and transfer,
defined as CoB={CoA, CoRv, CoU, CoRp, CoT}. In
SCUDWare, components fit together to be a
component composition. For adaptively executing
tasks, components in this composition perform the
relative behavior actions. As following, we give
some formal definitions of the component run-time
behaviors.

Definition 12. A Component Composition Unit is
defined as CCU=(AC, CRIG, CONTEXT). AC
denotes a set of adaptive components composition.
CRIG is the component interdependence graph
introduced in the section 4.3. CONTEXT denotes the
run-time environments of application tasks.

Definition 13. A Component Composition Group
is defined as CCG={(CCU, T)}.

)(, φ=∧⋅∈∃→∈∀⋅∈∃ jiji ccCCUccCCGgTt
At time t, each component composition group

comprises one or more component composition unit.
Any two component composition unit has not the
same component. That also means a component is
exclusively in one component composition unit at
one time.

Definition 14. CoA (Component Addition) is
defined as CoA(AC,CCU). After a component is
implemented according to the CCM specification,
and tries to join into one CCU of the SCUDWare,
the component addition behavior will be performed.
Specially stated, there are two important principles
during the execution. (1) The addition behavior
must not break current other components execution.
(2) The component interdependence among this new
component and other old components of this CCU
should be decided immediately.

Definition 15. CoRv (Component Removal) is
defined as CoRv(AC, CCU). If a component in one
CCU is not needed any more, this component can be
removed from this CCU. Importantly stated, before
performing this behavior, ACMS should check that
the whole components in this CCU do not depend

on this component any more. As long as one
component still needs this component, that
component can not be removed.

Definition 16. CoRp (Component Replacement)
is defined as CoRp(AC, AC', CCU). If a component
in one CCU can not satisfy the changing run-time
contexts or application requirements, another
appropriate component will replace this component
for adaptation.

Definition 17. CoU (Component Updating) is
defined as CoU(AC, AC', CCU). Specially, AC' is
the new version of AC. We can classify this
behavior to the CoRp. However, CoU realizes
component self-updating.

Definition 18. CoT (Component Transfer) is
defined as CoT(AC, CCU, CCU'). If a component in
one CCU is not needed, but another CCU' demands
it, component transfer behavior will be executed.
Importantly, the component interdependence this
component in CCU should be removed. Also, the
component interdependence of this component in
CCU' should be decided simultaneously.

4.3 Component Run-time Interdependence
Graph
In SCUDWare, CCU is responsible for one special
task. All components in the CCU are cooperating
and communicating with each other. Therefore,
there are interdependences among those components
in the CCU. In order to define the inter dependence
relationships among components; we introduce a
component run-time interdependence graph (CRIG)
composed of component nodes and link paths.

For components in one ccu, we first associate a
node for each component. Two component nodes
are linked, and the link path is labeled with a weight.
Formally, we define a component interdependence
graph as CRIG = (CCU, LP, W).

(1) CCU includes a set of component nodes.
(2))}1,1({ mjnilLP ij ≤≤≤≤= denotes a set

of component links, describing the dependent
targets. lij is a link between the component nodes:
cni and cnj.

(3))}1,1({ mjniwW ij ≤≤≤≤= denotes a set
of interdependent weights. wij is a non-negative real
number, which labels lij.

Importantly, wij reflects the importance of the
interdependence between two associated
components. These weights used, for example, to
detect which links becomes too heavy, or whether
the ACMS relies too much on some components. In

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 168 Issue 1, Volume 8, January 2009

terms of this weight, we can decide which
component can be removed as long as no
component needs it any more. Extremely, CRIG
changes according to the different contexts and
application requirements. Therefore, these
interdependencies are not static.

It can be modified when a new component is
added, or one component is removed, or component
transfer is performed.

5 Safe and Dynamic Component
Composition
In this section, we present a safe and dynamic
adaptation computation method. We first give the
definitions of the CCU and CCG states. Second, we
introduce a dynamic component composition state
transition net. Finally, the process of safe and
dynamic component composition is presented.

5.1 CCU and CCG States
In order to dynamically compose the components
safely, we give the following definitions of the CCU
and CCG states, consisting of CCU Non-Risk State,
CCU Underlying Risk State, CCU Unsafe State, and
CCG Safe State.

(1) A CCU Non-Risk State is defined as
NRS(ccu)=True if)(, α<⋅∈∀∃ wcrigwcrigccu .

In one ccu, if any w is less than α, this ccu is at a
Non-Risk State. α is a pre-defined constant
describing the maximum component
interdependence limit.

(2) A CCU Underlying Risk State is defined as
URS(ccu)=True if)(, α≥⋅∈∃∃ wcrigwcrigccu .

In one ccu, if at least one w is more than α, this
ccu is at an underlying risk state. In this state, there
are possibilities that some unpredictable errors occur
in the systems.

(3) A CCU Unsafe State is defined as
CUS(ccu)=True if

))((falsecUSEcriglccuc jiji =∧∈∧∈∃
This state means that component ci of one ccu

depends on component cj, but component cj is not
usable. We use USE(cj)=false to define that cj is not
usable. Commonly, there are two conditions may
result in this state, which are (1) cj is in this ccu, but
is error, (2) cj is removed from this ccu.

(4) A CCG Safe State is defined as
GSS(ccg)=True if

))((
))(())((

falseccuURS
falseccuURStrueccuNRSccgccu

=∧
=∧=⋅∈∀

If one ccg at a Safe State, all the ccu in this ccg
should be at a non-risk state, and not an underlying
risk state, and not an unsafe state.

5.2 Dynamic Component Composition State
Transition Net
Component run-time behaviors may cause the
component state transition. During the executions of
the component run-time behaviors, two principles
should be conformed, which are: (1) It should not
break down the existent component
interdependencies. (2) The action of component run-
time behavior is an atom and integrity operator. We
should assure that the component composition
enters a safe state. Otherwise, it may cause an
Unsafe State and make the system break down.

In our work, Petri net is used to describe the
dynamic component composition state transition.
We define the state transition net as DCCSTN = (P,
T, I, O, M, R). P denotes a set of places of DCCSTN,
and P equals to the states of CCU. T denotes a set of
transitions of DCCSTN, and T equals to CoB.

TPI ×⊆ is a set of input functions. PTO ×⊆
is a set of output functions. M denotes a set of time
consumptions of T. R denotes a set of computation
resource consumptions of T.

During the dynamic component composition, in
order to assure the safety, we can find a safe and
effective composition solution according to
DCCSTN. On one hand, in terms of DCCSTN, we
can know which executions of component behavior
will result in a unsafe state. These executions should
be avoided by ACMS. On the other hand, according
to DCCSTN, considering the time and computation
resource consumptions of each execution, ACMS
can select an effective composition solution. For
example, ACMS can find an appropriate solution of
component composition, which has the minimum
communication resource consumption, and the
minimum component behavior execution time.

5.3 SDCC: Safe and Dynamic Component
Composition Process
In SCUDWare, ACMS is responsible for the whole
SDCC process. Once ACMC monitors one ccu that
satisfies URS(ccu)=true and enters an underlying
risk state, it will perform appropriate component

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 169 Issue 1, Volume 8, January 2009

run-time behaviors to eliminate this underlying risk.
There are four steps of SDCC process.

(1) Preparing Step. Before the execution of
SDCC, ACMS should check the run-time
interdependence relationships of the components
those are the object of the execution.

For example, before CoRe(c1, ccu) is performed,
ACMS firstly decides the run-time interdependence
of c1. Assume that component c2 and c3 both depend
on c1, ACMS will send a c1 removal request message
to c2 and c3. Similarly, there are other types of
request message such as component addition,
updating, replacement, and transfer.

(2) Waiting Step. After sending the request
message to the object components that acquire
dependence, ACMS will wait for the reply messages.
Commonly, there are two conditions for the object
component. (a) This object component is running.
(b)This object component is not running. As for (a),
ACMS can not receive the reply message until the
object component completes execution. As for (b),
ACMS can get the reply at once. In addition, due to
the unknown faults, we introduce a timeout and re-
send mechanism. That means if ACMS has not
received the reply message for a limited time,
ACMS will re-send the request message to this
object component. If the number of re-sending is
more than a pre-defined number, ACMS will
consider that the object component is not running
and it can continue and go to next step.

(3) Performing Step. Once ACMS receives all the
replies from the object components, it begins to
perform the actions of the component behaviors.
ACMS will find a safe and effective composition
solution according to DCCSTN. The particular
method is presented in section 6.3.

(4) Updating Step. This is the last step of the
SDCC process. After ACMS finishes the actions of
component behaviors, it will update the inter-
dependence relationships among the components in
this ccu. Importantly stated, the component
interdependence in the old ccu and the new ccu
should be updated simultaneously.

6 Adaptive Requirement Framework
In this section, we will introduce the architecture of
adaptive middleware framework, and give a
middleware parameters configuration algorithm and
a safe and effective dynamic component
composition method

6.1 Architecture of Adaptive Requirement
Framework
Figure 2 shows an adaptive requirement framework
of SCUDWare middleware, which consists of load
monitor, configuration selector, component
composition module, and a QoS monitor.

QoS monitor is responsible for calculating the
amount of completed service requests, each service's
response time, the average service-response time
and throughput in every adjusted time interval. In
addition to that, it also checks whether the QoS
requirement is violated or not. All these statistic
data will together determine when the application
server needs re-configuration. When application
need re-configuration, QoS monitor will inform
configuration selector and component composition
module. After received re-configuration order,
configuration selector will search configuration
parameters in parameter table and select the most
satisfactory configuration after considering each
candidate configuration and dependency
relationship between these parameters. Component
composition module will conduct dynamic
component re-composition actions. Load monitor is
in charge of calculating the amount of each service
requests and partly control configuration selector
according to user demand.

Fig.2 Adaptive requirement framework of SCUDWare

middleware.

6.2 Middleware Parameters Configuration
The goal of adaptive middleware framework is that
under changeable load, when the hard constraint and
resource constraint of each service has been
satisfied, making soft constraint achieve the highest
utility value through adaptively adjusts the related
server configuration parameters. About this
adjusting, the key is how to determine the correct
configuration parameters. The framework uses
following algorithm to search a point in

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 170 Issue 1, Volume 8, January 2009

configurable parameters table of server in order to
meet hard constraint and maximize the utility of
QoS. K dimensional vector Re=(r1,r2,…rk) denotes a
kind of configuration defined Re contains k
parameters and each parameter value has a given
range.),...,,(21 n

iiii QMQMQMr ∈ means that each
component demand for QoS model is not
necessarily same. Thus here the value of n is also
not necessarily same. Adjacent configuration set of
Re can be described as follows.

}{Re}{ReRe ii ttM −∪+= (10)
ti is k dimensional vector equals {0,…1,…0}.

The value of i element is 1. And the remaining is 0.
Re0, a configuration parameter before adjustment, is
the initial focal point in searching. In iteration, this
algorithm will select the best configuration among
adjacent configuration to focal point and obtain
component interaction relationship which mainly
contains dependency relationship including call
sequence, call amount and degree of concurrency of
call.

This algorithm will check resource constraint. If
resource constraint is satisfied, then the component
will be instanced, else the algorithm continues to
search another configuration. In the search process,
the algorithm calculates the average service
response time sR and the average service
throughput sT in each candidate configuration.
Vector),...,(21 snss RRRR = is the average service-
response time of s1, s2,…, sn. Vector

),...,(21 snss TTTT = is the average service
throughput of s1, s2,…, sn. The utility value based on
this configuration, is calculated by function Utility.
HC denotes the bottom line of performance user
can tolerate. Function satisfy_user is used for
judging whether >< ss TR , meets HC constraint.
HU denotes needed resource used for completing
component deployment. Function satisfy_resource
is used for judging whether ∑ ≤ RARe meets
resource constraint. RA=(ra1,ra2,…,rak). Function
Predict is used for calculating service performance.
The algorithm is described as follows.
 START;
 Dres=1;
 Recur=Re0, Renew= Re0;
 REPEAT
 Improved=FALSE;
 < Rs, Ts >=Predict(Recur);
 MaxUtility=Utility< Rs, Ts >;
 FOR Each Re in MRenew

 < Rs, Ts >=Predict(Re);
 IF (satisfy_user(< Rs, Ts >, HC)
 AND satisfy_resource(Re, HU)
 AND Utility(< Rs, Ts >)>MaxUtility)
 THEN
 MaxUtility=Utility(< Rs, Ts >);
 Renew = Re;
 Improved= TRUE;
 END IF
 END FOR
 Recur = Renew;
 Dres = Dres + 1;
 UNTIL ((Improved=FALSE) OR
 (Dres=MaxDres));
 END

It's easy to realize using this algorithm, and the
convergence speed is almost same as other
intelligent search methods, when the state space is
relatively small. The operation efficiency is affected
by amount of the equipment and component. After
configuration, which is evaluated by SRC value, the
paper sets up the weight according to the actual
resource.

6.3 SEDCC : Safe and Effective Dynamic
Component Composition Method
According to section 5 analysis, this section presents
a safe and effective dynamic component
composition algorithm, called SEDCC and shown as
following.

(1) According to the whole ccu and the actions of
CoB, we build the DCCSTN=(P, T, I, O, M, R)

(2) Generating the sub net that satisfy
GSS(ccu)=TRUE in DCCSTN.

(3) CoB in sub-DCCSTN are generated by ACMS.
All the costs of CoB are calculated by ACMS.

(4) Select one appropriate component behaviors
in CoB based on three principles: (a) The cost of the
action execution time should be minimum. (b) The
computation resource constrains should be satisfied.
(c) The component interdependence should not be
broken down.

(5) A set of actions of component behaviors
satisfying above three principles is build to form a
safe and effective dynamic component composition
solution. Then ACMS will execute these actions in
turn.

7 Case Study and Performance
Evaluation

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 171 Issue 1, Volume 8, January 2009

To verify the SDCC method including the SEDCC
algorithm, we have made some preliminary
experiments using ACMS to build a mobile music
system MMS in the smart vehicle space.

In MMS, components are responsible for
acquiring, playing, transmitting, and outputting the
music information. These components interact with
the request and reply process. If one component
sends the request for some music information,
ACMS will select one appropriate component to
work and reply to the demander. Our experiments
are tested on the following platforms, as shown in
table 1.

Table 1 Experiments test bed.
 HP iPAQ Pocket PC H5500 PC

CPU Intel 400 MHz, XScal-
PXA255 Intel PIV 2.4G

Memory 128 MB RAM + 48 MB
Flash ROM 256 MB RAM

Network Wireless LAN 802.11b LAN 100MB/s

OS Familiar Linux v0.8.0-rc1 RedHat Linux
9.0 (2.4.20)

Middleware SCUDWare SCUDWare
The iPAQ is connected to the PC via the wireless

LAN using 802.11b protocol. The middleware
platform is the SCUDWare. The experiment in
MMS runs on two PDAs and one PC. On the PC, a
music producer is placed. It can transfer the music
by stereo tune or mono tune. Two PDAs have
limited computation and communicated resources,
those are connected with PC via the wireless LAN
802.11b. They can receive the music information
from the PC, and play music in a proper model such
as stereo tune or mono tune. We have developed
eight components for this experiment.

The PC can have two components: A1, a music
sender of stereo tune sender and A2, a music sender
of mono tune. PDA1 can have three components: B1,
a music player of stereo tune, B2, a music player of
mono tune, and B3, the other music player of stereo
tune. PDA2 can have three components: C1, a music
player of stereo tune, C2, a music player of mono
tune, and C3, the other music player of stereo tune.
In the beginning, we allocate A1 into the PC, B1 into
the PDA1, and C1 into the PDA2. At first, MMS runs
well. After some time, the network bandwidth
decrease. It is too low to input and output by stereo
tune. For adapting to this status change, ACMS will
perform dynamic component composition. The goal
of the experiment is using SDCC method to find a
safe and effective solution consisting of a
component behavior sequence. ASMS firstly build
the DCCSTN. Next ASMS calculates and finds an
appropriate solution according to above three

principles. Finally, these component behavior
actions are execute by ASMS in turn.

Table 2 CoB time costs, resources consumptions, and effects on
component interdependences.

No. CoB Time
Costs RC ECI

(1) CoRv(A1,CCUPC) 10 0 breaking
(2) CoA(A2, CCUPC) 10 10 no effect
(3) CoRv(B1,CCUPDA1) 5 0 no effect
(4) CoA(B2,CCUPDA1) 10 10 no effect
(5) CoA(B3,CCUPDA1) 10 12 no effect
(6) CoRv(C1,CCUPDA2) 5 0 no effect
(7) CoA(C2,CCUPDA2) 8 10 no effect
(8) CoA(C3,CCUPDA2) 10 10 no effect
Table 2 shows the each time cost of CoA, the

sum of resources consumptions RC, and the effects
on component interdependences ECI.

According to the SEDCC algorithm, ACMS
eventually get the safe and effective dynamic
component composition solution that is a CoB
sequence: (2) (3) (4) (6) (7).

In order to test the performance of the SDCC
method using by ACMS, we have the experiments
performance evaluations. As shown in fig. 3, we
compare with two kinds of the successful execution
ratio of MMS. One kind uses the SDCC method, and
the other does not use this method. Specially, we
consider three conditions: (a) decreasing network
bandwidths, (b) decreasing memory size, and (c)
decreasing CPU computation. In addition, we vary
the component number from 10 to 100, and the step
is 10. In this experiment, we use a random method
to make above three conditions. From the fig. 3, we
can conclude that successful execution ratio with
SDCC method is more than that without SDCC
method under the changing conditions. Therefore,
the experiment results show that our method is
flexible and adaptive.

Fig.3 Comparing (a) successful execution ratiowith SDCC

method, with (b) successful execution ratio without SDCC
method under the different conditions.

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 172 Issue 1, Volume 8, January 2009

8 Conclusion
In ubiquitous computing environments, that
integrating safe and dynamic adaptation into
adaptive middleware is playing a more important
role. In this paper, we firstly present the SCUDWare
middleware platform including smart vehicle space,
CCM specification overview, and SCUDWare
middleware architecture. Next, a middleware
requirement model, including user and resource
requirements, is proposed. And then, we mainly
introduce an adaptive requirement framework of
SCUDWare middleware. In addition, we give a case
study and evaluate performance of the framework
and methods.

Our future work is to improve performance of
this adaptive requirement framework. In addition,
we will take other methods to realize more
middleware flexibility and reliability for different
requirements.

Acknowledgments
This research was supported by National Natural
Science Foundation of China under Grant No.
60703088.

References:
[1] Weiser M, The Computer for the 21st Century,

Scientific American, 1991, pp. 94-100.
[2] Qing Wu, Zhaohui Wu, Bin Wu, and Zhou

Jiang, Semantic and Adaptive Middleware for
Data management in Smart Vehicle Space, In
proceedings of the 5th Advances in Web-Age
Information Management, LNCS 3129, 2004,
pp. 107-116.

[3] Ji Zhang, Zhenxiao Yang, Betty H.C. Cheng,
and Philip K. McKinley, Adding Safeness to
Dynamic Adaptation Techniques, In
proceedings of Workshop on Architecting
Dependable Systems, 2004.

[4] Zhaohui Wu, Qing Wu, Hong Cheng, Gang
Pan, and Minde Zhao, SCUDWare: A Semantic
and Adaptive Middleware Platform for Smart
Vehicle Space, IEEE Transactions on
Intelligent Transportation Systems, Vol.8, No.1,
2007, pp. 121-132.

[5] Mingde Zhao, Zhaohui Wu, Guoqing Yang,
Lei Wang, and Wei Chen, SmartOSEK: A
Dependable Platform for Automobile
Electronics, In proceedings of the first
International Conference on Embedded
Software and System, 2004, pp. 437-442.

[6] Qing Wu and Zhaohui Wu, Integrating
Semantic Context Service into Adaptive
Middleware for Ubiquitous Computing, In
"Advances in Computer Science and
Engineering Series", Imperial CollegePress,
2005, pp. 222-231.

[7] Qing Wu and Zhaohui Wu, Semantic and
Virtual Agents in Adaptive Middleware
Architecture for Smart Vehicle Space, In
proceedings of the 4th International Central
and Eastern European Conference on Multi-
Agent Systems, LNAI 3690, 2005, pp. 543-546.

[8] Nikhil Barthwal, Murray Woodside, Efficient
evaluation of alternatives for assembly of
services, 19th IEEE International Parallel and
Distributed Processing Symposium, 2005, pp.
275-282.

WSEAS TRANSACTIONS on COMPUTERS Qing Wu, Danzhen Wang

ISSN: 1109-2750 173 Issue 1, Volume 8, January 2009

