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Abstract: - Based on sampling likelihood and feature intensity, in this paper, a feature-preserving denoising 
algorithm for point-sampled surfaces is proposed. In terms of moving least squares surface, the sampling 
likelihood for each point on point-sampled surfaces is computed, which measures the probability that a 3D 
point is located on the sampled surface. Based on the normal tensor voting, the feature intensity of sample point 
is evaluated. By applying the modified bilateral filtering to each normal, and in combination with sampling 
likelihood and feature intensity, the filtered point-sampled surfaces are obtained. Experimental results 
demonstrate that the algorithm is robust, and can denoise the noise efficiently while preserving the surface 
features. 
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1 Introduction 
Point clouds have become increasingly popular in 
modelling and rendering applications[1-15] due to 
improved graphics hardware and technologies for 
the acquisition of point geometry. Point-sampled 
models without topological connectivity are 
normally generated by sampling the boundary 
surface of physical 3D objects with 3D-scanning 
devices. Despite the steady improvement in 
scanning accuracy, undesirable noise is inevitably 
introduced from various sources such as local 
measurements and algorithmic errors. Consequently, 
noisy models need to be denoised or smoothed 
before performing any subsequent geometry 
processing such as simplification, reconstruction 
and parameterization. It remains a challenging task 
to remove the inevitable noise while preserving the 
underlying surface features in computer graphics. 

So far, various smoothing methods for mesh 
model have been proposed, please refer to [16-18] 
and the references therein. The most common 
techniques are based on Laplace smoothing. 
Taubin[19]introduced signal processing on surfaces 
that is based on the definition of the Laplacian 
operator on meshes and developed a fast and simple 
iterative Laplacian smoothing scheme. Desbrun et 
al.[20] extended this approach to irregular meshes 
using a geometric flow analogy. Ohtake et al.[21] 
extended the Laplace smoothing by combining 
geometry smoothing with parameterization 
regularization. Peng et al. [22] applied locally 
adaptive Wiener filtering to meshes.  However, 
these techniques are all isotropic, and therefore 

indiscriminately smooth noise as well as salient 
features, leading to shrinkage or undesired distortion 
of the mesh shape. To compensate these drawbacks, 
Liu et al. [23] proposed a method that keeps the 
volume of each star of a vertex. Vollmer et al. [24] 
suggested a method that is based on the idea to push 
the vertices back to their previous positions. In order 
to reduces diffusion across edges, Hildebrandt et 
al.[17] proposed an anisotropic smoothing scheme. 
Inspired by anisotropic diffusion in image 
processing [25], feature-preserving mesh smoothing 
methods were introduced[26-28]. These methods 
modified the diffusion equation to make it nonlinear 
or anisotropic, thus could preserve sharp features. 
The work of [29-31] proposed diffusion-type 
smoothing on the normal field first, and then 
constructed the surface to match the new normals. 
Although these approaches are superior to those 
using isotropic techniques, they would cause 
significant computational times. 

As a straightforward representation form for 
highly complex objects, the point-sampled model is 
obviously processed with less overhead in 
computation time and memory costs than mesh 
model. Thus, point-sampled model denoising has 
been an active research area. Like mesh denoising 
techniques, earlier methods such as Laplacian [8] 
for denoising point-sampled surfaces (PSS) are 
isotropic, which result commonly in point drifting 
and oversmoothing. So the anisotropic methods 
were also introduced. Clarenz et al. [32] presented a 
PDE-based surface fairing application within the 
framework of processing point-based surface via 
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PDEs. Lange and Polthier [33] proposed a new 
method for anisotropic fairing of a point sampled 
surface based on the concept of anisotropic 
geometric mean curvature flow. Based on dynamic 
balanced flow, Xiao et al. [34] presented a novel 
approach for fairing PSS. Other methods have also 
been proposed for denoising PSS. Algorithms that 
recently attracted the interest of many researchers 
are moving-least squares (MLS) approaches 
[15,35,36] to fit a point set with a local polynomial 
approximation; the point set surface can be 
smoothed by shifting point positions towards the 
corresponding MLS surface. The main problem of 
MLS-based methods is that prominent shape 
features are blurred while smoothing PSS.  

Concerning the above problem of MLS 
approaches, this paper puts forward a robust 
denoising algorithm for PSS with feature preserving. 
Based on MLS surface, the sampling likelihood of 
sample point is first computed. In order to more 
efficiently preserve the surface features while 
denoising PSS, we adopt normal voting tensor to 
evaluate the feature intensity of sample point and 
apply the modified bilateral filtering to filter the 
normal of each sample point. The smoothed model 
is finally obtained via the combination of sampling 
likelihood and feature intensity. 

The paper is organized as follows. Section 2 
gives the method for computing the sampling 
likelihood and Section 3 describes measure of the 
feature intensity. Our denoising approach with 
feature preservation is described in Section 4. We 
compare our method with two denoising techniques 
in Section 5. Section 6 concludes the paper. 
 
 
2 Computing the Sampling 
Likelihood Based on MLS 
In this paper, we consider the probability that a 3D 
point is located on the sampled surface as the 
sampling likelihood. The sample point closer to the 
sampled surface should be characteristic of higher 
sampling likelihood than one being more distant. 
We approximately take the MLS surface 
approximating the k  nearest neighbors Nk(p i) of 
sample point p i 

 

as the sampled surface. In the 
following we will briefly review the MLS surface 
and then describe how to compute the sampling 
likelihood. 

 
2.1 Moving Least Squares Surface 
Alexa et al.[1] proposed a representation of point-
sampled model by fitting a local polynomial 

approximation to the point set using a MLS method. 
The result of the MLS-fitting is a smooth, 2-
manifold surface for any point set. Given a point 
set { }iP = p , the continuous MLS surface S is 
defined implicitly as the stationary set of a 
projection operator ( )ψ r that projects a point onto 
the MLS surface. To evaluateψ , a local reference 
plane { | }3H x D 0n x= ∈ ⋅ − = is first computed by 
minimizing the weighted sum of squared distances, 
i.e., 2

,
arg min ( ) ( )

i

i i
Pn q p

n p n q p qθ
∈

⋅ − ⋅ −∑ , where q is the 

projection of r onto H and θ is the MLS kernel 
function 2 2( ) exp(- )d d /hθ = , where h is a global scale 
factor. Accordingly, the local reference domain is 
given by an orthonormal coordinate system on H so 
that q is the origin of this system. Then a bivariate 
polynomial ( , )g u v is fitted to the points projected 
onto the reference plane H using a similar weighted 
least squares optimization. Here ( , )i iu v is the 
representation of q i  in the local coordinate system in 
H, where q i is the projection of p i

( ) ( )g 0 0r q , nψ = + ⋅
 onto H. So, the 

projection of r onto S is given as . 
More details on the MLS method can be found 
in[37]. 
 
 
2.2 Definition of the Sampling Likelihood 
Based on MLS, we first compute the distance of 
each point in Nk(p i) to its projection onto the MLS 
surface and then define the sampling likelihood of p i. 
We take a third degree polynomial to approximate 
the cluster of Nk(pi

    

): 

3 3 2 2 2
9 8 7 6 5

2
4 3 2 1 0

( )=  

           

,g x y a x a y a x y a xy a x

a y a xy a x a y a

+ + + +

+ + + + +
          (1) 

Let qij be the projection of ( )p pij k iN∈ onto the 
above MLS surface ( , )g x y ( q i0 , i.e. qi , is the 
projection of p i

il
) and define the sampling likelihood 

 of pi

1

0
1

1-

(|| ||)|| ||

(|| ||)

max { }

max

max

/

p p p q

p p

i i
k

ij i ij ij
j

i k

ij i
j 0

i N i

l d d

d

d d

θ

θ

−

=
−

=

∈

=

 − −
 =
 −



=

∑

∑

 as 

,                  (2) 

WSEAS TRANSACTIONS on COMPUTERS Jifang Li, Renfang Wang

ISSN: 1109-2750 154 Issue 1, Volume 8, January 2009



where N is the size of point-sampled model and di  is 
the weighted-average distance of p ij

Obviously, the influence of p

 to its projection 
onto the MLS surface.  

ij on di decreases 
exponentially with Euclidean distance to p i. On the 
other hand, the smaller di is, the greater li. 
Consequently, the sampling likelihood li  can 
effectively denote the value of probability that p i  is 
located on the sampled surface. Fig.1 illustrates the 
MLS surface approximating the k  nearest neighbors 
Nk(pi) of sample point p i . The MLS surface, 
approximating Nk(p i) of sample point p i with high 

sampling likelihood li , is shown in Fig.1a and the 
MLS surface, approximating Nk(p i) of sample point 
p i with low sampling likelihood li

[20, 35]k∈

, is shown in 
Fig.1b. According to the size of Point-sampled 
model, we take  to determine the 
sampling likelihood li

 

. The related visualizations of 
the noisy Igea model, as shown in Fig.2a, are 
demonstrated in Fig.2. Fig.2b demonstrates mean 
curvature visualization of the noisy Igea model and 
the sampling likelihood visualization of noisy model 
is illustrated in Fig.2c. In this paper, all the point-
sampled models are rendered by using a point-based 
rendering technique. 

  

(a) (b)  

Fig.1 MLS surface approximating point set ( )k iN p . (a) The sample point ip  with high sampling 
likelihood li ip; (b) The sample point  with low sampling likelihood li

 
. 

     

(a) (b) (c) (d)  

Fig.2 (a) Noisy Igea Model; (b) Mean curvature visualization of (a); (c) Sampling likelihood 
visualization of (a); (d) Feature intensity visualization of (a). 

 
 
3  Measuring the Feature Intensity  
Though achieving denosing of PSS by moving each 
sample point to its projection onto the 
corresponding MLS surface, surface features can 
not be efficiently preserved. So we first determine 

the feature intensity of sample point before 
denoising. In this paper, the feature intensity of 
sample point is measured by extending normal 
voting tensor applied to the extraction of sharp edge 
on 3D mesh [38] to point-sampled surfaces. A 
normal voting tensor T i for a sample point p i is 
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defined by
( )

T
i ij ij ijij N i

u ' 'T n n
∈

= ∑ , where ( )N i is the 
index set of p ij  belonging to Nk(p i iju),  is a weight 
defined as || ||exp(- / )j iji eiu p p σ−= . We take standard 
deviation eσ as 2 3/e rσ = , r is the radius of the 
enclosing sphere of Nk(pi ijn). is p ij

|| || 1nij =

’s normal 
( ) and 'nij  is determined as   

2( )ij ij ij ij ij
'n n w w n= ⋅ − , where 

( ) ( )(|| ||=1)ij i ij ij i ij ijw p p n p p w= − × × − . From the 
definition, T i

1 2 3 0v v v≥ ≥ ≥

 is symmetric and positive semi-
definite. Accordingly, its eigenvalues are real-
valued and non-negative: . 
Furthermore, the corresponding eigenvectors 1e , 2e  
and 3e  form an orthonormals basis. So we define the 
feature intensity of sample point p i

1

3 1 2

1

3 2 3

2 3

1
1 ( -
( )/ otherwise

) ( - )
i

is v v v v
v

v
v v

v
δ

α β
⋅ <



−

= > ∧ >



|| n e ||

 as  

,    (3) 

where 
( ) ij ijij N ii u 'nn

∈
= ∑ is a weighted sum of voting 

normal 'nij , andδ ,α , β are positive real numbers. In 
this paper, we experimentally setδ ,α , β to 0.2, 0.3 
and 0.3, respectively. 

The equation classifies each sample point into 
three types which correspond to the type of feature 
that the point belongs to, i.e. face, sharp edge, or 
corner. The feature intensity becomes about 1.0 if 
sample point lies on a sharp edge or a corner, or 
about 0.0 if it lies on a face. As a result, si  indicates 
the geometric feature of surface at p i

In order to measure the feature intensities for 
noisy model efficiently, we determine a 
neighbourhood of sample point through a growing 
process. Let N

. The feature 
intensity visualization of noisy Igea model (Fig.2a) 
is illustrated in Fig.2d. 

R(pi)={q ij | q i j∈ Pn  , ||qij−pi || ≤ R 
=10|E|} be the set of the neighbors of pi  whose 
elements are within a fixed radius R bound centered 
at p i

1
min=0

n
ii

r n−∑, where |E|=  is the average edge 
length of the sample point set Pn , n=|Pn | and ri min  is 
the distance between pi  and its nearest point. We 
initially compute a samller subset Nk(pi

( )={ : || || ( ) }p p p p p pR i ij ij i ij k iN R N− ≤ ∧ ∈
) so that 

, where we 
typically take  k=9. The set NR(pi

( ) ( ) ( )R i R i k ijN N Np p p← 

) is augmented 
for each element p ij 

∈NR(pi

( )={ : || || ( ) ( )}k ij ij ij i ij k ij ij R iN R N Np p p p p p p p− ≤ ∧ ∈ ∧ ∉    

) not processed, where 
. 

This process is repeated for each new point in NR (pi) 

not processed until there are not more points to be 
added, then the final neighbourhood NR (p i

 

) is 
determined. Observe that determining the 
neighbourhood in this way tends to eliminate points 
that are in different connected components or on 
different sides of a thin region, as shown in Fig.3. 

 

Fig.3 Determining the neighbourhood 
NR(pi ip) of sample point . 

 
 
4 Denoising of PSS 
The main idea of this paper’s denoising algorithm is 
as follows: p i’s normal is first filtered by using the 
modified bilateral filtering. In combination with the 
sampling likelihood and feature intensity, the 
distance weight mi  of pi is then determined when 
denoising PSS. p i is moved in the filtered normal 
direction with an offset Di

 
 so as to smooth PSS. 

 
4.1 Normal Filtering 
If p i is moved in the vector piq i direction when 
smoothing PSS, the surface features should be 
blurred. In order to preserving those features more 
effectively, we first smooth p i

Surface normals play an important role in surface 
denoising as surface features are best described with 
the first-order surface normals. It also is well-known 
that normal variations offer more intuitive geometric 
meaning than point position variations. A smooth 
surface can be described as one having smoothly 
varying normals whereas features such as sharp 
edges and corners appear as discontinuities in the 
normals. Thus unlike the bilateral filtering in [16], 
we design the following bilateral filtering with the 
normal-variation term to compute the filtered 
normal

’s normal according to 
the modified bilateral filtering. 

*ni  

( )

( )

(|| - ||) ( )

(|| - ||) ( )
*

p p n

p
n

p
c ij i s ij ijij N i

i
c ij i s ijij N i

w w

w w

α

α
∈

∈

=
∑
∑

,             (4) 
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Where ( )w x is a Gaussian 
kernel: 2 2( )=exp(- /2 )c cw x x σ and 2 2( )=exp(- /2 )s sw x x σ . 
The normal variation ijα is defined 
as ( )ij i ijacos n nα = ⋅ ( || ||=| ||=1i ijn n ). Here, we take the 
parameter cσ  as /2c rσ =  and sσ  as the standard 
deviation of the normal variation ijα .   

According to the equation, *ni is the weighted 
average of p ij

cw

’s normal where the weight of each 
normal is computed using a standard Gaussian 
function  in the spatial domain multiplied by an 
influence function sw in the intensity domain that 
decreases the weight of normals with large normal 
variation. Therefore, *ni is influenced mainly by the 
sample points in Nk(p i

4.2  Sample Point Filtering 

) that have a similar intensity. 

Next, for each sample point p i
*pi

 we find its smoothed 
position by moving it along *ni with an offset Di

* *p p ni i i iD= +

, 
i.e., , where Di

|| - ||q pii i iD m ⋅=

 is determined 
as . In terms of the sampling 
likelihood and feature intensity, define the distance 
weight mi

- -(-1) [ e +(1- )e ]i il s
im τ λ λ= as , where 

(0 1)λ λ≤ ≤ is a user-adjustable parameter; τ is set to 
0 when 0*n p qi i i⋅ > , which indicates that pi 

*ni

is moved 
along , otherwise τ is set to 1 and p i 

*ni−

is moved 
along . 
 
 
5 Experimental Results and 

Discussion 
In our experiments, we use Microsoft Visual C++ 
programming language on a personal computer with 
a Pentium IV 2.8 GHz CPU and 1 GB main memory. 
We have implemented our denoising algorithm and 
another two denoising techniques: the Bilateral 
denoising (BIL) and the MLS-based denoising to 
compare their denoising results. We use three 
models in our comparison: a noisy Igea model with 
134345 sample points (Fig.2a), a noisy Fandisk 
model with 97580 sample points (Fig.4a) and a 
noisy Dragon-head Model with 100056 sample 
points (Fig.6). For these models, table 1 presents the 
related statistics, where Iters. stands for the number 
of iterations, Max. Error is the maximum of 
distances between the original (noisy) points and 
their corresponding denoised points and Ave. Error 
is the average of distances.  

We use two visualization schemes to compare 
the techniques with our method. The first scheme 

consists of coloring by the mean curvature. The 
second one measures the difference between the 
original and denoised point model, i.e., we visualize 
the differences in the positions of the corresponding 
sample points of the models noisy denoised| - |i ip p . 

In Fig.5, we demonstrate a comparison of the 
denoised Fandisk models by MLS, BIL and our 
method. The denoised models are illustrated in the 
top row of Fig.5, and their corresponding mean 
curvature visualizations in the bottom row. As seen 
in Fig.5, our algorithm removes the high-frequency 
noise properly and achieves a more accurate result 
than MLS or BIL does. Fig.7 shows a comparison of 
MLS, BIL and our algorithm concerning feature 
preservation. Note that our alogrithm preserves 
sharp features more accurately than MLS or BIL 
does while producing a smooth result, as shown in 
the closer views of the upper jaw of the denoised 
model. 

In Fig.8, we demonstrate a comparison of the 
denoised Igea models by MLS, BIL and our method. 
The denoised models are illustrated in the top row 
of Fig.8 and their corresponding mean curvature 
visualizations in the middle row. In Fig.8c, we show 
the denoising efficiency of our approach on the 
noisy Igea model (Fig.2a). It can be noticed that the 
high-frequency noise is properly removed, while 
fine details in hair, mouth and face regions are 
accurately preserved. At the same time, we 
demonstrate that our algorithm presents the best 
performance according to the entropy of the 
differences between the noisy and denoised models, 
as shown in the bottom row of Fig.8. From the Max. 
and Ave. errors in Table 1 we can also notice that 
our method outperforms its two rivals. As a result, 
our method produces the lowest oversmoothing 
when compared with the two other denoising 
techniques. 

Since the MLS-based denoising shifts sample 
points to its projection onto the corresponding MLS 
surface, sharp features are significantly smoothed 
out. Although the bilateral denoising performs well 
in general, the sharp features are not able to be 
efficiently preserved as it actually uses a static 
window/kernel in the two domains. Due to take not 
only into account the sampling likelihoods of 
sample points but also the feature intensities while 
denoising PSS, our algorithm can deliver quality 
smoothing while preserving the surface features 
more efficiently than BIL or MLS. From the 
executing time listed in Table 1, we notice that our 
method is slower than MLS or BIL mainly because 
our method needs to compute the sampling 
likelihood and measure the feature intensity for each 
sample point.  
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Table 1 The related statistics 

Fig. Method Iters. Max. Error -4( 10 )⋅  Ave. Error -4( 10 )⋅  Exec 
time 

5 

BIL 2 64.7 14.2 6.38s 

MLS 1 57.2 12.1 70.26s 

Ours 2 49.5 11.3 103.51s 

7 

BIL 2 78.0 15.3 7.56s 

MLS 2 81.3 16.7 76.05s 

Ours 3 72.6 14.5 112.87s 

8 

BIL 1 50.1 5.8 8.84s 

MLS 1 43.8 6.7 140.33s 

Ours 1 35.3 4.3 184.62s 

 

  

Fig. 4 Noisy Fandisk Model and  mean curvature visualization 
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(b) MLS (c) BIL (d) Ours  

Fig.5 Denoising the noisy Fandisk model. Top: the denoised models. Bottom: the corresponding 
denoised model colored by mean curvature.  
 
 
6 Conclusion 
In this paper, we presented a robust denoising 
algorithm for point-sampled surfaces. In terms of 
the MLS surfaces, the sampling likelihood of 
sample point is computed and the feature intensity 
of sample point is evaluated based on normal voting 
tensor. The point’s normal is filtered by using the 
modified bilateral filtering. The point-sampled 
surfaces are smoothed by moving each sample point 
along its own filtered normal with an offset 
determined according to the combination of the 
sampling likelihood and feature intensity.  

Our experimental results demonstrate that the 
proposed algorithm is robust, and can denoise the 
noise efficiently while preserving the surface 
features. 
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Fig.6 Noisy Dragon-head model is colored by mean 
curvature and the closer view of its upper jaw.  

 

   

   

(b) MLS (c) BIL (d) Ours 

Fig.7 Denoising noisy Drag-head model(Fig.3). Top: the denoised model colored by mean curvature. 
Bottom: the closer view of upper jaw of the corresponding denoised model. 
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(a) MLS (b) BIL (c) Ours  

Fig.8 Denoising the noisy Igea model. Top: the denoised models. Middle: the corresponding denoised 
model colored by mean curvature. Bottom: the corresponding denoised model colored according to the 
entropy of the differences between the noisy and denoised models. 
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