
New Discussion on Information Communication Model and Process
Model in Software Organization

Xuejun Liu

Computer Science and Information College
Zhejiang Wanli University

8 Qianhu South Road, Ningbo, Zhejiang, 315100
China

http://www.zwu.edu.cn

Abstract: - A lot of process models for software development such as waterfall model and so on are almost based
on description of the relationship between the scale and complex of software project and technology tasks and
methods in every phase of development as the main content. They are suitable for the technique works of
software development, but ignore the connotation of the management work in software process. Especially that
they ignore the connotation of the management relevant with concrete business and for process management it is
not enough to be only with technical standard. In this article, we propose an information communication model
of software process and a software process model including concrete business and describe the basic tasks of
team software process and relationship between the layers of software process. Starting from this, it can guide
the process operation of software team, provide a new solution for theoretical research and description of the
software engineering subject and provide a framework concept for the auxiliary system tools for the research of
software engineering.

1 Introduction

1.1 The Shortcoming of Traditional Process
Models
Because of the fact that a function can be
implemented by various programming language with
different algorithms, so in early times, people
considered program design as a very personalized
creation. At that time, since the program scale of
most of the software was every small, accordingly the
application and distribution area was also very
limited. Moreover, most of the users of the software
were developers (or the development personnel in the
same mechanism), therefore, naturally these
individuals or mechanisms continued to finish the
work such as modifying and completing the software,
as well as version upgrade by themselves. Because of
this kind of personalized software environment, the
process of “design” was implied process in the brain
of people. There wasn’t enough research and
emphasis on the issue of using the method of working
out software files to assist the work of development.
In this situation, the process of software development
was always the thing of one person or two persons
and lots of the complexities of software development
process were not prominent.

 Later, with the decrease of computer price and
popularization of application field, the need of
developing large-scale computer application
software grows day by day. Software users and
development mechanisms started to separate, thus
many “software workshops” appeared, which
accepted orders on all kinds of computer application
software and became the earliest “enterprises to
develop software”. Since then software development
work formally became a project cooperated by
various people to submit engineering that conforms
to given function and performance objective to the
users within the regulated time range.

Under the background of socialized application of
computer technology, the separation of developers
and users made fundamental change take place in the
social nature of software development work,
changing from the original work that can be dealt
with from the aspect of “personal development” to a
project that had to be finished in the form of
“teamwork”. It is a pity that at the beginning of the
vigorous development of software industry, people
didn’t realize this point, but they gradually realized
this through the occurrence of a series of general
problems. When people started to realize this
problem, it was by reason of they had just purchased
the auxiliary equipments such as printer and so on, or
because of the need of objective expansion and
business improvement in the field. They proposed the

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 73 Issue 1, Volume 8, January 2009

requirement of modifying the original software
function, thereupon, the developers needed to read
the source code again. At this time, people found that
all kinds of resources such as man power, time and
expense and so on expended in the software
modification and maintenance were far more than the
intuitive forecasting of people. Large quantity of
development projects could not deliver the products
on time. The vigorously developed software industry
was questioned by people because of unguaranteed
service quality. The trade union exclaimed “software
crisis”!

By 1968, under this background, people applied
the concept of “software engineering” for the first
time, trying to draw ideas from the method of
building construction and define normative design,
coding and testing process for the software
development process. In this period, people came to
recognize many of the characteristics such as
software life cycle and the universal applicability of
the technical nature in each stage of software
development. And further, models revealing the
common law of software development process are
summed up, such as the waterfall model, the
evolution model, spiral model, the fountain model,
iterative incremental model, and so on, with a good
instruction on choosing the appropriate model based
on the complexity and the scale of the project.
Generally, these models are mainly stressing on the
relation between the extent and complexity of a
software project and the technical assignment and
method of each stage of the development process.

With the accumulation of practical experience,
people realized that there is a huge difference
between Team Software Process and Personal
Software Process, PSP. We can have a better
understanding with following example: for a task for
one person to transport bricks from the 5th floor to
the 1st floor, there is hardly any process needing
management; but if the same task is for five people to
cooperate, there exist two plans: one is each person
still work as they work alone, carrying bricks
downstairs, the other is they work together with the
“throw-and-catch” method. The most important thing
for the “throw-and-catch” method is to define the
regulation between two adjacent people to throw and
catch coordinately, for otherwise it will cause safety
problems. This example tells us that, if one is
managing several people doing the same job, all he
needs to care about is improving their ability to
accomplish the task and examine their work; but
when they are needed to follow a certain procedure
and cooperate, he must define the corresponding
standards for the procedure, and make the team
member learn to follow these standards. He will find

it quite challenging to make them adjust to the newly
defined regulations, and will have to try his best to
promote these standards and timely update them.

When people realized that writing a program in a
team is no longer a personalized creation, they started
to find a way to apply systematic, standardized and
quantifiable method to software development,
operation and maintenance.

Compared to PSP focusing on the technical
abilities, the idea of “Systematic, standardized and
quantifiable” approach to the TSP is essentially
different: TSP models need to focus mainly on the
management research, and to reveal relationship
between the main task and the responsibility of each
position of the team, thus being able to direct the
project operation; the existing models cannot
illustrate the software process from this viewpoint,
but can only describe the relation between technical
tasks and methods in each stage. We know that a
model is “a pattern, plan, representation (especially
in miniature), or description designed to show the
main object or workings of an object, system, or
concept.” [1]

. If the model could not accurately sum up
the characteristics of a prototype, it will surely do
harm to the research. As a result, re-examining the
existing software process model, and setting up a new
model to direct the operation of the team software
project, is essential.

1.2 The Application of Basic CMMI
Condition Is to Be Quested
Over the past decades, the development of the CMM
theory has made the research content of people on
software engineering go far beyond the
widely-known software process model. Procedures
including demand management, code review, quality
tracking, project delivery, team culture building and
so on, have become an important part of research in
the field, providing the theoretical basis setting up a
proper model for guiding the operation of a software
project team.

Today, people think that “software is a kind of
hierarchical technology [2]”. Software engineering is the
combination of a series of quality focus points and
engineering process, engineering method and
engineering tool. It takes the commitment of the
organization to quality as the foundation, making the
combination result of the focus of the organization on
quality and engineering process, engineering method
and engineering tool constitute the whole
connotation of software engineering. People realize
more and more clearly that software engineering is
not only the necessary requirement on the technical

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 74 Issue 1, Volume 8, January 2009

work, but also an engineering process that must be
controlled and managed. That is to say, software
engineering activity must be a process with planning
and control, moreover, there is a necessity and
possibility for the existence of normative plan and
control in this industry.

Over the past decades, in CMMI document of
more than 700 pages, people see the precision and
maturity in this “metamodel”. CMMI is a metamodel
of software process...It defines the process feature
that a software process shall pocess during the
maturity of software establishment[3] . CMMI
theoretical system has successfully made an effective
distinction between process management and
engineering method. Software engineering method
provides a technical solution for the building of
software, to solve the problem of how to do it.
Generally the method includes communication,
demand analysis, design modeling, programing, test
and support. It relies on a group of basic principles,
which cover all the technical field of software
engineering, including modelling and other
descriptive technologies, etc[4] ; the foundation of
software engineering is process layer. It combines
each technical layer so as to promptly, effectively and
orderly implement engineering construction task.
Therefore, “software process is a task sequence[5]

Some people say that “it is necessary for any
software organization to draw ideas from CMMI
concept”, or we can say that “when the organization
develops to a certain scale, it shall apply CMMI
concept”. However, the actual situation is that when
most of the software organizations apply CMMI
concept, they take some necessary “clipping”,
keeping the process specification suitable for their
own team features and making some improvement on
the foundation of it. It is rare to see the software
organization that completely applies CMMI concept;
More common situation is that after the application
of CMMI, people discover that the cost of the
organization increases while it is difficult to
successfully digest and absorb CMMI concept in the
application. To successfully apply CMMI concept,
people are exploring for the basic point of CMMI
application. Especially when people seek for the
“interface” of application CMMI from the various
software development process models such as the
waterfall model, the evolution model, spiral model,
the fountain model, iterative incremental model, and
so on, they discover that it was originally “basic layer
of engineering management---process layer” that
“combined each technical layer together”, but now it
is rigidly dismembered: starting from the traditional

process models, technicians ask the question in
puzzle: I have already finished the task very well, if
you don’t believe it, you can have a test! Why do we
have to waste our valuable time so as to make you
read it or just understand it? Can”t you master some
technology? Isn’t it bureaucratic? It seems that
normalized process standard hinders the technicians
at each post to play an active role. In the eyes of these
technicians, traditional software process models are
transparent and visible, the reason why the
management personnel can not understand or do not
believe the progress and quality of the software is that
they do not know the technology; Even if there is a
quality problem, it is caused by bad management of
some individuals. In the eyes of these technicians,
traditional software process models have clearly
explained the quality index of each technology in the
development process and every one work according
to these technology requirements, therefore, the
management personnel shall assume the
responsibility for the quality problem—they know
that the managers have no idea about those Bug and
the managers need them to solve the problem. They
can not understand that for a task that is impossible to
be free from defect, a necessary choice to ensure the
quality reach a certain level is to rely on the process
normalization and improve the process visibility. It is
not enough to be only with technical standard, but it
has to make the implementation process of the
standard normalized and transparent. While the
activity of normalizing process standard and
improving process visibility itself is an important
specification of technical work. Traditional process
models only describe the technical task and natural
from the aspect of technology, without giving a
process about how to reach the technical standard in
high quality; While the establishment of normalized
software process is set up according to the quality of
team members and cultural situation of the team, in
which software engineering method or technical
specification shall subject to software engineering
process specification. Software process is the key
link while the software technology is the mesh. Once
the key link is grasped, everything falls into place.
The relationship between the two can not be in
disorder.

 ”
and it forms the foundation of software engineering
management.

To sum up, we can see that the software team can
not just regard CMMI as a kind of management form,
but CMMI is closely in relation with many aspects of
team construction. Mechanically and formalizedly
introduction of CMMI without considering about the
concrete situation of the team construction is the
main reason why it encounters boycott. Therefore,
we shall research in which situation does the software
team possess the conditions of applying CMMI and

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 75 Issue 1, Volume 8, January 2009

what is the most basic condition among these
conditions.

The mechanical understanding and utilization of
traditional process models of the people is not the
only problem. In fact, not all the softwares need
CMMI. For the small-scale software products, they
rarely need a software process with strict definition.
Besides, many facts also tell us that it is not that all
the software engineerings without CMMI will fail.
The existence of these problems propose an urgent
requirement on the research of “what is the basic
condition for the application of CMMI”.

About the question of “what is the basic condition
for the application of CMMI”, if we answer this
question from the two aspects of software scale or
software team population, obviously there is no
answer. It is because that there is no necessary
connection with process concept of CMMI and
software scale and software team population. The
small-scale software products still can be produced
under the process concept of CMMI; A software
developed by a person can also apply the concept of
CMMI; The application of CMMI in large-scale
software engineerings with large population is even a
matter-of-course.

As far as I am concerned, the basic condition of
CMMI application is in relation with two factors (see
Figure 1 below).

Fig.1 Relationship between software process and

product quality and expense-cost

Firstly it is the market price factor of the software

products.
For the software development organizations, they

need to do their best to make the profit larger than
cost, that is, try to make the profit curve above cost
curve; However, nonlimitness theory of test tells us
that after the product quality reaches a certain level, it

is very difficult to improve. That is to say, after
process fine level of product quality curve reaches a
certain degree, it will be difficult to improve.
Moreover, excessive implementation of fine process
will rapidly increase the operation cost and reduce
the benefit. The expenses needed to pay by the users
will also rapidly exceed their anticipation range
(Q’-Q point), that is, with the improvement of
process fine degree, there is a crosspoint between
cost curve and quality curve.

Regarding the development process from the view
of the users, if they conclude development contract
with software enterprises at different process levels,
the expense they input and the software product
quality they obtain will have huge difference. Those
enterprises with low process level tend to be difficult
to reach the normal level of use (Q’), therefore, they
should try to merge with the enterprises M” whose
process level is above M point. Moreover, when
cooperating with the development organizations,
they shall properly increase the input according to
their own expense input ability and supervise the
process level of software organization
implementation during the cooperation to be above
M point (such as M’ point).

Therefore, we can see that when the market price
of the software products reaches a certain level, it is
necessary for the software organizations to apply
high-quality process management (such as CMMI),
through which they can effectively improve the
market competitiveness while improving the product
quality; On the other hand, from the aspect of the
users, there is certainly a need to select a partner
when inputting the capital to develop the products.
However, when the products expenses reach a certain
level, the work of selecting a partner and inspecting
the software process level of the other party is very
important, otherwise, the aftermath of concluding a
development contract with an enterprise without
certain process ability will be disastrous.

In fact, reasonable price of software products is
decided by market mechanism, while the market
quotation of the software organizations with strong
process ability will become the market leader of
reasonable price. It is without a doubt that the
application of CMMI can improve the
competitiveness of the enterprises, therefore, whether
the software team shall apply CMMI is in accordance
with its status in the market competition of like
products. In long term, the application of CMMI will
be a necessary trend.

The second factor is the organizational framework
of software organization. This is another important
index of CMMI application. Same as any social
organization, a software project team is manually

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 76 Issue 1, Volume 8, January 2009

constructed. They are structured, “... are structures
built up with incidents ... established based on the
infinite variety of different purposes” [6]

Traditional process models have provided very
good technical task sequence for the establishment of
software organizational structure. We can conduct
the design of software organization structure like
constructing an organizational structure in ordinary
management work. We have clearly know what
“incidents” are included in the technical sequence to
accomplish the task, we also cleary know what
situations are there to deal with the “relevant problem
incidents” in the cooperation with the users, and we
are also familiar with the productivity and market
demand among the like products in the business field,
therefore, we can select our objective and strategy
based on these theoretical and practical experience,
organically construct proper technology and service
organizations, confer these organizations and
departments with corresponding responsibility and
authority, define jurisdiction and affiliation,
organically construct these objectives and strategies
with technical task sequence and organizations and
departments, combine the factors such as team
culture and so on from the aspects such as product
market and its development angle and quality
constitution of team members, and define the
software process (and other rules and regulations).

, in other
words, people build an organizational structure based
on possible incidents while realizing the goal and the
need to deal with them. Variety of needs will result in
variety of structures. The structure of a software
project team reflects people’s practical experience
and theory, and is related to specific incidents. An
efficient organizational structure is composed of its
architecture and members, as well as the assignment
procedure.

From this we can see that the basic condition for
CMMI application has direct relationship with the
market price and competition environment of the
products, however, it is just the external factor of the
problem. Construction problem of software
organization is the internal reason that influences the
application of CMMI with a decisive influence on the
successful application of CMMI.

2 Information Communication Model

in Software Process
To correctly establish the organizational structure of
software development, it shall face the organizational
objective and strategy, take the management process,
engineering process and technical process of the
software engineering project as a foundation and

adapt to it, especially that it shall organically mix the
demands of software engineering process together,
from which we can say that it faces the software
engineering process. A software organization
established in such a way is a product of the organic
combination of organizational objective and strategy
and the software engineering process.

Then, how is the basic structure of such an
organization? What about the information
communication in the organization?

2.1 Information Communication Model of
Software Organization
As far as I am concerned, for software engineering
field, however big the scale of the TSP is, and
whatever the kind of the problem is, from the view of
management, we may divide the structure into the
decision level, the implementation level, the quality
assurance level and the coding level (as shown in Fig
2), the division of this organizational structure is
based on the management need on software process
and further simplification of model levels will be
unfavorable for the control on process control from
different responsibility aspects. Therefore, it is a
model that can not be simplified any more. This
model defines basic roles in software process (which
will be described in the text below) and they are the
most fundamental roles in the organizations suitable
for CMMI system.

For the development of software products of the
same kind in the same application field, different
software organizations will have different
construction plans for organization structure, which
is very common. In other words, the construction of
software organizational structure is greatly
influenced by the individuality and experience of the
people.

Although different management models will
always have different information communication
models, in these different information
communication models there is a generally applied
information communication model in any software
process, which is decided by the common factor in
software development work. For example, any
software development organization shall
communicate the problem in the field with the users,
solve the quality tracking problem in the processes
such as software design, coding, test and
maintenance and so on, and try to improve the
visibility of the invisible information, to make it easy
to track and communicate. Therefore, by filtering the
“personalized attached processes” purely belonging
to organizational coordination and management, it
can discover the generally applied model in the

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 77 Issue 1, Volume 8, January 2009

software process information communication in the
software organization.

This generally applied software organization and
information communication model in its software
process has the following several features:

(1) It is a vital information communication
process in dealing with all kinds of business and
technical problems in the production process of
software products;

(2) It is not influenced by the software
organizational structure and scale and the
information distribution and communication mode
in the model is generally applied;

(3) It has nothing to do with the product variety,
what kind of computer software application and
development area it is, the information and
communication process in the model is vital to this
software structure.

(4) Individualized information communication
model of any software organization can expand,
subdivide and construct on the foundation of this
model and become the information
communication model in this software
organization.

(5) The focus point and process area of each
ability maturity degree in CMMI can find an
affiliation of business nature in this model. In
other words, when the process management level
of software organizations continues to improve, it
can naturally access CMMI process standard on
the foundation of this model, to expand and
complete the management process and provide
natural foundation for effectively improving the
process management level.

For example, in the “cyclone model” described
in this article, after the expansion and evolution,
“quality assurance activity” in the “basic tasks of
quality review” provides a foundation for the key
process area for the implementation of “software
quality assurance” in “repeatable grade” in CMM
system[7] ; after subdivision and evolution, the
task of “plan and supervise the internal and
external communication of the team” in the “basic
tasks of problem decision” provides a foundation
for the for the key process area for the
implementation of “software engineering plan” in
“repeatable grade” in CMM system.
Starting from the above-mentioned opinion, the

writer proposes “Software Organization and
Information Communication Model in a Software
Process” as shown in Figure 2.

As shown in Figure 2, for the horizontal
relationship in the same level, a healthy team culture
encourages the interactive study and communication
among team members; for the vertical relationship,

team members are divided into basic mission groups
or management levels according to the technical
nature of the task; for external cooperating
relationship, team members should actively keep in
touch with the external environment throughout the
project process, having the external information fully
reviewed and reaching agreement inside the team.
Especially the decision level, the implementation
level and the quality assurance level have to be in
such an agreement in all their works while planning
and examining. Even the coding level needs a
complete understanding of the clients” requirement
in function and performance, thus optimizes the
algorithms. In sum, the information communication
in software engineering has three forms as described
above, which thoroughly show that a TSP is never a
personal art, but a project which needs coordinate
cooperation among team members.

Fig. 2 Software Organization and Information
Communication Model in a Software Process

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 78 Issue 1, Volume 8, January 2009

2.2 Definition of management levels and
responsibilities
As shown in Figure 2, the decision level is the
topmost management level of a software project team,
controlling the construction and operation of the
software team. Their job is to organize the
implementation procedure of the project, allocate the
human resource and funds, as well as technical
training. They are responsible for the whole team
reaching the product goal and for the financial benefit
of the team. Normally, this level refers to the
managers who make the final decision for the goal,
the tasks and the benefit of the project operation.

The implementation level refers to the managers
who lead the technical groups to implement their
given tasks. They are responsible for all matters
concerning the group members to accomplish their
tasks, and to report their work to the decision level.
For the group members, they are the people in charge
of the tasks, and they may break down a task into
smaller tasks and assign them to smaller sub-groups;
for different groups, they are the fully responsible
coordinators for the tasks.

The main duty of the quality assurance level is to
examine the quality of the works done by the team
members. It gives estimation to the managers in the
implementation level on conformity of the goal and
the result. In fact, this work is also known to people
as software testing and technical review, but I insist
to call it the “quality assurance level” instead of the
“testing level” or the “review level”, in order to avoid
the unnecessary misunderstanding for the managers
who claim to “gradually decrease the formality of the
technical review procedures”, and to emphasize the
indispensability of quality assurance jobs. Besides, in
the view of the management levels, the quality
assurance level is above the coding level, for the
coding level must follow the quality specification
formulated by the quality assurance level.

The coding level is formed from program
designers skilled in programming techniques, whose
main duty is do the coding job within the
corresponding design plan.

Figure 2 does not show the level division of jobs
responsible for requirement gathering, outline design
and detail design, mainly because, in most conditions,
every development or execution of a technical plan of
a team (but not an individual) is realized under
effective communication and coordination, and these
abilities are the primary elements of management
ability. People with only technical abilities are not
capable for such jobs. So, as far as I am concerned, no
matter how important the technical abilities are for a
software project, they can only determine the
information quality, while the critical factor for the

quality of information communication is the
management ability. Thus, the “information
communication model” I proposed does not include
these pure technical jobs, and I think these jobs can
be the element in any of the decision level, the
implementation level, the quality assurance level and
the coding level.

In fact, members with excellent technical abilities
as well as good management skills are the major
candidates of positions in the decision level, the
implementation level and the quality assurance level.
Any software development team hopes the members
in its management groups acquire not only good
management skills but also good technical abilities.
Management groups without technical abilities are
undesirable: they cannot lead the professional
members to accomplish their tasks. Assigning
technical employer without any management skills to
a management job usually causes bigger problems.

3 The definition of the cyclone model
In general situation, on the structural design of the
information management system of an organization,
we can clearly learn about the management process
of this organization, where we can not see the static
information of the organization, but also we can see
the information flow of this organization, especially
the business process (consisting of a series of tasks
and is a sequence of tasks) together with the
information flow process.

We can see that for the research of software
process management, it is not enough to just rely on
the information communication model of software
organization. There is not any concrete sequence
information in this model, that is, concrete process
information. Therefore, it is difficult to guide the
establishment of software process effectively and
concretely, while individualized influence factor in
the establishment of normalized software process can
have effect very easily. Therefore, further
establishment of a model with basic model process is
completely necessary.

To obtain a vivid, understandable and descriptive
framework, as an example of comparison, we have
the “Hurricane Principle” summed up into Figure 3: a
hurricane constantly absorb air flows from the
surrounding environment and get them into its own
spin. While rotating and delivering in the same level,
they are also brought upward into other levels by the
updraft. The center of rotation is the eye of the
hurricane.

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 79 Issue 1, Volume 8, January 2009

Fig. 3

The Sketch map for Cyclone

Fig. 4 Cyclone Volution Diagram

As a comparison, let’s make an imitative
imagination like this: each of the management level
of a software team is arranged in a different height
level of a hurricane, as shown in figure 3. Then we
see the basic tasks of a software process (task A and
task B in the figure) as the flows through each level
of the hurricane. The instructions are delivered
top-down to each level along the eye, while the
reports are delivered bottom-up level by level. The
instructions and the reports form a closed circuit of
policy and execution.

This model describes the software process
properly and vividly, and can be used to illustrate
series of software process tasks, as well as the
relationship between the procedure of decision and
execution, and the management levels of the team. It
is personally called the Cyclone model of a Team

Software Process. The detailed description is as
follows.

Normally, a TSP has six basic tasks:

3.1 Basic decision-making task
The major task of decision-making is to plan and
supervise the internal and external communication of
the team. It determines how to carry out other basic
tasks. In particular, it formulates the “target
granularity” of other basic tasks, such as the target
range, content, clarity, accuracy and so on. The other
five kinds of basic tasks are the natural continuation
of the decision-making task, and it is the beginning
and the end of each basic task of a new period, and a
process circularly promote the progress of a
project.The quality of software project management
depends mainly on the decision-makers’ control of
the “target granularity”. Especially when facing
unclear requirement specification or changes in
project circumstances, or dealing with the ubiquitous
risks, proper “target granularity” is needed to control
the process. Any technical means and methods
should subject to the overall process of the team,
rather than solitarily develop and achieve their own
process and quality goals. For example, the
demand-acquiring task, in many cases cannot be
done directly. The process of the project is always
accompanied by large or small changes of the
objective. Many contracts are signed even when the
objective of the project is no very clear. Such a
concept of management to control the project process
with target granularity is the most significant
difference from other engineering projects.

3.2 The demand management task
In the past, people used to use the phrase “demand
analysis” to refer to what is currently called
“requirement engineering” or “requirement
management”. Although the objective and the
meaning have hardly changed, the alternation of the
terminology shows the growing emphasis on the fact
that this work is not only the need of the technical
nature, but also an engineering property requiring
control and management. Literally, “requirement
engineering” should include obtaining, analyzing,
defining, verifying and managing of requirements,
while “requirement management” stresses on the
planning and controlling of everything concerning
the requirement engineering. The word
“management” is more suitable for describing all
activities and regulations concerned, drawing
people’s attention on tracing requirement alternation

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 80 Issue 1, Volume 8, January 2009

and keeping the consensus of the stakeholders and
the project team.

Considering the regularity and technical nature,
this task is undoubtedly one of the primary tasks of a
software process. From the view of project
management, another significance of this basic task
is that, it timely captures the necessary terms for
negotiation as soon as the project agreement changes:
the reason, the content, how it changes and how the
business cooperation clause will alter, etc.

3.3 The system verification basic task
The basic mission of the system verification task is
the feasibility evaluation on the aspects of the plan,
benefit, risk, operation and laws, etc, of the project,
and providing necessary technical plans and
expectations on management target for the “plan
implementation task”. It is raised for the targets
needing detailed argumentation, after the progress of
the requirement management task, and is especially
important to projects with fewer experiences. Its
result will become the issue of basic problem
decision-making task again—whether and how to
continue this project.

3.4 The basic implementation plan task
The plan implementation task is a procedure for the
implementation level executing the development
decisions made by the decision level. It draws up and
implements the working plan according to the
research result of the prior requirement management
task and system verification task. It is mainly to
promote, trace and control, and to concern the usage
of resources and time, as well as the quality and risks,
making full use of the good experiences from all
aspects of the team (just as CMM encourages).

3.5 The basic quality evaluation task
The quality evaluation task mainly consists of the
evaluation of the specification instructions,
schematic design plan, testing plan and coding
quality, as well as the supervision of the work
consignment. Just as the CMM theory shows,
whether and how the quality evaluation task launches
is a symbol of the maturity of a software team. It
defines the applicable quality standards for the team,
and manages the quality assurance activities. Such a
regular technical system should be included in a
mature software team.

3.6 The project consignment task
The project consignment task is primarily about
finishing the test on software installation and
distribution, designing the setup package, modifying
the setup package after the changes in the consigned
software, arranging the personnel and their
responsibilities for consigning the project, and
implementing the consignment plan, making sure
that the consignment is finished successfully.

3.7 The relationship of the 6 basic tasks
The relationship of the 6 basic tasks is shown in
figure 4. The result of a task is directive and
supportive to other tasks in the same “scope”, and the
results of other tasks are complementary and
illustrative, or corrective under approval to this task.

Fig. 5 The Relationships in 6 Basic Tasks

The starting order, the number of times and the

project scale are related to the complexity, as well as
the management standard and the overall quality of
the team; the more basic tasks operate synchronously,
the more complex the management tasks will be. For
a normal project, a decision-making task (1) is raised
in the decision level. Afterwards, the decision level
of the project manages and controls the start and the
termination of other basic tasks and, in a proper time,
launches the requirement management task (2), the
quality evaluation task (3) and the system verification
task (4), which all report back to the decision level.
After making the decision to implement the project
and carrying out a plan, the decision level starts the
plan implementation task (5), taking the project into

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 81 Issue 1, Volume 8, January 2009

the development stage. In the plan implementation
task, it is also necessary to launch sub-tasks (6) of the
requirement management task, the quality evaluation
task and the system verification task. But in this stage,
the goal and the detail of each sub-task is focused on
the sectional objective. Works are at first reported
back to the implementation level, and then to the
decision level. Received the report, the decision level
decides how and in what range a new basic task needs
to be launched. Thus cycling till the project ends.
Finally, the decision level decides to start the project
consignment task. (7)

An experienced team must have procedure
regulations and quality regulations of requirement
management, which should be consciously followed
in each requirement management task. So, essentially,
the quality evaluation task and the requirement
management task are launched at the same time. It is
just for clarity to remark them successively in the
above illustration.

4 Conclusion
Through reviewing the generation and development
of the traditional software process models, this article
analyzed the features of the traditional software
process models when facing the technical tasks. It
thought that the process models didn’t summarize the
substitutive characteristics of “software process” as
the prototype object. These models put the
substitutive characteristics of software process as
management nature; on the other hand, through the
analysis on the general problems in the software
enterprises in CMMI application, this article further
proposed the question of “in which situation does the
software team possess the conditions of applying
CMMI”, through the analysis on the two major
factors influencing CMMI application in software
organizations-market price factor of software
products and organization and framework factor of
software organization”, it gave an information
communication model (Fig. 2) of software
organizational model and software process in
software management problem from general aspect,
moreover, the writer thinks that this model is a vital
information communication process for dealing with
and solving all kinds of business and technical
problems in the production process of software
products, having the 5 features of not being
influenced of software organizational structure and
scale, independent of products variety, can be taken
as the foundation for individualized information
communication models of different software
organizations to expand, subdivide and establish and

providing a natural foundation for the gradual
application of CMMI to improve the process
management foundation, etc.

On this foundation, this article extended the
technical and management conception of software
engineering. From a management point of view, it
summarized the basic tasks of a software process,
based on management ideas such as “management is
coordination” and “coordination depends on
effective communication”. It compares the
information communication model and the cyclone
model, and brings forward a descriptive model for
Team Software Process, including 4 management
levels and 6 basic tasks—the writer called it as
“cyclone model”. It illustrates the series of tasks that
form the software process and their relationship with
team management levels, which may direct the
organization structure and project operation of
software team, bringing a new thinking to the
theoretical research and elaboration of the software
engineering subject and providing a new framework
concept for the assistant tools for the research of
software engineering.

References:
[1] Zhengnong Xia, CIHAI, Shanghai Cihai

Publishing House, 2000.
[2][3][4] Roger S. Pressmam, Software

Engineering—Research Method of Practitioner
(translated by Renjie Zheng, Suxia Ma and Bai
Xiaoying etc), China Machine Press, 2007.

[5] Joel Henry, Software Project Management
(translated by Yuchi Liu and Wei Li etc.), China
Electric Power Press, 2006.

[6] Shisen Zhang, Harvard Business School the
Theory of General Manager, China Financial &
Economic Publishing House, 2002.

[7] Sami Zahran, Software Process Improvement
(translated by Xin Chen and Jinfeng Luo etc.),
Beijing, China Machine Press, 2002.

[8] Freedman and Weinberg, Walkthrough,
Inspection and Technical Reviews: Evaluating
programs, Beijing , Tsinghua University Press,
2003.

[9] Marshall Brain and Craig C. Freudenrich, Secret
of
Hurricane, http://science.bowenwang.com.cn/hur
ricane.htm

WSEAS TRANSACTIONS on COMPUTERS Xuejun Liu

ISSN: 1109-2750 82 Issue 1, Volume 8, January 2009

http://science.bowenwang.com.cn/hurricane.htm�
http://science.bowenwang.com.cn/hurricane.htm�
http://science.bowenwang.com.cn/hurricane.htm�

