
 

 

A Sampling-based Method for Dynamic Scheduling in Distributed Data 
Mining Environment 

 
Jifang Li 

Computer Science and Information Technology College 
Zhejiang Wanli University  

P.R.China 
http://www.zwu.edu.cn 

 
 
Abstract: - In this paper, we propose a new solution for dynamic task scheduling in distributed environment. 
The key issue for scheduling tasks is that we can not obtain the execution time of irregular computations in 
advance. For this reason, we propose a method which is based on sampling to some typical data mining 
algorithm. We argue that a function is existed in the items: execution time, the size of data and the algorithm, 
therefore we can deduce the execution time of a data mining task from the corresponding the size of data and 
algorithm. The experimental results show that almost all the algorithms exhibits quasi linear scalability, but the 
slope of different algorithms is different. We adopt this sampling method for process the tasks scheduling in 
distributed data mining environment. The experimental results also show the sampling method is applicable to 
task scheduling in dynamic environment and can be adopted to obtain a higher result. 
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1   Introduction 
Dynamic distributed environment, especially Grid 
computing or the use of a computational grid, is 
applying the resources of many computers in a 
network to a single problem at the same time - 
usually to a scientific or technical problem that 
requires a great number of computer processing 
cycles or access to large amounts of data.  

Grid computing requires the use of software that 
can divide and farm out pieces of a program to as 
many as several thousand computers. Grid 
computing can be thought of as distributed and 
large-scale cluster computing and as a form of 
network-distributed parallel processing. It can be 
confined to the network of computer workstations 
within a corporation or it can be a public 
collaboration, in which case it is also sometimes 
known as a form of peer-to-peer computing. 

A number of corporations, professional groups, 
university consortiums, and other groups have 
developed or are developing frameworks and 
software for managing grid computing projects. The 
European Community (EU) is sponsoring a project 
for a grid for high-energy physics, earth observation, 
and biology applications. In the United States, the 
National Technology Grid is prototyping a 
computational grid for infrastructure and an access 
grid for people. Sun Microsystems offers Grid 
Engine software. Described as a distributed resource 
management (DRM) tool, Grid Engine allows 

engineers at companies like Sony and Synopsys to 
pool the computer cycles on up to 80 workstations 
at a time. At this scale, grid computing can be seen 
as a more extreme case of load balancing. 

Grid computing appears to be a promising trend 
for three reasons: 

(1) Its ability to make more cost-effective use of 
a given amount of computer resources 

(2) As a way to solve problems that can't be 
approached without an enormous amount of 
computing power, and 

(3) Because it suggests that the resources of 
many computers can be cooperatively and perhaps 
synergistically harnessed and managed as 
collaboration toward a common objective. 

In some grid computing systems, the computers 
may collaborate rather than being directed by one 
managing computer. One likely area for the use of 
grid computing will be pervasive computing 
applications - those in which computers pervade our 
environment without our necessary awareness. 
Thanks to vast improvements in wide-area network 
performance and powerful yet low-cost computers, 
Grid computing has emerged as a promising 
attractive computing paradigm. Computational 
Grids aim to aggregate the power of heterogeneous, 
geo-graphically distributed, multiple-domain-
spanning computational resources to provide high 
performance or high-throughput computing. To 
achieve the promising potentials of computational 
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Grids, an effective and efficient scheduling system 
is fundamentally important. 

Scheduling systems for traditional distributed 
environments do not work in Grid environments 
because the two classes of environments are 
radically distinct. Scheduling in Grid environments 
is significantly complicated by the unique 
characteristics of Grids. 

Task scheduling is an important aspect of 
dynamic distributed environment. Most of the 
heuristics for this NP-hard problem are based on a 
very simple system model of the target distributed 
system. Experiments revealed the inappropriateness 
of this classic model to obtain accurate and efficient 
schedules for real-systems. In order to overcome 
this shortcoming, a new scheduling model was 
proposed that considers the relationship among 
some important items. Even though the accuracy 
and efficiency improved with the consideration of 
the relationship, the existed method for predicting is 
still not good enough. The crucial aspect is the 
predicting the execution time of tasks. This paper 
investigates the relationship among data size, 
algorithm and execution time. The challenges for 
the scheduling techniques are analyzed and a new 
method for tasks scheduling is proposed based on 
sampling. Experiments on dynamic distributed 
environment show the significantly improved 
accuracy and efficiency of the new methods. 
 
 
2   Problem Formulation 
A scheduler is the mediate resource manager as the 
interface between the consumers and the underlying 
resources. Scheduling is a core function of resource 
management systems. 

In a distributed environment, on one hand, there 
is a suite of computational resources interconnected 
by networks; on the other hand, there is a group of 
users who will submit applications for execution on 
the suite of resources. The scheduling system of 
such a distributed computing environment is 
responsible for managing the suite of resources and 
dealing with the set of applications. In face of a set 
of applications waiting of execution, the scheduling 
system should be able to allocate appropriate 
resources to applications, attempting to achieve 
some performance goals. 

In traditional parallel computing environments, 
the scheduling system is made much simpler due to 
the uniform characteristics of both the target 
applications and the underlying resources. However, 
a computational Grid has more diverse resources as 
well as more diverse applications. 

According to GGF’s Grid scheduling dictionary 
[1], the Grid scheduler is responsible for: 

(1) Discovering available resources for an 
application 

(2) Selecting the appropriate system(s), and 
(3) Submitting the application. 
In brief, Grid scheduling is a software 

framework with which the scheduler collects 
resource state information, selects appropriate 
resources, predicts the potential performance for 
each candidate schedule, and determines the best 
schedule for the applications to be executed on a 
Grid system subject to some performance goals. 

In principle, scheduling in Grids means two 
things: ordering and mapping. When there are more 
than one applications waiting for execution, 
ordering is performed in order to determine by 
which order the pending applications are arranged. 
Ordering is necessary if applications with priority or 
deadline are involved. Mapping is the process of 
selecting a set of appropriate resources and 
allocating the set of re-sources to the applications. 
For each mapping, the performance potential is 
estimated in order to decide the best schedule. 

In general, a scheduling system of Grid 
computing environments aims at delivering better 
performance. Desirable performance goals of Grid 
scheduling includes: maximizing system throughput 
[2], maximiz-ing resource utilization, minimizing 
the execution time [3] and fulfilling economical 
 
 
3   Related Works 
To date, there have been a number of exciting initial 
efforts at developing scheduling systems for Grid 
environments. In this section, we focus on a 
representative group of these pioneering efforts to 
illustrate the state-of-the-art in Grid schedulers. It is 
often difficult to make comparisons between distinct 
efforts because each scheduler is usually developed 
for a particular system environment with different 
assump-tions and constraints. In the following 
section, I attempt to outline the features of each 
system and sum-marize their advantages and 
drawbacks. Also how does they fit the taxonomy. 
 
 
3.1 Information Collection Systems 
The information service infrastructure plays a 
particularly important role in a scheduling system. 
Meta Director Service (MDS) from Globus and 
Network Weather Service (NWS) are two popular 
systems serving to provide the information 
publication and collection of resources in a grid 
system. 
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3.1.1   MDS (Meta Directory Service) 
The Globus Metacomputing Directory Service 
(MDS) [4] provides is a LDAP-based information 
service infrastructure for computational Grids. It is 
used to collect and publish status information of 
Grid resources. Examples of the information that 
can be retrieved from an MDS server include 
operating sys-tem type, processor type and speed, 
number of processors, and available memory size of 
resources. 

Each GRIS (Grid Resource Information Service) 
is responsible for monitoring one resource and 
keeping all the current configuration, capabilities, 
and status of the resource. A GRIS can be queried 
for the information of a local resource. Each GIIS 
provides a means of aggregating information from 
several GRISs to present an information pool for a 
set of resources. Different GIIS can be further 
aggregated to manage more integrated information 
of a larger set of resources. 

Thus, MDS provides a hierarchical method for 
providing information service in a Grid system, 
which is scalable and efficient. As a limitation, 
MDS can only provide current state information of 
the resources. 
 
3.1.2   NWS (Network Weather Service) 
The Network Weather Service (NWS) [5] is a 
distributed system that monitors and forecasts the 
performance of network and computation resources. 
Examples of the information that can typically be 
retrieved from an NWS server include the fraction 
of CPU available to a newly started process, the 
avail-able memory size, and the bandwidth with 
which data can be sent to a remote host. 

Each resource has one NWS agent, which 
consists of three components: sensory subsystem, 
forecasting subsystem and reporting interface. NWS 
sensors collect the current performance that a 
resource is able to deliver at present. The collected 
performance data from sensors is input to the 
forecasting subsystem, and based on the forecasting 
models, different levels of performance in a future 
timeslot are forecast. Through the report interface, 
the predicted resource performance can be retrieved. 

To avoid becoming a bottleneck of a system, the 
NWS does not have a centralized node that has the 
overall information of all the resources. The 
responsibility of information service is distributed to 
every resource. Superior to MDS, NWS provides 
not only the current performance information, but 
also the predicted performance information for a 
future timeslot which is more beneficial for 
estimating the performance behavior of a job 
running on the resource. 

3.2   Condor 
Condor [6] aims to increase utilization of 
workstation by hunting idle workstations for sharing 
job execution. 

The condor Scheduling Structure Condor 
follows an approach to scheduling that lies between 
the centralized and decentralized scheme. For 
information collection, on one hand, Condor 
employs a Coordinator responsible for managing the 
set of available idle workstations. For scheduling 
jobs, on the other hand, each workstation itself is 
responsible for maintaining the local queue of jobs 
to be run and scheduling the jobs onto idle 
workstations for execution. 

Condor is capable of check pointing and job 
migrating, which are important features for 
rescheduling. In Condor, a remote job can run on a 
workstation only when the workstation is idle, that 
is, the work-station has no local workload. Once a 
workstation has its own workload, the remote job 
currently running on the workstation is preempted. 
With the help of check pointing, the preempted job 
can be rescheduled to another idle workstation to 
resume its job, such that the previously 
accomplished results can be utilized. 

The performance goal of Condor is to 
maximizing the throughput of the system, which is 
sys-tem-centric. The target applications of Condor 
are independent, non-real time batch jobs. The 
underlying resources are homogeneous, preemptive, 
non-dedicated, and non-time-shared. The 
description of re-sources is coarse-grained since 
only the availability of workstations is considered. 

Condor supports site autonomy. However, 
communication overhead of transferring a job is not 
considered. It is only suitable for WAN-based 
environment. 
 
 
3.3   Condor-G 
A newly proposed version of Condor, Condor-G [7], 
leverages the advantages of both condor and Globus 
Toolkit [8] [9]. Globus Toolkit is a software 
infrastructure for setting up a Grid environment 
across multiple administrative domains, which sup-
ports resources management, secure file transfer, 
information discovery and secure authentication and 
authorization in such a Grid environment. Based on 
Condor, Condor-G makes use of the mechanisms 
provided by Globus Toolkit to cross the boundaries 
of real institutions, aiming at utilizing the idle work-
stations among these institutions. Also the job 
creation, job monitoring and result collection are 
heavily relied on the GRAM (Grid Resource Access 
Management) component of Globus. 
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In condor-G, each Job Submission Machine 
constructs a GridManager locally which manages 
local jobs, retrieves the available resources, and 
schedules the jobs onto the feasible resources. GSI 
(Grid Se-curity Infrastucture) mechanism of Globus 
is used by GridManager to do authentication and 
authorization with remote resources. Information 
collection of resources is based on MDS (Meta 
Directory Service) mechanism of Globus, which is 
in principle centralized. 

The problem of scheduling a set of dependent 
jobs is solved by Condor-G by designing the local 
Grid Manager with the coordinating function. Thus 
the applications running on Condor-G is more fine-
grained compared to that of Condor. 

Resource heterogeneity is allowed in Condor 
through deploying the standard resource manager on 
re-sources. The computational resources in Condor 
could vary from workstations to clusters. But the 
description of resources remains coarse-grained. 

Similar with Condor, Conder-G has the 
performance goal as maximizing the utilization of 
resources. Condor-G is resource-fault tolerant, 
meaning that it is able to cope with the resource 
failure. Condor-G allows inter-domain operation on 
remote resources that require authentication. 
 
 
3.4   AppLeS 
AppLeS [10] is an agent-based scheduling system 
for Grid environments, which targets to promote the 
performance of every individual application. 
AppLeS is based on the application-level scheduling 
paradigm in which everything in the system is 
evaluated in terms of its impact on the application. 
For each application, its performance goal is 
specified by the application itself. 

Each Grid application has its own scheduler 
which determines and “actuates” a schedule. The 
schedule is computed based on the application 
characteristics, performance goal, and resources 
currently available to the application. 

An AppLeS agent is organized in terms of four 
subsystems and a single active component called the 
Coordinator. The four subsystems are: 

- The Resource Selector, which chooses and 
filters different resource combinations for the 
application’s execution. 

- The Planner, which generates a resource-
dependent schedule for a given resource 
combination. 

- The Performance Estimator, which generates a 
performance estimation for candidate schedules ac-
cording to the user’s performance metric, and 

- The Actuator, which implements the ‘best’ 
schedule on the target resource management 
systems. 

The Network Weather Service (NWS) is used to 
provide dynamic information of resources and 
predict the resource load for the time frame in which 
the application will be scheduled. The User 
Interface pro-vides specific information about the 
structure, characteristics and current 
implementations of the applica-tion and its jobs, as 
well as information on the user’s criteria for 
performance, execution constraints, and preferences. 
Finally, Models provide a repository of default 
application class models and applica-tion-specific 
models to be used for performance estimation. 

The target class of applications in AppLeS has a 
common structure: master/slave. The execution time 
model of the class of applications can be expressed 
as follow: 

ExecTime = MasterComp + maxi 
{ SlaveCompi } + ResultGather 

Where MasterComp, SlaveCompi and 
ResultGather provide a decomposition of the 
application execution behavior. AppLeS seems not 
to solve the multi-domain problem. Non-dedicated, 
time-shared re-sources are involved in AppLeS. In 
AppLeS, the performance goal is determined by the 
application itself. It is achieved through considering 
the application profile when selecting resources and 
making scheduling decision. 

AppLeS employs NWS as its information 
service provider, which has a decentralized 
organization. Since each application has its own 
scheduler, it is obvious that the scheduler 
organization of AppLeS is evenly decentralized. 

It is not difficult to note that there will be many 
AppLeS in a system simultaneously, each working 
on behalf on its own application. A worst-case 
scenario is that all of the AppLeS may identify the 
same re-sources as “best” for their applications and 
seek to use them simultaneously. Recognizing that 
the targeted resources are no longer optimal or 
available, they all might seek to reschedule their 
applications on another resource. 
 
 
3.5   Legion 
The Legion project [11] [12] from the University of 
Virginia is an object-based Grid environment, in-
tended to connect a large suite of wide-area 
computational resources, with the illusion of 
providing a single virtual machine. 

Legion is an object-oriented system consisting 
of independent disjoint objects that communicate 
with one another via method invocation. Classes 
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define the types of their instances. An object is an 
instance of a class, which is responsible for 
managing a single resource. For example, HostClass 
encapsulates ma-chine capabilities, e.g., CPU 
capability and memory size. 

In Legion, each application is typically 
scheduled by a customized scheduler associated to it. 
An ap-plication is basically also an object, and this 
object is to be instantiated into several instances. 
The sched-uler is responsible for selecting a set of 
appropriate execution machines and mapping the set 
of instances onto the set of selected machines. 

The Collection acts as a repository for 
information describing the state of the resources 
comprising the system. The Scheduler computes the 
mapping of instances in a class to resources. At a 
minimum, the Scheduler knows how many instances 
of each class must be started. The enactor involves 
implementing a schedule for a class forwarded from 
the scheduler. 

Legion’s targeted applications can be diverse 
since each application can develop its own 
scheduler. Due to the fact that the scheduler well 
knows the application-specific knowledge, the 
scheduler is able to produce efficient schedules for 
the application. The resources that Legion wants to 
utilize can be also het-erogeneous. But it seems that 
Legion does not incorporate the dynamics in 
network behavior, which will lead to a drawback. 
Legion favors the performance goal of minimizing 
the execution time of an individual application. 

Legion employs a centralized entity for 
information collection whilst it uses the 
decentralized scheme of scheduler organization. 
Through job monitoring, Legion is capable of 
rescheduling. 
 
 
3.6   Nimrod-G 
Nimrod [13] is a parametric study system, which 
uses a simple declarative parametric modeling lan-
guage for expressing a parametric experiment. It has 
worked successful with a static set of computational 
resources, but is unsuitable as implemented in the 
large scale dynamic context of computational Grids, 
where resources are scattered across several 
domains. 

To overcome that shortcoming, the Nimrod/G 
[14] makes use of the Globus toolkits for dynamic 
resource discovery and dispatches jobs over 
computational Grids. Nimrod/G supports an 
integrated computational economy in its scheduling 
system. This means that Nimrod/G can schedule 
applications on the basis of deadlines and budget. 

In Nimrod/G, each application has one program and 
a large set of independent parameters to be studied, 
and hence it has a large number of independent jobs. 
An application specifies a deadline by which the ap-
plication is expected to complete, and a price which 
the application owner will pay for the completion of 
the application. Each computational resource is 
specified a cost which the consumer should pay in 
order to use the resource. Briefly, a parametric study 
application is performed by Nimrod/G through the 
following steps: 

1. Discovery: First the number and then the 
identity of the lowest-cost set of resources able to 
meet the deadline are identified. A cost matrix is 
used to identify low-cost resources; queries to the 
MDS directory service are then used to determine 
resource. The output from this phase is a set of 
resources to which jobs should be submitted, 
ordered by the cost to the application. 

2. Allocation: Jobs are allocated to the candidate 
resources identified in Step 1. 

3. Monitoring: The completion time of 
submitted jobs is monitored, hence establishing an 
execu-tion rate for each resource. 

4. Refinement: Rate information is used to 
update estimates of typical execution times on 
different resources and hence the expected 
completion time of the job. This refinement process 
may lead us to return to 1. 

The scheme continues until the deadline is met, 
or the cost budget is exceeded. If the latter occurs, 
the user is advised and the deadline can be modified 
accordingly. 

In Nimrod/G, the description of each application 
is coarse-grained. The targeted applications in Nim-
rod/G are specified with deadline and it is possible 
the deadline may not be met, and therefore they are 
soft real-time applications. The description of each 
resource is also coarse-grained. These resources are 
non-dedicated, timeshared and across multiple 
administrative domains. 

Nimrod/G uses a hierarchical scheme of 
information service and a decentralized scheme of 
scheduler organization. Nimrod/G is useful for 
parametric study applications. Thus, the classes of 
applications sup-ported are limited. It should be 
noted that in order to make the economy-based 
scheduling mechanism practically work, much work 
is still to be done. 

In the new applications of Grid computing, some 
significative efforts were present in [19][20][21][22]. 
Authors proposed a new framework for knowledge 
discovery based on Grid Computing. Some similar 
NP-Complete problem appeared in the architecture. 
Authors proposed some novel solution based on 
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rough set for solving the NP-Complete problem. 
Rough set theory can provide us a sound solution. 
 
 
4   Cost Model 
In the following cost model we assume that each 
input dataset is initially stored on at least a single 
machine mh, while the knowledge model extracted 
must be moved to a machine mk. Due to decisions 
taken by the scheduler, datasets may be replicated 
onto other machines, or partitioned among the 
machines composing a cluster. 

Sequential execution. Dataset Di is stored on a 
single machine mh. Task ti is sequentially executed 
on machine mj, and its execution time is eij. The 
knowledge model extracted |ai(Di)| must be returned 
to machine mk. We have to consider the 
communications needed to move Di from mh to mj , 
and those to move the results to mk. Of course, the 
relative communication costs involved in dataset 
movements are zeroed if either h = j or j = k. The 
total execution time is thus: 

| | / | ( ) | /ij i hj ij i i jkE D b e D b    
Parallel execution. Task ti is executed in parallel 

on a cluster clJ , with an execution time of eiJ. In 
general, we have also to consider the 
communications needed to move and partition Di 
from machine mh to cluster clJ , and to return the 
results |ai(Di)| to machine mk. Of course, the relative 
communication costs are zeroed if the dataset is 
already distributed, and is allocated on the machines 
of clJ.  The total execution time is thus: 

| | / | | | ( ) | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b


 

   
 

Finally, consider that the parallel algorithm we 
are considering requires coallocation and 
coscheduling of all the machines of the cluster. A 
different model of performance should be used if we 
adopted a more asynchronous distributed DM 
algorithm, where first independent computations are 
performed on distinct dataset partitions, and then the 
various results of distributed mining analysis are 
collected and combined to obtain the final results. 

To optimize scheduling, our mapper has to 
forecast the completion time of tasks. To this end, 
the mapper has also to consider the tasks that were 
previously scheduled, and that are still queued or 
running. Therefore, in the following we analyze the 
actual completion time of a task for the sequential 
case. A similar analysis could be done for the 
parallel case. Let Cij be the wall-clock time at which 
all communications and sequential computation 
involved in the execution of ti on machine mj 
complete. To derive Cij we need to define the 

starting times of communications and computation 
on the basis of the ready times of interconnection 
links and machines. Let shj be the starting time of 
the communication needed to move Di from mh to 
mj , sj the starting time of the sequential execution of 
task ti on mj, finally, sjk the starting time of the 
communication needed to move ai(Di) from mj to mk. 
From the above definitions: 

1 2 1 2
| | | ( ) |( )i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

            

     Where 0(1 
hj

i
hjj b

D
ss  

And 0)(2  ijjjk ess  
If mj is the specific machine chosen by our 

scheduling algorithm for executing a task ti, where T 
is the set of all the tasks to be scheduled, we define 

i ijC C=
. 

The makespan for the complete scheduling is 
thus defined as  

)(max iTt C
i  

and its minimization roughly corresponds to the 
maximization of the system thoughput. 

 
 

 
 
Fig.1 Execution time of the DCP ARM algorithm 
(a), and the k-means clustering one (b), as a function 
of the sample rate of the input dataset. 

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 68 Issue 1, Volume 8, January 2009



 

 

5   Sampling method 
The rationale of our approach is that, since DM 
tasks may be very expensive, it may be more 
profitable to spend a small additional time to sample 
their execution in order to estimate performances 
and schedule tasks more accurately, than adopting a 
blind scheduling strategy. 

For example, is a task is guessed to be expensive, 
we may be profitable to move data to execute the 
task on a remote machine characterized by an early 
ready time, or distribute data on a cluster to perform 
the task in parallel. Differently from [15], we are not 
interested in the accuracy of the knowledge 
extracted from a sampled dataset, but only in an 
approximate performance prediction of the task. To 
this end, it becomes important to study and analyze 
memory requirements and completion times of a 
DM algorithm as a function of the size of the sample 
exploited, i.e. to study the scalability of the 
algorithm. From this scalability study we expect to 
derive, for each algorithm, functions that, given the 
measures obtained with sampling, return predicted 
execution time and memory requirement for running 
the same analysis on the whole dataset. 

Suppose that a given task ti is first executed on a 
sample D’i of dataset Di on machine mj. Let e’ij be 
this execution time, and let e’i=eij/pj be the 
normalized execution time on the sample. Sampling 
is feasible as a method to predict performance of 
task ti iff, on the basis of the results of sampling, we 

can derive a cost function F(), such that ei = F(|Di|). 
In particular, the coefficients of F() must be derived 
on the basis of the sampled execution, i.e., in terms 
of ei’, Di’, and |Di’|. The simplest case is when the 
algorithm scales linearly, so that F() is a linear 
function of the size of the dataset, i.e.  

ii De   

Where '/' ii De  
We analyzed two DM algorithms: DCP, an 

ARM algorithm which exploits out-of-core 
techniques to enhance scalability [16], and k-means, 
the popular clustering algorithm. We ran DCP and 
k-means on synthetic datasets by varying the size of 
the sample considered. The results of the 
experiments are promising: both DCP and k-means 
exhibit quasi linear scalability with respect to the 
size of the sample of a given dataset, when user 
parameters are fixed. Figure 1 (a) reports the DCP 
completion times on a dataset of medium size (about 
40 MB) as a function of the size of the sample, for 
different user parameters (namely the minimum 
support s% of frequent itemsets). Similarly, in 
Figure 1. (b) the completion time of k-means is 
reported for different datasets, but for identical user 
parameters (i.e., the number k of clusters to look 
for). The results obtained for other datasets and 
other user parameters are similar, and are not 
reported here for sake of brevity. Note that the 
slopes of the various linear curves depend on both 

Fig. 2 Gannt charts showing the busy times (in time units of 100 sec.) of our six machines when either the 
10% (a,b) or the 60% (c,d) of the tasks are expensive: (a,b) blind scheduling heuristics, (c,d) MCT+sampling 

h d li h i i

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 69 Issue 1, Volume 8, January 2009



 

 

the specific user parameters and the features of the 
input dataset Di. Therefore, given a dataset and the 
parameters for executing one of these DM 
algorithms, the slope of each curve can be captured 
by running the same algorithm on a smaller sampled 
dataset Di’. For other algorithms, scalability curves 
may be more complex than a simple linear one. For 
example when the dataset size has a strong impact 
on the in-core or out-cores behavior of an algorithm, 
or on the main memory occupation. So, in order to 
derive an accurate performance model for a given 
algorithm, it should be important to perform an off-
line training of the model, for different dataset 
characteristics and different parameter sets. 

Another problem that may occur in some DM 
algorithms, is the generation of false patterns for 
small sampling sizes. In fact, according to [17], we 
found that the performance estimation for very 
small sampling sizes may overestimate the actual 
execution times on the complete datasets. An open 
question is to understand the impact of this 
overestimation in our Grid scheduling environment. 
 
 
4   On-line Scheduling of DM Tasks 
We analyzed the effectiveness of a centralized on-
line mapper based on the MCT (Minimum 
Completion Time) heuristics [18], which schedules 
DM tasks on a small organization of a K-Grid. The 
mapper does not consider node multitasking, is 
responsible for scheduling both dataset transfers and 
computations involved in the execution of a given 
task ti, and also is informed about their completions. 
The MCT mapping heuristics adopted is very simple. 
Each time a task ti is submitted, the mapper 
evaluates the expected ready time of each machine 
and communication links. The expected ready time 
is an estimate of the ready time, the earliest time a 
given resource is ready after the completion of the 
jobs previously assigned to it. On the basis of the 
expected ready times, our mapper evaluates all 
possible assignment of ti, and chooses the one that 
reduces the completion time of the task. 

Note that such estimate is based on both 
estimated and actual execution times of all the tasks 
that have been assigned to the resource in the past. 
To update resource ready times, when data transfers 
or computations involved in the execution of ti 
complete, a report is sent to the mapper. Note that 
any MCT mapper can take correct scheduling 
decisions only if the expected execution time of a 
task is known. When no performance prediction is 
available for ti, our mapper first generates and 
schedules ti’, i.e. the task ti executed on the sampled 
dataset Di’. Unfortunately, the expected execution 

time of sampled task ti’ is unknown, so that the 
mapper has to assume that it is equal to a given 
small constant. Since our MCT mapper can not be 
able to optimize the assignment of ti’, it simply 
assigns ti’ to the machine that hosts the 
corresponding input dataset, so that no data transfers 
are involved in the execution of ti’. When ti’ 
completes, the mapper is informed about its 
execution time. On the basis of this knowledge, it 
can predict the performance of the actual task ti, and 
optimize its subsequent mapping and scheduling. 
 
 
5   Simulation Framework and Some 
Preliminary Results 
We designed a simulation framework to evaluate 
our MCT on-line scheduler, which exploits 
sampling as a technique for performance prediction. 
We thus compared our MCT+sampling strategy 
with a blind mapping strategy. Since the blind 
strategy is unaware of actual execution costs, it can 
only try to minimize data transfer costs, and thus 
always maps each task on the machine that holds the 
corresponding input dataset. Moreover, it can not 
evaluate the profitability of parallel executions, so 
that sequential implementations are always 
preferred. 

The simulated environment is similar to an 
actual Grid environment we have at disposal, and is 
composed of two clusters of three machines. Each 
cluster is interconnected by a switched fast Ethernet, 
while a slow WAN interconnection exists between 
the two clusters. The two clusters are homogeneous, 
but the machines of one cluster are two times faster 
than the machines of the other one. To fix 
simulation parameters, we actually measured 
average bandwidths bWAN and bLAN of the WAN and 
LAN interconnections, respectively. Unfortunately, 
the WAN interconnection is characterized by long 
latency, so that, due to the TCP default window size, 
single connections are not able to saturate the actual 
bandwidth available. This effect is exacerbated by 
some packet losses, so that retransmissions are 
necessary and the TCP pipeline can not be filled. 
Under these hypotheses, we can open a limited 
number of concurrent sockets, each one 
characterized by a similar average bandwidth 
bWAN (100KB/s). 

We assumed that DM tasks to be scheduled 
arrive in a burst, according to an exponential 
distribution. They have random execution costs, but 
the x% of them corresponds to expensive tasks 
(1000 sec. as mean sequential execution time on the 
slowest machine), while the (100 − x)% of them are 
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cheap tasks (50 sec. as mean sequential execution 
time on the slowest machine). Datasets Di are all of 
medium size (50MB), and are randomly located on 
the machines belonging to the two clusters. 

 
Figure3. Comparison of makespans observed for 

different percentages of expensive tasks, when 
either a blind heuristics or our MCT+sampling one 
is adopted. 

 
In these first simulation tests, we essentially 

checked the feasibility of our approach. Our goal 
was thus to evaluate mapping quality, in terms of 
makespan, of an optimal on-line MCT+sampling 
technique. This mapper is optimal because it is 
supposed to also know in advance (through an 
oracle) the exact costs of the sampled tasks. In this 
way, we can evaluate the maximal improvement of 
our technique over the blind scheduling one. 

Figures 2 illustrate two pairs of Gannt charts, 
which show the busy times of the six machines of 
our Grid testbed when tasks of different weights are 
submitted. In particular, each pair of charts is 
relative to two simulations, when either the blind or 
the MCT+sampling strategy is adopted. Machine i 
of cluster j is indicated with the label i[j]. Note that 
when the blind scheduling strategy is adopted, since 
cluster 0 is slower than the other and no datasets are 
moved, the makespan on the slower machines 
results higher. Note that our MCT+sampling 
strategy sensibly outperforms the blind one, 
although it introduces higher computational costs 
due to the sampling process. Finally, Figure 3 shows 
the improvements in makespans obtained by our 
technique over the blind one when the percentage of 
heavy tasks is varied. 
 
 
4   Conclusion 

In this paper we have discussed an on-line MCT 
heuristic strategy for scheduling high performance 
DM tasks onto a local organization of a Knowledge 
Grid. Scheduling decisions are taken on the basis of 
cost metrics and models based on information 
collected during previous executions, and use 
sampling to forecast execution costs. We have also 
reported the results of some preliminary simulations 
showing the improvements in the makespan (system 
throughput) of our strategy over a blind one. Our 
mapping and scheduling techniques might be 
adopted by a centralized on-line mapper, which is 
part of a more complex hierarchical Grid 
superscheduler, where the higher levels of the 
superscheduler might be responsible for taking 
rough schedule-decisions over multiple 
administrative organizations, e.g., by simply 
balancing the load among them by only considering 
aggregate queue lengths and computational power. 
The higher levels of a superscheduler, in fact, do not 
own the resources involved, may have outdated 
information about the load on these resources, and 
may be unable to exert any control over tasks 
currently on those domains. 

The on-line mapper we have discussed does not 
permit node multitasking, and schedules tasks in 
batch. In future works we plan to consider also this 
feature, e.g., the mapper could choose to 
concurrently execute a compute-bound and an I/O-
bound task on the same machine. 

Finally, a possible drawback of our technique is 
the additional cost of sampling, even if it is worth 
considering that sampling has been already 
recognized as a feasible optimization technique in 
other fields, such as optimization of SQL queries. 
Of course, knowledge models extracted by sampling 
tasks could in some cases be of interest for the users, 
who might decide on the basis of the sampling 
results to abort or continue the execution on the 
whole dataset. On the other hand, since the results 
obtained with sampling actually represent a partial 
knowledge model extracted from a partition of the 
dataset, we could avoid to discard these partial 
results. For example, we might exploit a different 
DM algorithm, also suitable for distributed 
environments, where independent DM analysis are 
performed on different dataset partitions, and then 
the partial results are merged. According to this 
approach, the knowledge extracted from the sample 
Di’ might be retained, and subsequently merged 
with the one obtained by executing the task on the 
rest of the input dataset Di\Di’. 
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