

A Sampling-based Method for Dynamic Scheduling in Distributed Data
Mining Environment

Jifang Li

Computer Science and Information Technology College
Zhejiang Wanli University

P.R.China
http://www.zwu.edu.cn

Abstract: - In this paper, we propose a new solution for dynamic task scheduling in distributed environment.
The key issue for scheduling tasks is that we can not obtain the execution time of irregular computations in
advance. For this reason, we propose a method which is based on sampling to some typical data mining
algorithm. We argue that a function is existed in the items: execution time, the size of data and the algorithm,
therefore we can deduce the execution time of a data mining task from the corresponding the size of data and
algorithm. The experimental results show that almost all the algorithms exhibits quasi linear scalability, but the
slope of different algorithms is different. We adopt this sampling method for process the tasks scheduling in
distributed data mining environment. The experimental results also show the sampling method is applicable to
task scheduling in dynamic environment and can be adopted to obtain a higher result.

Key-Words: - Sampling, Data Mining, Distributed Computing

1 Introduction
Dynamic distributed environment, especially Grid
computing or the use of a computational grid, is
applying the resources of many computers in a
network to a single problem at the same time -
usually to a scientific or technical problem that
requires a great number of computer processing
cycles or access to large amounts of data.

Grid computing requires the use of software that
can divide and farm out pieces of a program to as
many as several thousand computers. Grid
computing can be thought of as distributed and
large-scale cluster computing and as a form of
network-distributed parallel processing. It can be
confined to the network of computer workstations
within a corporation or it can be a public
collaboration, in which case it is also sometimes
known as a form of peer-to-peer computing.

A number of corporations, professional groups,
university consortiums, and other groups have
developed or are developing frameworks and
software for managing grid computing projects. The
European Community (EU) is sponsoring a project
for a grid for high-energy physics, earth observation,
and biology applications. In the United States, the
National Technology Grid is prototyping a
computational grid for infrastructure and an access
grid for people. Sun Microsystems offers Grid
Engine software. Described as a distributed resource
management (DRM) tool, Grid Engine allows

engineers at companies like Sony and Synopsys to
pool the computer cycles on up to 80 workstations
at a time. At this scale, grid computing can be seen
as a more extreme case of load balancing.

Grid computing appears to be a promising trend
for three reasons:

(1) Its ability to make more cost-effective use of
a given amount of computer resources

(2) As a way to solve problems that can't be
approached without an enormous amount of
computing power, and

(3) Because it suggests that the resources of
many computers can be cooperatively and perhaps
synergistically harnessed and managed as
collaboration toward a common objective.

In some grid computing systems, the computers
may collaborate rather than being directed by one
managing computer. One likely area for the use of
grid computing will be pervasive computing
applications - those in which computers pervade our
environment without our necessary awareness.
Thanks to vast improvements in wide-area network
performance and powerful yet low-cost computers,
Grid computing has emerged as a promising
attractive computing paradigm. Computational
Grids aim to aggregate the power of heterogeneous,
geo-graphically distributed, multiple-domain-
spanning computational resources to provide high
performance or high-throughput computing. To
achieve the promising potentials of computational

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 63 Issue 1, Volume 8, January 2009

Grids, an effective and efficient scheduling system
is fundamentally important.

Scheduling systems for traditional distributed
environments do not work in Grid environments
because the two classes of environments are
radically distinct. Scheduling in Grid environments
is significantly complicated by the unique
characteristics of Grids.

Task scheduling is an important aspect of
dynamic distributed environment. Most of the
heuristics for this NP-hard problem are based on a
very simple system model of the target distributed
system. Experiments revealed the inappropriateness
of this classic model to obtain accurate and efficient
schedules for real-systems. In order to overcome
this shortcoming, a new scheduling model was
proposed that considers the relationship among
some important items. Even though the accuracy
and efficiency improved with the consideration of
the relationship, the existed method for predicting is
still not good enough. The crucial aspect is the
predicting the execution time of tasks. This paper
investigates the relationship among data size,
algorithm and execution time. The challenges for
the scheduling techniques are analyzed and a new
method for tasks scheduling is proposed based on
sampling. Experiments on dynamic distributed
environment show the significantly improved
accuracy and efficiency of the new methods.

2 Problem Formulation
A scheduler is the mediate resource manager as the
interface between the consumers and the underlying
resources. Scheduling is a core function of resource
management systems.

In a distributed environment, on one hand, there
is a suite of computational resources interconnected
by networks; on the other hand, there is a group of
users who will submit applications for execution on
the suite of resources. The scheduling system of
such a distributed computing environment is
responsible for managing the suite of resources and
dealing with the set of applications. In face of a set
of applications waiting of execution, the scheduling
system should be able to allocate appropriate
resources to applications, attempting to achieve
some performance goals.

In traditional parallel computing environments,
the scheduling system is made much simpler due to
the uniform characteristics of both the target
applications and the underlying resources. However,
a computational Grid has more diverse resources as
well as more diverse applications.

According to GGF’s Grid scheduling dictionary
[1], the Grid scheduler is responsible for:

(1) Discovering available resources for an
application

(2) Selecting the appropriate system(s), and
(3) Submitting the application.
In brief, Grid scheduling is a software

framework with which the scheduler collects
resource state information, selects appropriate
resources, predicts the potential performance for
each candidate schedule, and determines the best
schedule for the applications to be executed on a
Grid system subject to some performance goals.

In principle, scheduling in Grids means two
things: ordering and mapping. When there are more
than one applications waiting for execution,
ordering is performed in order to determine by
which order the pending applications are arranged.
Ordering is necessary if applications with priority or
deadline are involved. Mapping is the process of
selecting a set of appropriate resources and
allocating the set of re-sources to the applications.
For each mapping, the performance potential is
estimated in order to decide the best schedule.

In general, a scheduling system of Grid
computing environments aims at delivering better
performance. Desirable performance goals of Grid
scheduling includes: maximizing system throughput
[2], maximiz-ing resource utilization, minimizing
the execution time [3] and fulfilling economical

3 Related Works
To date, there have been a number of exciting initial
efforts at developing scheduling systems for Grid
environments. In this section, we focus on a
representative group of these pioneering efforts to
illustrate the state-of-the-art in Grid schedulers. It is
often difficult to make comparisons between distinct
efforts because each scheduler is usually developed
for a particular system environment with different
assump-tions and constraints. In the following
section, I attempt to outline the features of each
system and sum-marize their advantages and
drawbacks. Also how does they fit the taxonomy.

3.1 Information Collection Systems
The information service infrastructure plays a
particularly important role in a scheduling system.
Meta Director Service (MDS) from Globus and
Network Weather Service (NWS) are two popular
systems serving to provide the information
publication and collection of resources in a grid
system.

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 64 Issue 1, Volume 8, January 2009

3.1.1 MDS (Meta Directory Service)
The Globus Metacomputing Directory Service
(MDS) [4] provides is a LDAP-based information
service infrastructure for computational Grids. It is
used to collect and publish status information of
Grid resources. Examples of the information that
can be retrieved from an MDS server include
operating sys-tem type, processor type and speed,
number of processors, and available memory size of
resources.

Each GRIS (Grid Resource Information Service)
is responsible for monitoring one resource and
keeping all the current configuration, capabilities,
and status of the resource. A GRIS can be queried
for the information of a local resource. Each GIIS
provides a means of aggregating information from
several GRISs to present an information pool for a
set of resources. Different GIIS can be further
aggregated to manage more integrated information
of a larger set of resources.

Thus, MDS provides a hierarchical method for
providing information service in a Grid system,
which is scalable and efficient. As a limitation,
MDS can only provide current state information of
the resources.

3.1.2 NWS (Network Weather Service)
The Network Weather Service (NWS) [5] is a
distributed system that monitors and forecasts the
performance of network and computation resources.
Examples of the information that can typically be
retrieved from an NWS server include the fraction
of CPU available to a newly started process, the
avail-able memory size, and the bandwidth with
which data can be sent to a remote host.

Each resource has one NWS agent, which
consists of three components: sensory subsystem,
forecasting subsystem and reporting interface. NWS
sensors collect the current performance that a
resource is able to deliver at present. The collected
performance data from sensors is input to the
forecasting subsystem, and based on the forecasting
models, different levels of performance in a future
timeslot are forecast. Through the report interface,
the predicted resource performance can be retrieved.

To avoid becoming a bottleneck of a system, the
NWS does not have a centralized node that has the
overall information of all the resources. The
responsibility of information service is distributed to
every resource. Superior to MDS, NWS provides
not only the current performance information, but
also the predicted performance information for a
future timeslot which is more beneficial for
estimating the performance behavior of a job
running on the resource.

3.2 Condor
Condor [6] aims to increase utilization of
workstation by hunting idle workstations for sharing
job execution.

The condor Scheduling Structure Condor
follows an approach to scheduling that lies between
the centralized and decentralized scheme. For
information collection, on one hand, Condor
employs a Coordinator responsible for managing the
set of available idle workstations. For scheduling
jobs, on the other hand, each workstation itself is
responsible for maintaining the local queue of jobs
to be run and scheduling the jobs onto idle
workstations for execution.

Condor is capable of check pointing and job
migrating, which are important features for
rescheduling. In Condor, a remote job can run on a
workstation only when the workstation is idle, that
is, the work-station has no local workload. Once a
workstation has its own workload, the remote job
currently running on the workstation is preempted.
With the help of check pointing, the preempted job
can be rescheduled to another idle workstation to
resume its job, such that the previously
accomplished results can be utilized.

The performance goal of Condor is to
maximizing the throughput of the system, which is
sys-tem-centric. The target applications of Condor
are independent, non-real time batch jobs. The
underlying resources are homogeneous, preemptive,
non-dedicated, and non-time-shared. The
description of re-sources is coarse-grained since
only the availability of workstations is considered.

Condor supports site autonomy. However,
communication overhead of transferring a job is not
considered. It is only suitable for WAN-based
environment.

3.3 Condor-G
A newly proposed version of Condor, Condor-G [7],
leverages the advantages of both condor and Globus
Toolkit [8] [9]. Globus Toolkit is a software
infrastructure for setting up a Grid environment
across multiple administrative domains, which sup-
ports resources management, secure file transfer,
information discovery and secure authentication and
authorization in such a Grid environment. Based on
Condor, Condor-G makes use of the mechanisms
provided by Globus Toolkit to cross the boundaries
of real institutions, aiming at utilizing the idle work-
stations among these institutions. Also the job
creation, job monitoring and result collection are
heavily relied on the GRAM (Grid Resource Access
Management) component of Globus.

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 65 Issue 1, Volume 8, January 2009

In condor-G, each Job Submission Machine
constructs a GridManager locally which manages
local jobs, retrieves the available resources, and
schedules the jobs onto the feasible resources. GSI
(Grid Se-curity Infrastucture) mechanism of Globus
is used by GridManager to do authentication and
authorization with remote resources. Information
collection of resources is based on MDS (Meta
Directory Service) mechanism of Globus, which is
in principle centralized.

The problem of scheduling a set of dependent
jobs is solved by Condor-G by designing the local
Grid Manager with the coordinating function. Thus
the applications running on Condor-G is more fine-
grained compared to that of Condor.

Resource heterogeneity is allowed in Condor
through deploying the standard resource manager on
re-sources. The computational resources in Condor
could vary from workstations to clusters. But the
description of resources remains coarse-grained.

Similar with Condor, Conder-G has the
performance goal as maximizing the utilization of
resources. Condor-G is resource-fault tolerant,
meaning that it is able to cope with the resource
failure. Condor-G allows inter-domain operation on
remote resources that require authentication.

3.4 AppLeS
AppLeS [10] is an agent-based scheduling system
for Grid environments, which targets to promote the
performance of every individual application.
AppLeS is based on the application-level scheduling
paradigm in which everything in the system is
evaluated in terms of its impact on the application.
For each application, its performance goal is
specified by the application itself.

Each Grid application has its own scheduler
which determines and “actuates” a schedule. The
schedule is computed based on the application
characteristics, performance goal, and resources
currently available to the application.

An AppLeS agent is organized in terms of four
subsystems and a single active component called the
Coordinator. The four subsystems are:

- The Resource Selector, which chooses and
filters different resource combinations for the
application’s execution.

- The Planner, which generates a resource-
dependent schedule for a given resource
combination.

- The Performance Estimator, which generates a
performance estimation for candidate schedules ac-
cording to the user’s performance metric, and

- The Actuator, which implements the ‘best’
schedule on the target resource management
systems.

The Network Weather Service (NWS) is used to
provide dynamic information of resources and
predict the resource load for the time frame in which
the application will be scheduled. The User
Interface pro-vides specific information about the
structure, characteristics and current
implementations of the applica-tion and its jobs, as
well as information on the user’s criteria for
performance, execution constraints, and preferences.
Finally, Models provide a repository of default
application class models and applica-tion-specific
models to be used for performance estimation.

The target class of applications in AppLeS has a
common structure: master/slave. The execution time
model of the class of applications can be expressed
as follow:

ExecTime = MasterComp + maxi
{ SlaveCompi } + ResultGather

Where MasterComp, SlaveCompi and
ResultGather provide a decomposition of the
application execution behavior. AppLeS seems not
to solve the multi-domain problem. Non-dedicated,
time-shared re-sources are involved in AppLeS. In
AppLeS, the performance goal is determined by the
application itself. It is achieved through considering
the application profile when selecting resources and
making scheduling decision.

AppLeS employs NWS as its information
service provider, which has a decentralized
organization. Since each application has its own
scheduler, it is obvious that the scheduler
organization of AppLeS is evenly decentralized.

It is not difficult to note that there will be many
AppLeS in a system simultaneously, each working
on behalf on its own application. A worst-case
scenario is that all of the AppLeS may identify the
same re-sources as “best” for their applications and
seek to use them simultaneously. Recognizing that
the targeted resources are no longer optimal or
available, they all might seek to reschedule their
applications on another resource.

3.5 Legion
The Legion project [11] [12] from the University of
Virginia is an object-based Grid environment, in-
tended to connect a large suite of wide-area
computational resources, with the illusion of
providing a single virtual machine.

Legion is an object-oriented system consisting
of independent disjoint objects that communicate
with one another via method invocation. Classes

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 66 Issue 1, Volume 8, January 2009

define the types of their instances. An object is an
instance of a class, which is responsible for
managing a single resource. For example, HostClass
encapsulates ma-chine capabilities, e.g., CPU
capability and memory size.

In Legion, each application is typically
scheduled by a customized scheduler associated to it.
An ap-plication is basically also an object, and this
object is to be instantiated into several instances.
The sched-uler is responsible for selecting a set of
appropriate execution machines and mapping the set
of instances onto the set of selected machines.

The Collection acts as a repository for
information describing the state of the resources
comprising the system. The Scheduler computes the
mapping of instances in a class to resources. At a
minimum, the Scheduler knows how many instances
of each class must be started. The enactor involves
implementing a schedule for a class forwarded from
the scheduler.

Legion’s targeted applications can be diverse
since each application can develop its own
scheduler. Due to the fact that the scheduler well
knows the application-specific knowledge, the
scheduler is able to produce efficient schedules for
the application. The resources that Legion wants to
utilize can be also het-erogeneous. But it seems that
Legion does not incorporate the dynamics in
network behavior, which will lead to a drawback.
Legion favors the performance goal of minimizing
the execution time of an individual application.

Legion employs a centralized entity for
information collection whilst it uses the
decentralized scheme of scheduler organization.
Through job monitoring, Legion is capable of
rescheduling.

3.6 Nimrod-G
Nimrod [13] is a parametric study system, which
uses a simple declarative parametric modeling lan-
guage for expressing a parametric experiment. It has
worked successful with a static set of computational
resources, but is unsuitable as implemented in the
large scale dynamic context of computational Grids,
where resources are scattered across several
domains.

To overcome that shortcoming, the Nimrod/G
[14] makes use of the Globus toolkits for dynamic
resource discovery and dispatches jobs over
computational Grids. Nimrod/G supports an
integrated computational economy in its scheduling
system. This means that Nimrod/G can schedule
applications on the basis of deadlines and budget.

In Nimrod/G, each application has one program and
a large set of independent parameters to be studied,
and hence it has a large number of independent jobs.
An application specifies a deadline by which the ap-
plication is expected to complete, and a price which
the application owner will pay for the completion of
the application. Each computational resource is
specified a cost which the consumer should pay in
order to use the resource. Briefly, a parametric study
application is performed by Nimrod/G through the
following steps:

1. Discovery: First the number and then the
identity of the lowest-cost set of resources able to
meet the deadline are identified. A cost matrix is
used to identify low-cost resources; queries to the
MDS directory service are then used to determine
resource. The output from this phase is a set of
resources to which jobs should be submitted,
ordered by the cost to the application.

2. Allocation: Jobs are allocated to the candidate
resources identified in Step 1.

3. Monitoring: The completion time of
submitted jobs is monitored, hence establishing an
execu-tion rate for each resource.

4. Refinement: Rate information is used to
update estimates of typical execution times on
different resources and hence the expected
completion time of the job. This refinement process
may lead us to return to 1.

The scheme continues until the deadline is met,
or the cost budget is exceeded. If the latter occurs,
the user is advised and the deadline can be modified
accordingly.

In Nimrod/G, the description of each application
is coarse-grained. The targeted applications in Nim-
rod/G are specified with deadline and it is possible
the deadline may not be met, and therefore they are
soft real-time applications. The description of each
resource is also coarse-grained. These resources are
non-dedicated, timeshared and across multiple
administrative domains.

Nimrod/G uses a hierarchical scheme of
information service and a decentralized scheme of
scheduler organization. Nimrod/G is useful for
parametric study applications. Thus, the classes of
applications sup-ported are limited. It should be
noted that in order to make the economy-based
scheduling mechanism practically work, much work
is still to be done.

In the new applications of Grid computing, some
significative efforts were present in [19][20][21][22].
Authors proposed a new framework for knowledge
discovery based on Grid Computing. Some similar
NP-Complete problem appeared in the architecture.
Authors proposed some novel solution based on

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 67 Issue 1, Volume 8, January 2009

rough set for solving the NP-Complete problem.
Rough set theory can provide us a sound solution.

4 Cost Model
In the following cost model we assume that each
input dataset is initially stored on at least a single
machine mh, while the knowledge model extracted
must be moved to a machine mk. Due to decisions
taken by the scheduler, datasets may be replicated
onto other machines, or partitioned among the
machines composing a cluster.

Sequential execution. Dataset Di is stored on a
single machine mh. Task ti is sequentially executed
on machine mj, and its execution time is eij. The
knowledge model extracted |ai(Di)| must be returned
to machine mk. We have to consider the
communications needed to move Di from mh to mj ,
and those to move the results to mk. Of course, the
relative communication costs involved in dataset
movements are zeroed if either h = j or j = k. The
total execution time is thus:

| | / | () | /ij i hj ij i i jkE D b e D b  
Parallel execution. Task ti is executed in parallel

on a cluster clJ , with an execution time of eiJ. In
general, we have also to consider the
communications needed to move and partition Di
from machine mh to cluster clJ , and to return the
results |ai(Di)| to machine mk. Of course, the relative
communication costs are zeroed if the dataset is
already distributed, and is allocated on the machines
of clJ. The total execution time is thus:

| | / | | | () | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b


 

   

Finally, consider that the parallel algorithm we
are considering requires coallocation and
coscheduling of all the machines of the cluster. A
different model of performance should be used if we
adopted a more asynchronous distributed DM
algorithm, where first independent computations are
performed on distinct dataset partitions, and then the
various results of distributed mining analysis are
collected and combined to obtain the final results.

To optimize scheduling, our mapper has to
forecast the completion time of tasks. To this end,
the mapper has also to consider the tasks that were
previously scheduled, and that are still queued or
running. Therefore, in the following we analyze the
actual completion time of a task for the sequential
case. A similar analysis could be done for the
parallel case. Let Cij be the wall-clock time at which
all communications and sequential computation
involved in the execution of ti on machine mj
complete. To derive Cij we need to define the

starting times of communications and computation
on the basis of the ready times of interconnection
links and machines. Let shj be the starting time of
the communication needed to move Di from mh to
mj , sj the starting time of the sequential execution of
task ti on mj, finally, sjk the starting time of the
communication needed to move ai(Di) from mj to mk.
From the above definitions:

1 2 1 2
| | | () |()i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

            

 Where 0(1 
hj

i
hjj b

D
ss

And 0)(2  ijjjk ess
If mj is the specific machine chosen by our

scheduling algorithm for executing a task ti, where T
is the set of all the tasks to be scheduled, we define

i ijC C=
.

The makespan for the complete scheduling is
thus defined as

)(max iTt C
i

and its minimization roughly corresponds to the
maximization of the system thoughput.

Fig.1 Execution time of the DCP ARM algorithm
(a), and the k-means clustering one (b), as a function
of the sample rate of the input dataset.

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 68 Issue 1, Volume 8, January 2009

5 Sampling method
The rationale of our approach is that, since DM
tasks may be very expensive, it may be more
profitable to spend a small additional time to sample
their execution in order to estimate performances
and schedule tasks more accurately, than adopting a
blind scheduling strategy.

For example, is a task is guessed to be expensive,
we may be profitable to move data to execute the
task on a remote machine characterized by an early
ready time, or distribute data on a cluster to perform
the task in parallel. Differently from [15], we are not
interested in the accuracy of the knowledge
extracted from a sampled dataset, but only in an
approximate performance prediction of the task. To
this end, it becomes important to study and analyze
memory requirements and completion times of a
DM algorithm as a function of the size of the sample
exploited, i.e. to study the scalability of the
algorithm. From this scalability study we expect to
derive, for each algorithm, functions that, given the
measures obtained with sampling, return predicted
execution time and memory requirement for running
the same analysis on the whole dataset.

Suppose that a given task ti is first executed on a
sample D’i of dataset Di on machine mj. Let e’ij be
this execution time, and let e’i=eij/pj be the
normalized execution time on the sample. Sampling
is feasible as a method to predict performance of
task ti iff, on the basis of the results of sampling, we

can derive a cost function F(), such that ei = F(|Di|).
In particular, the coefficients of F() must be derived
on the basis of the sampled execution, i.e., in terms
of ei’, Di’, and |Di’|. The simplest case is when the
algorithm scales linearly, so that F() is a linear
function of the size of the dataset, i.e.

ii De 

Where '/' ii De
We analyzed two DM algorithms: DCP, an

ARM algorithm which exploits out-of-core
techniques to enhance scalability [16], and k-means,
the popular clustering algorithm. We ran DCP and
k-means on synthetic datasets by varying the size of
the sample considered. The results of the
experiments are promising: both DCP and k-means
exhibit quasi linear scalability with respect to the
size of the sample of a given dataset, when user
parameters are fixed. Figure 1 (a) reports the DCP
completion times on a dataset of medium size (about
40 MB) as a function of the size of the sample, for
different user parameters (namely the minimum
support s% of frequent itemsets). Similarly, in
Figure 1. (b) the completion time of k-means is
reported for different datasets, but for identical user
parameters (i.e., the number k of clusters to look
for). The results obtained for other datasets and
other user parameters are similar, and are not
reported here for sake of brevity. Note that the
slopes of the various linear curves depend on both

Fig. 2 Gannt charts showing the busy times (in time units of 100 sec.) of our six machines when either the
10% (a,b) or the 60% (c,d) of the tasks are expensive: (a,b) blind scheduling heuristics, (c,d) MCT+sampling

h d li h i i

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 69 Issue 1, Volume 8, January 2009

the specific user parameters and the features of the
input dataset Di. Therefore, given a dataset and the
parameters for executing one of these DM
algorithms, the slope of each curve can be captured
by running the same algorithm on a smaller sampled
dataset Di’. For other algorithms, scalability curves
may be more complex than a simple linear one. For
example when the dataset size has a strong impact
on the in-core or out-cores behavior of an algorithm,
or on the main memory occupation. So, in order to
derive an accurate performance model for a given
algorithm, it should be important to perform an off-
line training of the model, for different dataset
characteristics and different parameter sets.

Another problem that may occur in some DM
algorithms, is the generation of false patterns for
small sampling sizes. In fact, according to [17], we
found that the performance estimation for very
small sampling sizes may overestimate the actual
execution times on the complete datasets. An open
question is to understand the impact of this
overestimation in our Grid scheduling environment.

4 On-line Scheduling of DM Tasks
We analyzed the effectiveness of a centralized on-
line mapper based on the MCT (Minimum
Completion Time) heuristics [18], which schedules
DM tasks on a small organization of a K-Grid. The
mapper does not consider node multitasking, is
responsible for scheduling both dataset transfers and
computations involved in the execution of a given
task ti, and also is informed about their completions.
The MCT mapping heuristics adopted is very simple.
Each time a task ti is submitted, the mapper
evaluates the expected ready time of each machine
and communication links. The expected ready time
is an estimate of the ready time, the earliest time a
given resource is ready after the completion of the
jobs previously assigned to it. On the basis of the
expected ready times, our mapper evaluates all
possible assignment of ti, and chooses the one that
reduces the completion time of the task.

Note that such estimate is based on both
estimated and actual execution times of all the tasks
that have been assigned to the resource in the past.
To update resource ready times, when data transfers
or computations involved in the execution of ti
complete, a report is sent to the mapper. Note that
any MCT mapper can take correct scheduling
decisions only if the expected execution time of a
task is known. When no performance prediction is
available for ti, our mapper first generates and
schedules ti’, i.e. the task ti executed on the sampled
dataset Di’. Unfortunately, the expected execution

time of sampled task ti’ is unknown, so that the
mapper has to assume that it is equal to a given
small constant. Since our MCT mapper can not be
able to optimize the assignment of ti’, it simply
assigns ti’ to the machine that hosts the
corresponding input dataset, so that no data transfers
are involved in the execution of ti’. When ti’
completes, the mapper is informed about its
execution time. On the basis of this knowledge, it
can predict the performance of the actual task ti, and
optimize its subsequent mapping and scheduling.

5 Simulation Framework and Some
Preliminary Results
We designed a simulation framework to evaluate
our MCT on-line scheduler, which exploits
sampling as a technique for performance prediction.
We thus compared our MCT+sampling strategy
with a blind mapping strategy. Since the blind
strategy is unaware of actual execution costs, it can
only try to minimize data transfer costs, and thus
always maps each task on the machine that holds the
corresponding input dataset. Moreover, it can not
evaluate the profitability of parallel executions, so
that sequential implementations are always
preferred.

The simulated environment is similar to an
actual Grid environment we have at disposal, and is
composed of two clusters of three machines. Each
cluster is interconnected by a switched fast Ethernet,
while a slow WAN interconnection exists between
the two clusters. The two clusters are homogeneous,
but the machines of one cluster are two times faster
than the machines of the other one. To fix
simulation parameters, we actually measured
average bandwidths bWAN and bLAN of the WAN and
LAN interconnections, respectively. Unfortunately,
the WAN interconnection is characterized by long
latency, so that, due to the TCP default window size,
single connections are not able to saturate the actual
bandwidth available. This effect is exacerbated by
some packet losses, so that retransmissions are
necessary and the TCP pipeline can not be filled.
Under these hypotheses, we can open a limited
number of concurrent sockets, each one
characterized by a similar average bandwidth
bWAN (100KB/s).

We assumed that DM tasks to be scheduled
arrive in a burst, according to an exponential
distribution. They have random execution costs, but
the x% of them corresponds to expensive tasks
(1000 sec. as mean sequential execution time on the
slowest machine), while the (100 − x)% of them are

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 70 Issue 1, Volume 8, January 2009

cheap tasks (50 sec. as mean sequential execution
time on the slowest machine). Datasets Di are all of
medium size (50MB), and are randomly located on
the machines belonging to the two clusters.

Figure3. Comparison of makespans observed for

different percentages of expensive tasks, when
either a blind heuristics or our MCT+sampling one
is adopted.

In these first simulation tests, we essentially

checked the feasibility of our approach. Our goal
was thus to evaluate mapping quality, in terms of
makespan, of an optimal on-line MCT+sampling
technique. This mapper is optimal because it is
supposed to also know in advance (through an
oracle) the exact costs of the sampled tasks. In this
way, we can evaluate the maximal improvement of
our technique over the blind scheduling one.

Figures 2 illustrate two pairs of Gannt charts,
which show the busy times of the six machines of
our Grid testbed when tasks of different weights are
submitted. In particular, each pair of charts is
relative to two simulations, when either the blind or
the MCT+sampling strategy is adopted. Machine i
of cluster j is indicated with the label i[j]. Note that
when the blind scheduling strategy is adopted, since
cluster 0 is slower than the other and no datasets are
moved, the makespan on the slower machines
results higher. Note that our MCT+sampling
strategy sensibly outperforms the blind one,
although it introduces higher computational costs
due to the sampling process. Finally, Figure 3 shows
the improvements in makespans obtained by our
technique over the blind one when the percentage of
heavy tasks is varied.

4 Conclusion

In this paper we have discussed an on-line MCT
heuristic strategy for scheduling high performance
DM tasks onto a local organization of a Knowledge
Grid. Scheduling decisions are taken on the basis of
cost metrics and models based on information
collected during previous executions, and use
sampling to forecast execution costs. We have also
reported the results of some preliminary simulations
showing the improvements in the makespan (system
throughput) of our strategy over a blind one. Our
mapping and scheduling techniques might be
adopted by a centralized on-line mapper, which is
part of a more complex hierarchical Grid
superscheduler, where the higher levels of the
superscheduler might be responsible for taking
rough schedule-decisions over multiple
administrative organizations, e.g., by simply
balancing the load among them by only considering
aggregate queue lengths and computational power.
The higher levels of a superscheduler, in fact, do not
own the resources involved, may have outdated
information about the load on these resources, and
may be unable to exert any control over tasks
currently on those domains.

The on-line mapper we have discussed does not
permit node multitasking, and schedules tasks in
batch. In future works we plan to consider also this
feature, e.g., the mapper could choose to
concurrently execute a compute-bound and an I/O-
bound task on the same machine.

Finally, a possible drawback of our technique is
the additional cost of sampling, even if it is worth
considering that sampling has been already
recognized as a feasible optimization technique in
other fields, such as optimization of SQL queries.
Of course, knowledge models extracted by sampling
tasks could in some cases be of interest for the users,
who might decide on the basis of the sampling
results to abort or continue the execution on the
whole dataset. On the other hand, since the results
obtained with sampling actually represent a partial
knowledge model extracted from a partition of the
dataset, we could avoid to discard these partial
results. For example, we might exploit a different
DM algorithm, also suitable for distributed
environments, where independent DM analysis are
performed on different dataset partitions, and then
the partial results are merged. According to this
approach, the knowledge extracted from the sample
Di’ might be retained, and subsequently merged
with the one obtained by executing the task on the
rest of the input dataset Di\Di’.

References:

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 71 Issue 1, Volume 8, January 2009

[1] GGF’s working group on Grid scheduling
dictionary,http://www.fz-juelich.de/zam/

[2] David Abramson, Rok Sosic, J. Giddy, and B.
Hall. Nimrod: A tool for performing
parameterised simulations using distributed
workstations. In HPDC, pages 112–121, 1995.

[3] F. Berman and R. Wolski. The AppLeS Project:
A Status Report, 1997.

[4] G. D. van Albada, J. Clinckemaillie, A. H. L.
Emmen, J. Gehring, O. H Overeinder, A.
Reinefeld, and P. M. A. Sloot. Dynamite -
blasting obstacles to parallel cluster com-puting.
In P. M. A. Sloot, M. Bubak, A. G. Hoekstra,
and L. O. Hertzberger, editors, High-
Performance Computing and Networking
(HPCN Europe '99), Amsterdam, The
Netherlands, number 1593 in Lecture Notes in
Computer Science, pages 300{310, Berlin,
April 1999. Springer-Verlag.

[5] R. Wolski, N. T. Spring, and J. Hayes. The
Network Weather Service: A distributed
resource performance forecasting service for
metacomputing. The Journal of Future
Generation Computing Sys-tems, Jan 1999.

[6] Michael Litzkow, Miron Livny, and Matt
Mutka, Condor-A Hunter of Idle Workstations.
In Proc. The 8th International Conference of
Distributed Computing Systems, San Jose,
California, June, 1988, pp.204-111.

[7] James Frey, Todd Tannenbaum, et al, Condor-
G: A Computation Management Agent for
Multi-Institutional Grids. Journal of Cluster
Computing, volume 5, pp. 237 - 246, 2002.

[8] I. Foster and C. Kesselman. Globus: A
metacomputing infrastructure toolkit.
International Journal of Supercomputer
Applications, 11(2):115-128, 1997.

[9] Globus Project website,
http://wwww.globus.org

[10] F. Berman and R. Wolski. The AppLeS Project:
A Status Report, 1997.

[11] S. J. Chapin, D. Katramatos, J. Karpovich, and
A. Grimshaw. Resource management in legion.
In 5th Workshop on Job Scheduling Strategies
for Parallel Processing, in conjunction with the
International Parallel and Distributed
Processing Symposium, Apr 1999.

[12] M. J. Lewis and A. Grimshaw. The core legion
object model. In Pternational Symposium on
High Performance Distributed Computing.
IEEE Computer Society Press, August 1996.

[13] Rajkumar Buyya, David Abramson, Jonathan
Giddy, Nimrod/G: An Architecture for a
Resource Management and Scheduling System
in a Global Computational Grid, The 4th

International Conference on High Performance
Computing in Asia-Pacific Region (HPC Asia
2000), May 2000, Beijing, China. IEEE
Computer Society Press, USA.

[14] D. Abramson, J. Giddy, and L. Kotler. High
Performance Parametric Modeling with
Nimrod/G: Killer Application for the Glocal
Grid? In Proceedings of IPDPS2000.

[15] J. P. Bradford and J. Fortes. Performance and
memory access characterization of data mining
applications. In Proceedings of Workshop on
Workload Characterization: Methodology and
Case Studies, 1998.

[16] Francine Berman, Richard Wolski, Silvia
Figueira, Jennifer Schopf, and Gary Shao.
Application level scheduling on distributed
heterogeneous networks. In Proceedings of
Supercomputing 1996, 1996.

[17] J. P. Bradford and J. Fortes. Performance and
memory access characterization of data mining
applications. In Proceedings of Workshop on
Workload Characterization: Methodology and
Case Studies, 1998.

[18] P. Becuzzi, M. Coppola, and M. Vanneschi.
Mining of association rules in very large
databases: a structured parallel approach. In
Proc. of Europar, 1999.

[19] Kun Gao, Youquan Ji, Meiqun Liu, Jiaxun
Chen: Rough Set Based Computation Times
Estimation on Knowledge Grid. Lecture Notes
in Computer Science 3470 Springer 2005,
pages: 557-566

[20] Kun Gao, Kexiong Chen, Meiqun Liu, Jiaxun
Chen: Rough Set Based Data Mining Tasks
Scheduling on Knowledge Grid, Lecture Notes
in Computer Science 3528 Springer 2005,
Pages: 150-155

[21] Kun Gao: Predicting Grid Performance Based
on Novel Reduct Algorithm, Lecture Notes in
Computer Science 5178 Springer 2008, Pages:
289-296

[22] Kun Gao: A Uniform Parallel Optimization
Method for Knowledge Discovery Grid,
Lecture Notes in Computer Science 5178
Springer 2008, Pages: 306-312

WSEAS TRANSACTIONS on COMPUTERS Jifang Li

ISSN: 1109-2750 72 Issue 1, Volume 8, January 2009

