
Adaptive Multi-Constraints in Hardware-Software Partitioning for
Embedded Multiprocessor FPGA Systems

TRONG-YEN LEE1, YANG-HSIN FAN1,2 and CHIA-CHUN TSAI3

1Graduate Institute of Computer and Communication, National Taipei Univ. of Technology, Taipei,
Taiwan, ROC

2Dept. of Computer Science and Information Eng., National Taitung Univ., Taitung, Taiwan, ROC
3Dept. of Computer Science and Information Eng., Nanhua Univ., Chia-Yi, Taiwan, ROC

tylee@ntut.edu.tw, yhfan@nttu.edu.tw, chun@mail.nhu.edu.tw; http://www.ntut.edu.tw/~tylee

Abstract: An embedded multiprocessor field programmable gate array (FPGA) system has a powerful and
flexible architecture that the interaction between hardware circuits and software applications. Modern
electronic products, such as portable devices, consumer electronics and telematics, can be evaluated rapidly in
this platform via the implementation of a set of hardware and software tasks. However, the functionality is
markedly increased, resulting in a significant raise in the number of hardware and software tasks. Consequently,
too large of a solution space is formed to achieve hardware-software partitioning. Moreover, a partitioning
result with low power consumption and fast execution time is difficult to obtain since meeting simultaneously
multi-constraints from hundreds of thousands of combinations of hardware-software partitions is difficult. Thus,
this work presents a hardware-software partitioning scheme that can obtain a partitioning result that satisfies
multi-constraints from massive solution space. Specifically, this study attains a partitioning result with low
power consumption and fast execution time. The effectiveness of the proposed approach is demonstrated by
assessing a JPEG encoding system and a benchmark with 199 tasks.

Key-Words: - Adaptive multi-constraints partitioning, hardware-software partitioning, embedded
multiprocessor system, FPGA system, hardware-software codesign

1 Introduction
Many embedded multiprocessor field programmable
gate array (FPGA) systems, such as the Xilinx [1]
ML310 FPGA, have been manufactured since the
fabrication process exponentially increases
transistor capacity. Many electronics products are
developed on an embedded multiprocessor FPGA
system, which has the following advantages. First,
flexible hardware and software architectures provide
various computing abilities that meet performance
requirements. Second, the floating operation is more
easily implemented by running applications on a
processor platform than on a hardware circuit. Third,
various functions associated with hardware and
software tasks can be evaluated rapidly. Finally, the
time and money required for system implementation
are reduced compared to those for application
specific integrated circuits (ASICs). Consequently,
embedded multiprocessor FPGA systems have been
adopted by both industry and academia. Industrial
applications include the design and verification of
portable devices, consumer electronics and
telematics. In term of academic research, the fields
are hardware-software partitioning, hardware-
software codesign and hardware-software
cosynthesis.

Hardware-software partitioning can be applied to
identify a specific functional element that is then
implemented as either a hardware or software task.
This partitioning is useful when determining the
roles of hardware or software for various functional
elements while developing embedded
multiprocessor FPGA systems. Therefore, many
studies [2]-[22] focused on hardware-software
partitioning and related issues. First, each functional
element must be determined such that it can be
implemented by hardware and software tasks.
Second, a system can be implemented successfully
by combining the identified hardware and software
tasks. Third, the completed system must satisfy
simultaneously all system constraints such as power
consumption, execution time, memory size, slice
capacity and concurrency ability. Finally, low power
consumption and/or fast execution time can be
achieved by the system. This work presents a
hardware-software partitioning approach that
generates a partitioning result for a complete system
and, simultaneously, satisfies multi-constraints.
Particularly, the proposed approach achieves low
power consumption and fast execution time on
embedded multiprocessor FPGA systems.

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 334 Issue 2, Volume 8, February 2009

 The remainder of this paper is organized as
follows. Section 2 describes the hardware-software
partitioning problem for embedded multiprocessor
FPGA systems. Preliminary work for hardware-
software partitioning is presented in Section 3.
Section 4 then introduces the hardware-software
partitioning approach to overcome the problems of
adaptive multi-constraints. Experimental results for
two design examples, a JPEG encoding system and
a benchmark case with 199 tasks, are presented in
Section 5. Finally, conclusions are given in Section
6.

2 Problem Description
Challenges associated with hardware-software
partitioning are that constraints are too varied to
coordinate and the solution space is too large to find.
Power consumption, execution time, resource
allocation and/or concurrency ability are typical
constraints when developing embedded
multiprocessor FPGA systems. These challenges
make attaining a partitioning result that satisfies
multi-constraints simultaneously by hardware-
software partitioning difficult. Conversely,
combining markedly increased hardware and
software tasks generates an extremely large solution
space that significantly increases the time
complexity of hardware-software partitioning.

2.1 Multi-constraints
This work considers five constraints—power
consumption, execution time, memory size, slice
capacity and number of processors. The power-
consumption constraint is the limitation of total
power dissipation after hardware-software
partitioning. An excessive number of hardware tasks
generally increases power dissipation, which may
exceed the power-consumption constraint. Thus, an
appropriate combination of hardware and software
tasks can to comply with the power-consumption
constraint. The execution-time constraint limits the
time for all task routes. Hardware tasks usually have
faster execution times than software tasks. Hence, if
a partition result has many hardware tasks, a design
has fast execution time; however, power
consumption increases. This phenomenon forms a
trade off between power consumption and execution
time. The constraints of memory size and slice
capacity are FPGA resources for implementing
hardware and software tasks, respectively. A large
memory size can increase the capacity for various
computations of software tasks. Conversely, an
increased number of hardware tasks require an
increased number of slices for implementation.

These two constraints comprise another trade-off
problem. The constraint of concurrency depends on
the number of processors that can perform multiple
software tasks simultaneously in a multiprocessor
FPGA system. If a design has two processors, such
as a MicroBlaze and PowerPC processor, two
software tasks can be executed simultaneously.
These five constraints, which are called multi-
constraints, must satisfy demand simultaneously
while performing hardware-software partitioning.

2.2 Solution Space
The number of tasks and constraints are two factors
that determine solution space. Current embedded
multiprocessor FPGA systems have rapidly
increased the number of tasks, as the functions for
required by modern electronic products has
increased rapidly. If a system has only 1 task, it can
be implemented via hardware or software. Therefore,
the solution space comprises 2 (i.e., 21) partitioning
combination for the system. For a design consisting
of fifty tasks, the solution space increases to
1125899906842624 (i.e., 250) partitioning
combination, i.e. excessively too large for hardware-
software partitioning. This study estimated that the
time required to find the optimum result for
hardware-software partitioning was over 100 days
using an Intel Core Duo CPU with 1GB RAM.
Equation (1) shows the solution space, which
depends on the number of tasks.

Solution space = 2n, n∈1, 2,…, N (1)

where n is the sum of tasks, N is natural
number.

 A design for 1 constraint is much simpler than
that for multi-constraints because only 1 factor, such
as low power consumption, fast execution time,
efficient resource allocation or concurrency ability
from solution space, is considered. Such a design
does not have a trade-off problem. However,
modern electronic products are developed under
multi-constraints. Consequently, a design has
significantly increased complexity as both tasks and
constraints proliferate. Once a design must deal with
more than two constraints, hardware-software
partitioning becomes a complex problem with a
trade-off problem between low power consumption
and fast execution time, as well as small memory
size and high slice usage. The solution space for 1
(labeled X1) to 5 (labeled X5) constraints is huge—
from 1E+15 to 6E+15 (Fig. 1).

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 335 Issue 2, Volume 8, February 2009

Fig. 1 Solution space of five constraints for 50 tasks

3 Preliminary Work
A task is an atomic unit in an embedded
multiprocessor FPGA system. Each task can be
implemented as a hardware component or software
procedure when developing an embedded
multiprocessor FPGA system. In other words, each
task has two types of implementation. The
hardware-software partitioning technique is a
decision system that determines each task to be
implemented as hardware or software. Thus, an
embedded multiprocessor FPGA system consists of
a set of tasks that will be partitioned into two sets of
hardware, set H and one software set, set S, after
hardware-software partitioning.
 This work developed a partitioning tool shown in
Fig. 2-5 which based on the Kernighan and Lin [18]
algorithm. The partitioning tool can construct a bi-
sectioned and balanced system of sets H and S.
Additionally, the developed tool can reduce external
cost via swapping a subset from H and with one
from S. Figure 2 shows a case with 10 randomly
generated tasks (i.e., Nos. 0-9) comprised of H (left)
and S (right) sets. This case has two costs: internal
and external costs. An arc connects tasks within H
or S; these arcs are called internal costs. External
cost defines the cross connection between H and S
tasks. Prior to partitioning, the external cost is 15
(Fig. 2). Figure 3 shows the partitioned result with a
reduced cost of 8, which involves the exchange of
four tasks (refer to No1 to No6, and No2 to No8 in
Fig. 3), respectively. This case indicates that cost is
reduced by 46.67%.
 This work discusses the un-weighted effect and
weighted effect on internal and external costs in the

developed tool. Figure 4 shows a case with 24 tasks
with weighted costs randomly created on the
internal and external cost. Figure 5 shows that the
cost is reduced by 23.62%. Although the ability of
the developed tool was extended from the un-
weighted effect to the weighted effect, a drawback
is that only 1 constraint is considered. Thus, such
studies may be inapplicable to modern electronics
requirements. Therefore, additional constraints, such
as power consumption, execution time, resource
allocation and concurrency ability, should be further
considered in hardware-software partitioning
research.

Fig. 2 A bi-section and balanced system for
randomly generated 10 tasks

Fig. 3 Reduced external cost after partitioning
process for bi-section and balanced system

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 336 Issue 2, Volume 8, February 2009

Fig. 4 A weighted bi-section and balanced system
for randomly generated 24 tasks

Fig. 5 Reduced external cost for a weighted bi-
section and balanced system

 Our previous studies [19]-[22] extended one
constraint for the cost of hardware-software
partitioning to multi-constraints, thus satisfying the
market requirements. These approaches include
enhancement partitioning [19], hardware-oriented
partitioning [20], efficient partitioning [21] and
sophistically computing partitioning [22]. However,
the achievement of low power consumption and fast
execution time does not discuss among these
approaches.

4 Partition Approach for Adaptive
Multi-constraints

The multi-constraints for the proposed approach are
power consumption, execution time, memory size,
slice capacity and number of processors. The
proposed approach is valuable in practice for
meeting simultaneously multi-constraints.
Additionally, achievement of low power
consumption and fast execution time enhances the
value of the proposed approach. However, a fast
execution time typically results in increased power
consumption in embedded multiprocessor FPGA
systems as the number of tasks implemented by
hardware increases. In other words, the constraint of
power consumption and execution time are difficult
to meet simultaneously. Other constraints related to
memory size and slices capacity correspond to
efficient utilization of FPGA resources. Memory
size determines computing capacity when a software
task is performed. Reduced memory utilization
results in a partitioning result with few software
tasks. On the other hand, implementing hardware
tasks requires slices to synthesize the circuit. That is,
additional slices are required when a partitioning
result consists of many hardware tasks. Hardware-
software partition must consider the utilization of
resources when partitioning software and hardware
tasks. The other constraint, concurrency ability, is
considered by multiprocessor. These multi-
constraints have trade-off relationships with each
other, such as that between low power consumption
and fast execution time, and small memory size and
high slice usage. Notably, a design must have multi-
constraints with a trade-off problem that may not
involve power consumption and execution time, as
well as memory size and slice size. Therefore, this
work aims adaptive multi-constraints for the
proposed hardware-software partitioning approach
that attains a good partitioning result. Additionally,
power consumed by the proposed approach is low
and execution time fast for embedded
multiprocessor FPGA systems.

4.1 Assumptions
In focusing on hardware-software partitioning issues
for embedded multiprocessor FPGA systems, we
make eight assumptions. First, we assume any
embedded multiprocessor FPGA system can be
divided into a set of tasks that can be modeled by a
task graph. Second, all tasks can be implemented by
hardware and software. Third, the constraints of
power consumption, execution time, memory size
and slice capacity for each hardware task and

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 337 Issue 2, Volume 8, February 2009

software task can be measured. Fourth, hardware
tasks consume more power consumption than
software tasks. Fifth, hardware tasks have faster
execution time than software tasks. Sixth,
implementing a hardware task only requires slices,
as opposed to software tasks the merely needs
memory. Seventh, interface cost is zero. Finally,
every processor in a multiprocessor has the same
characteristics implying that each processor has
same computation for each software task.

4.2 Task Graph
Figure 6 displays a task graph used to model
embedded multiprocessor FPGA systems while
developing various designs. The task graph is a 3-
tuple set, G(V, E, L), where V is a set of tasks
consisting of hardware and software tasks, E is a set
of arcs connecting tasks, and L is a set of levels
representing the height of the task graph. The task
graph can be used to compute the solution space,
describe system behavior and analyze various
partitions. The sum of solution space can be derived
via Equation (1) once the task graph is developed.
System behavior is associated with events labeled
by arcs. The quality and quantity of any partitioning
result can be analyzed using a task graph when
multi-constraints are satisfied.

1

10 8 12 11 9 13

21 20 n

16 14 18 17 15 19

65 7

32 4

Level 1

Level 2

Level 3

Level l

Fig. 6 A task graph of n tasks and l levels

4.3 Partitioning Method
A huge solution space and too many coordinates for
multi-constraints are two challenges in hardware-
software partitioning. This work overcomes these
challenges and generates a partitioning result that
has two benefits. First, all system constraints can be

satisfied simultaneously after hardware-software
partitioning. Second, low power consumption and
fast execution time are achieved by applying the
hardware and software tasks to an embedded
multiprocessor FPGA system.
 The first advantage, that all system constraint can
be satisfied simultaneously, is attained by
sequentially and individually overcoming
constraints. The order of multi-constraints starts
with power consumption, followed by execution
time, memory size, slice capacity and number of
processors. The power consumption constraint is
considered first to attain the following benefits. 1)
Some tasks can be treated as software tasks as the
power consumed by hardware tasks is too high,
indicating that low power consumption is achieved
because tasks with high power consumption exceed
the power-consumption constraint. 2) Software tasks
have a high probability of becoming candidates in
partitioning results because low power consumption
is required. 3) Most of the partitioning results can be
filtered by power consumption than other
constraints. We can infer that power consumption is
based on the largest amount of computation tasks
among all constraints. Execution time is considered
after power consumption. Once the power-
consumption constraint is met, software tasks
generally have a high probability to be candidates of
partitioning results as they consume little power.
Thus, the candidates in partitioning results may
consist of more software tasks than hardware tasks.
This phenomenon will reduce execution time.
Consequently, this work improves execution time
by reducing the number of software tasks. This can
be achieved by considering the execution-time
constraint as the candidates of partitioning results
can be filtered. Moreover, partitioning results will
not skew toward software tasks, and then coordinate
with hardware and software tasks rather than all
hardware tasks or all software tasks. This meets the
objective of hardware-software partition. Allocating
appropriate resources is the next goal. Thus, many
software tasks in partitioning results will be filtered
out since allocated memory is insufficient. Similarly,
the proposed approach can filter out some
partitioning results as slice capacity cannot afford to
implement too many hardware tasks. Finally,
concurrency ability for performing software tasks
simultaneously is evaluated using the constraint for
deployment of processors.
 A set of steps are implemented as follows to
obtain a set of partitioning results with satisfying all
constraints simultaneously. Power consumption
constraint is overcome in the beginning in the
following. First, we suppose an embedded

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 338 Issue 2, Volume 8, February 2009

multiprocessor FPGA system is modeled using a
task graph consisting of m processors, n tasks and l
levels. The number of m software tasks can be
performed simultaneously for each level l.
Moreover, the number of all hardware tasks is n.
Similarly, the number of all software tasks is also n.
Thus, two sets, hardware set H and software set S,
can be formed. Second, hardware set H and software
set S are sorted separately using the power-
consumption constraint. Third, a new class, C, with
2n elements is constructed by merging the sorted
hardware set and software set for computing the
power consumed by various partitioning results.
Fourth, a set of partitioning results, Rp, that meets
the power-consumption constraint become a
candidate of partitioning results for overcoming
other constraints. For example, the sum of power
consumed from element 1 to n of C is calculated to
evaluate the partitioning system using all hardware
tasks. Next, element 1 of a hardware task is
swapped with element 1 of a software task, which
indicates that the system is partitioned by hardware
task 2 to n and software task 1. Thus, the
partitioning result consists of element 2 to (n+1) of
C. The swap procedure is repeated until element
(n+1) to 2n of C is assessed. Consequently, the
number of (n+1) partitioning results, which
incorporate all hardware tasks, half of the hardware
and software tasks, and all software tasks, are
evaluated.
 Other hardware-software partitioning constraints
are overcome sequentially and individually using
the following steps. First, a new set of sorting that
meets the power-consumption constraint generated
from Rp. Second, the procedure for overcoming the
execution-time constraint starts with the smallest
power consumption and moves to the greatest power
consumption. This procedure is repeated until each
partition of Rp is evaluated. Then, a set of
partitioning results, Re, is obtained that
simultaneously meets the execution-time and
power-consumption constraints. Similarly, a set of
partitioning results, Rmem, that meets the memory-
size constraint can be derived from Re. Additionally,
a set of partitioning results, Rs, that meets the slice-
capacity constraint can be derived from Rmem.
Arbitrary processors, such as dual, quad or higher,
can be designed. Once the multiprocessor constraint
is determined, a set of partitioning results, Rm, that
meets multi-constraints is obtained. According to
this discussion, Theorem 1 is derived.

Theorem 1: If a feasible partitioning exists in a task
graph, then a set of partitioning results that satisfies
multi-constraints of power consumption, execution

time, memory size, slice capacity and
multiprocessor simultaneously will be obtained.

Proof: For a system of task graph with m processors,
n tasks and l levels is shown in Fig. 6. The solution
space Ss is 2n. A set of ai, i=1, 2, …, n represents the
hardware tasks sorted according to their power
consumption. A set of aj, j=(n+1), …, (2n-1), 2n
represents the software tasks sorted according to
their power consumption. Equation (2.1) consists of
ai and aj, which represent hardware set H and
software set S, respectively. Equation (2.2) indicates
that the system is implemented using n hardware
tasks. Equation (2.3) indicates that the system is
implemented using (n-1) hardware tasks and 1
software task. Equation (2.4) indicates that the
system is implemented using (n-2) hardware tasks
and 2 software tasks. Thus, the (j+1) partitioning
result is comprised of n software tasks. A set of
partitioning results, Rp, that meets power-
consumption constraint can be determined using
Equation (3) where Pspec is the power consumption
constraint.

a1, a2, …, an-1, an, an+1, …, a2n-1, a2n (2.1)

Rp(1)= a1+a2+, …,+an-1+an (2.2)

Rp(2)= a2+, …, +an+ an+1= Rp(1)- a1+ an+1 (2.3)

Rp(3)= Rp(2)- a2+ an+2 (2.4)

...

Rp (j+1)= Rp(j)- an+a2n (2.5)

{ Rp | Rp ≦Pspec, Rp⊂ Ss } (3)

 The execution-time constraint is considered after
power consumption. A set of partitioning results, Re,
can be determined using Equations (4) and (5) from
Rp. Symbol Emax(j) is the slowest execution time for
a task in each level j; Espec is the execution-time
constraint.

Re=)(
1

jE
l

j
∑
=

max (4)

{ Re | Re ≦ Espec, Re⊂ Rp} (5)

 The memory-size constraint is considered after
the execution-time constraint. A set of partitioning
results, Rmem, can be determined using Equations (6)

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 339 Issue 2, Volume 8, February 2009

and (7) from Re, where Csw(j, i) is memory used by
task i and level j. Symbol CFPGA_sw is the memory-
size constraint.

Rmem =∑∑
= =

l

j

n

i
ijC

1 1
),(sw (6)

{ Rmem | Rmem ≦CFPGA_sw, Rmem⊂ Re} (7)

 The slice-capacity constraint is considered after
the memory-size constraint. A set of partitioning
results, Rs, can be determined by Equations (8) and
(9) from Rmem, where Chw(j, i) is the slice utilization
in task i and level j. Symbol CFPGA_hw is the slice-
capacity constraint.

Rs =),(
1 1

ijC
l

j

n

i
∑∑
= =

hw (8)

{ Rs | Rs ≦CFPGA_hw, Rs⊂ Rmem} (9)

 The number of processors is considered after the
slice-capacity constraint. A set of partitioning
results, Rm, that satisfies the constraint of number of
processors for each level j can be determined by
Equations (10)–(12), where Rm(j) is a set of partial
partitioning results for each level j, and Mspec(j) is
the number of processors in each level j.

(10)
Rm(j) =

1, if m = n = 1,

2n - ,
1

∑
+=

n

mi
n
iC if m<n and m>1

2n, if m = n and m＞1,

Rm(j) ≦Mspec(j) (11)

{ Rm | Rm ≦Mspec, Rm ⊂ Rs } (12)

 A set of partitioning results that satisfies multi-
constraints simultaneously is obtained, and a
partitioning result with low power consumption and
fast execution time can be achieved by Theorem 2.

Theorem 2: If a set of partitioning results is
obtained that satisfies multi-constraints of power
consumption, execution time, memory size, slice
capacity and number of multiprocessors
simultaneously, a partitioning result with low power
consumption and fast execution time can be attained.

Proof: For a set of partitioning results, Rm, that
meets multi-constraints in an embedded
multiprocessor FPGA system, a set of partitioning
results, Op, with sequential power consumption can
be determined using the sorting technique. A set of
partitioning results, Oe, with sequential execution
time can also be derived based Op. Therefore, a
partitioning result with low power consumption and
fast execution time can be acquired.

4.4 Partition Algorithm
Figure 7 presents the proposed algorithm of
hardware-software partitioning, HW-SWPartition(),
for obtaining a partitioning result with low power
consumption and fast execution time. First, the sum
of power consumed by various partitioning results is
computed. Then, a set of partitioning results,
PassPower(), that meets power consumption
constraint is determined by comparing the power
consumption constraint with their power consumed.

Algorithm HW-SWPartition(n)
Input: a power consumption of hardware tasks sorted a1,

a2, …, an and software tasks sorted an+1, an+2, …,
a2n

Output: Low power consumption and fast execution
time partitioning result

{
1 i=1;
2 For (j=n to 2n+1)
3 { If (Sum[ai, … , aj]≦Pspec) then
4 { PassPower(i)=Sum[ai, … , aj];
5 i++;
6 }
7 }
8 While (QuickSort(Sum(PassPower(k))) ≦Espec)
9 { PassExec(k)=PassPower(k); }
10 While(QuickSort(Sum(PassExec(x)))≦CFPGA_sw)
11 { PassMem(x)=PassExec(x); }
12 While(QuickSort(Sum(PassMem(y)))≦CFPGA_hw)
13 { PassSlice(y)=PassMem(y); }
14 While (QuickSort(Sum(PassSlice(z))) ≦Mspec)
15 { PassAll(z)=PassSlice(z); }
16 LowPowerFastTime(PassAll);
}

Fig. 7 Hardware-software partitioning algorithm for
embedded multiprocessor FPGA system

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 340 Issue 2, Volume 8, February 2009

Procedure LowPowerFastTime (PassAll);
{
1 //Find average power consumption from PassAll
2 Pave=AveragePower(PassAll);
3 //Find average execution time from PassAll
4 Tave=AverageTime(PassAll);
5 While (power of PassAll(i)<Pave)
6 {
7 If (time of PassAll(i)<Tave) then
8 {
9 LowPowerFastTime =PassAll(i);
10 }
11 }
}

Fig. 8 Procedure for finding partitioning result of
low power consumption and fast execution time

Next, a set of sequential execution time is generated
by QuickSort(), and then a set of partitioning results
that meets the execution-time constraint is obtained.
This procedure is repeated until memory size, slice
capacity and number of processor are derived.
Finally, a partitioning result with low power
consumption and fast execution time is obtained by
the function LowPowerFastTime().
 The running time of HW-SWPartition() in Fig. 7
is O(n+1) for label 2–7. Label 8–9 is O(k×mlogm)
where O(mlogm) is derived from QuickSort().
Similarly, Label 10–11, 12–13 and 14–15 is
O(x×mlogm), O(y×mlogm) and O(z×mlogm),
respectively. Thus, the running time is
O(n+k×mlogm) from label 2–15 in Fig. 7. Another
function, LowPowerFastTime(), in Fig. 8 is O(l),
where l is the number of partitioning results
satisfying all constraints. In summary, the time
complexity of HW-SWPartition() is O(n+k×mlogm).

5 Experimental Results
This work uses the joint photographic experts group
(JPEG) [23][24] encoding system and a 199-tasks
benchmark [25] to demonstrate the feasibility of the
proposed scheme. The experimental platform is a P4,
2.8GHz PC with the memory of 1GB and a Xilinx
ML310 FPGA emulation board.

The measured data and task graph of first
experiment, which uses the JPEG encoding system,

were presented by Lee [19]. The power-
consumption constraint is set at 600mW, that is, the
total power consumed by hardware in 1 second.
Other constraints, slice capacity of 13696 and
memory size of 2448, are for two embedded
processors.
 Table 1 shows a comparison of the proposed
method, GA [8], Lin [17], HOP [20] and GHO [21].
The execution time of proposed method shown in
column 2 is 20021.66×10-6 seconds, faster than that
of the GA [8], Lin [17] and HOP [20]. On the other
hand, the GHO [21] had the same execution time as
the proposed approach. The proposed method shown
in column 3 consumes less power than HOP [20]
and GHO [21]. Therefore, the proposed approach
has the fast execution time and low power
consumption.
 As a well-defined benchmark is not supplied by
academia or industry, Purnaprajna [25] et al.
presented a case with 199 tasks and a task graph
generated randomly to simulate an embedded
system. This study implements a graphical user
interface that generates a task graph randomly (Fig.
9) and applies the proposed method. Figure 9
presents the embedded system with 199 tasks. The
evaluation parameters include execution time and
power consumption. The execution time parameters
for hardware and software tasks, 0–4 and 0–30,
respectively, were generated randomly. The power-
consumption parameter for hardware and software
tasks was generated randomly, and was 0–3 and 0–1.
This experiment was performed five times (column
1 in Table 2). Columns 2 and 3 in Table 2 lists
experimental results obtained using the proposed
method. Columns 4 and 5 in Table 2 show the
average execution time and power consumption
computed to determine the effectiveness of the
proposed method. Columns 6 and 7 in Table 2 show
the case 1 results of obtained by Purnaprajna [25].
Columns 2 and 4 in Table 2 show comparison
results for execution time, indicating that the
proposed method has the fastest execution time for
all cases. In terms of power consumption (columns
3 and 5 in Table 2), experimental results indicate
that the proposed method for each case has a power
consumption lower than the average.

Table 1. Comparison of the proposed method, GA [8], Lin [17], HOP [20] and GHO [21]

Proposed method GA [8] Lin [17] HOP [20] GHO [21] Benchmark
[19] Time

(uS)
Power
(mW)

Time
(uS)

Power
(mW)

Time
(uS)

Power
(mW)

Time
(uS)

Power
(mW)

Time
(uS)

Power
(mW)

JPEG
encoding
system

20021.66 525.14 20111.26 499.12 20111.26 494.44 20066.64 599.67 20021.66 586.07

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 341 Issue 2, Volume 8, February 2009

Fig. 9 An embedded system with 199 tasks

Table 2. Comparison of the proposed method and Purnaprajna [25]
Proposed method Purnaprajna [25]

Improved Average Case 1: Time and Power Benchmark [25]
Time Power Time Power Time Power

Task 199-1 226.17 178.31 230.64 181.35 436.70±1.70 700.50±5.75
Task 199-2 226.17 178.31 230.64 181.35 427.70±4.16 703.80±5.94
Task 199-3 223.80 186.21 231.43 193..42 432.60±5.46 683.00±9.64
Task 199-4 225.86 189.10 226.80 190.66 445.70±8.17 680.10±12.23
Task 199-5 226.17 178.31 230.64 181.35 445.70±7.77 709.40±6.51

6 Conclusions
This work presented a hardware-software
partitioning approach that generates a partitioning
result the meets multi-constraints of power
consumption, execution time, memory size, slice
capacity and number of processors simultaneously
for an embedded multiprocessor FPGA system.
Specifically, the proposed method achieves a
partitioning result with low power consumption and
fast execution time when the number of hardware
and software tasks is increased significantly and
constraints are multiple. Two experiments that use a
JPEG encoding system and a complex system with

199 tasks demonstrate the feasibility of the proposed
method for hardware-software partitioning of
embedded multiprocessor FPGA systems.

Acknowledgments The authors would like to
thank the National Science Council of the Republic
of China, Taiwan, for financially supporting this
research under Contract No. NSC-95-2221-E-027-
131.

References:
[1] http://www.xilinx.com.

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 342 Issue 2, Volume 8, February 2009

[2] G. F. Marchioro, J. M. Daveau, and A. A. Jerraya,
Transformational Partitioning for Co-Design of
Multiprocessor Systems, Proc. of the IEEE Conf.
on Computer Aided Design, 1997, pp. 508-515.

[3] M. Srivastava and R. Brodersen, SIERA: A
Unified Framework for Rapid-Prototyping of
System-Level Hardware and Software, IEEE
Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 1995, pp. 676-693.

[4] C. J. N. C. Jr, D. C. D. S. Jr and A. O. Fernandes,
Hardware-Software Codesign of Embedded
Systems, Proc. of the XI Brazilian Symposium on
Integrated Circuit Design, 1998, pp. 2-8.

[5] R. Ernst, J. Henkel and T. Benner, Hardware-
Software Cosynthesis for Microcontrollers, IEEE
Design & Test of Computer, Vol.10, 1993, pp.
64-75.

[6] V. Srinivasan, S. Govindarajan and R. Vemuri,
Fine-Grained and Coarse-Grained Behavioral
Partitioning with Effective Utilization of Memory
and Design Space Exploration for Multi-FPGA
Architectures, IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, Vol.9, 2001, pp. 140-
158.

[7] D. Saha, R. S. Mitra and A. Basu, Hardware
Software Partitioning Using Genetic Algorithm,
Proc. of the 10th Conf. on VLSI Design, 1997, pp.
155-160.

[8] Y. Zou, Z. Zhuang and H. Cheng, HW-SW
Partitioning based on Genetic Algorithm, Proc. of
the Congress on Evolutionary Computation
(CEC2004), Vol.1, 2004, pp. 628-633.

[9] H. Kanoh, M. Matsumoto and S. Nishihar,
Genetic Algorithms for Constraint Satisfaction
Problems, Proc. of the IEEE Conf. on Man and
Cybernetics Systems, Vol.1, 1995, pp. 626–631.

[10] A. L. Buczak and Henry Wang, Optimization of
Fitness Functions with Non-Ordered Parameters
by Genetic Algorithms, Proc. of the Conf. on
Evolutionary Computation Congress, Vol.1, 2001,
pp. 199–206.

[11] K. Deb and S. Agrawal, Understanding
Interactions among Genetic Algorithm
Parameters: Foundations of Genetic Algortihms
5, Morgan Kaufmann Publishers, San Francisco,
CA, 1999.

[12] S. Palaniappan, S. Zein-Sabatto and A. Sekmen,
Dynamic Multi-Objective Optimization OF War
Resource Allocation Using Adaptive Genetic
Algorithms, Proc. of the IEEE Conf. on Southeast
congress, 2001, pp. 160–165.

[13] T. Y. Lee, P. A. Hsiung, and S. J. Chen,
Hardware-software Multi-Level Partitioning for
Distributed Embedded Multiprocessor Systems,
IEICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, 2001,
pp. 614-626.

[14] L. Pomante, Co-Design of Multiprocessor
Embedded Systems: an Heuristic Multi-Level
Partitioning Methodology, Proc. of the Conf. on
Chip Design Automation IFIP, 2000, pp. 421-425.

[15] C. Brandolese, W. Fornaciari, L. Pomante, F.
Salice and D. Sciuto, Affinity-Driven System
Design Exploration for Heteregenerous
Multiprocessor SoC, IEEE Trans. on Computer,
Vol.55, No.5, 2006, pp. 508-519.

[16] D. Sciuto, F. Salice, L. Pomante and W.
Fornaciari, Metrics for Design Space Exploration
of Heterogeneous Multiprocessor Embedded
Systems, Proc. of the Conf. on IEEE/ACM
Hardware Software Co-Design, 2002, pp. 55-60.

[17] T. Y. Lin, Y. T. Hung and R. G. Chang, Efficient
Hardware/Software Partitioning Approach for
Embedded Multiprocessor Systems, Proc. of the
Conf. on VLSI Design, Automation and Test
Symposium (VLSI-DAT), 2006, pp. 231-234.

[18] Kernighan and Lin, “An Efficient Heuristic
Procedure for Partitioning Graphs,” The Bell
System Technical Journal, Vol. 49, No. 2, 1970.

[19] T. Y. Lee, Y. H. Fan, Y. M Cheng, C. C. Tsai
and R. S. Hsiao, Enhancement of Hardware-
Software Partition for Embedded Multiprocessor
FPGA Systems, Proc. of the IEEE Conf. on
Intelligent Information Hiding and Multimedia
Signal Processing, Vol. 2, 2007, pp. 19-22.

[20] T. Y. Lee, Y. H. Fan, Y. M. Cheng, C. C. Tsai
and R. S. Hsiao, Hardware-oriented Partition
for Embedded Multiprocessor FPGA Systems,
Proc. of the IEEE Conf. on Second Innovative
Computing, Information and Control, 2007.

[21] T. Y. Lee, Y. H. Fan, Y. M. Cheng, C. C. Tsai
and R. S. Hsiao, An Efficiently Hardware-
Software Partitioning for Embedded
Multiprocessor FPGA System, Proc. of the
International Multiconference of Engineers and
Computer Scientists, pp. 346-351, 2007.

[22] T. Y. Lee, Y. H. Fan, C. C. Tsai and R. S. Hsiao,
Sophisticated Computation of Hardware-Software
Partition for Embedded Multiprocessor FPGA
Systems, Proc. of the IEEE Conf. on Third
Innovative Computing, Information and Control,
2008.

[23] G. K. Wallace, The JPEG Still Picture
Compression Standard, IEEE Trans. on
Consumer Electronics, Vol.38, 1992, pp. xviii-
xxxiv.

[24] K. Kim and J. J. Koh, An Area Efficient DCT
Architecture for MPEG-2 Video Encoder, IEEE
Trans. on Consumer Electronics, Vol.45, 1999,
pp. 62-67.

[25] M. Purnaprajna, M. Reformat and W. Pedrycz,
Genetic Algorithm for Hardware-Software
Partitioning and Optimal Resource Allocation, J.
of Systems Architecture, Vol.53, No.7, 2007, pp.
339-354.

WSEAS TRANSACTIONS on COMPUTERS Trong-Yen Lee, Yang-Hsin Fan, Chia-Chun Tsai

ISSN: 1109-2750 343 Issue 2, Volume 8, February 2009

	28-099
	28-666
	28-674
	28-679
	28-725
	28-757
	28-759
	28-761
	28-766
	28-767
	28-770
	28-786
	31-756

