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Abstract: The artificial neural networks (ANN) have proven their efficiency in several applications: pattern 
recognition, voice and classification problems. The training stage is very important in the ANN’s performance. 
The selection of the architecture of a neural network suitable to solve a given problem is one of the most 
important aspects of neural network research. The choice of the hidden layers number and the values of weights 
has a large impact on the convergence of the training algorithm. In this paper we propose a mathematical 
formulation in order to determine the optimal number of hidden layers and good values of weights. To solve 
this problem, we use genetic algorithms. The numerical results assess the effectiveness of the theorical results 
shown in this paper and computational experiments are presented, and the advantages of the new modelling. 
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1. Introduction  
In recent years, neural networks have attracted 
considerable attention as they proved to be essential 
in applications such as content-addressable memory, 
pattern recognition and optimization [10], [7]. 
Learning or training of ANN is equivalent to finding 
the values of all weights such that the desired output 
is generated to corresponding input, it can be 
viewed as the minimization of error function 
computed by the difference between the output of 
the network and the desired output of a training 
observations set [3].  
In most instances for neural networks, multilayer 
neural networks that are trained with the back 
propagation algorithm have been used. The major 
shortcoming of this approach is that the knowledge 
contained in the trained networks is difficult to 
interpret [15] and [3]. Error Back propagation 
algorithm for neural networks is based on gradient 
descending technique. It suffers from problems of 
iterative computing for training. We can use 
evolutionary algorithms which realize a global 
search [6].  
Global search may stop the convergence to a non-
optimal solution and determine the optimum number 
of ANN hidden layers. Recently, some studies in the 
optimization architecture problems have been 
introduced [8], in order to determine neural 
networks parameters, but not optimally.  

Traditional algorithms fix the neural network 
architecture before learning [19], others studies 
propose constructive learning [22], [23], it begins 
with a minimal structure of hidden layer, these 
researchers initialised the hidden layer, with a 
minimal number of hidden layer neurons. The most 
of researchers treat the construction of neural 
architecture (structure) without finding the optimal 
neural architecture [15].      
In this paper, we propose a new modelling of this 
problem as a mathematical programming. We apply 
genetic algorithms to find the optimal number of 
hidden layers, the activation function and the matrix 
of weights. We formulate this problem as a non 
linear programming with mixed constraints. Genetic 
algorithm is proposed to solve it. Consequently we 
determine the optimal architecture and we can 
adjust the matrix of weights (learning or training the 
artificial neural network). In our approach, we 
assign to each hidden layer a binary variable witch 
takes the value 1 if the layer is activated and 0 
otherwise. 
This paper is organized as follows: Section 2 
describes the artificial neural networks. In Section 3, 
we present the problem of optimization neural 
architecture and a new modelling is proposed. 
Section 4 shows how we apply a simple genetic 
algorithm to solve this problem. Section 5 contains 
illustrative simulation results.  
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2.  Artificial neural networks 

architecture 
Artificial neural network (ANN) is a computing 
paradigm designed to imitate the human brain and 
nervous systems, which are primarily made up of 
neurons [4].  
 
2.1. Multilayer network 
The neural multilayer network (MLN) was first 
introduced by M. Minsky and S. Papert in 1969 [4]. 
It has one ore more hidden neuron layers between 
its input and output layers (Fig1), where there is no 
connection between neurons in the same layer. 
Usually, each neuron is connected to all neurons in 
the next layer. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig1: Neural network structure 
 
The Figure 1 shows a feed-forward neural network 
with N hidden layers of neurons. Note that each 
neuron of a certain layer is connected to each 
neuron of the next layer. 
Determining the parameters of the ANN has a large 
impact on the performance of ANN, it must be 
considered carefully. Parameters of the ANN are 
network architecture, training algorithm and 
activation function [7].  
 

Definitions  
The term “network architecture” refers to the 
number of layers in the ANN and the number of 
neurons in each layer. In general, it consists of an 

input layer, one or more hidden layers and one 
output layer. The number of neurons in the input 
layer and the output layer are determined by the 
numbers of input and output parameters, 
respectively. 
In order to find the optimal architecture, number of 
neurons in the hidden layer has to be determined 
(this number will be determined based on the ANN 
during the training process by taking into 
consideration the convergence rate, mapping 
accuracy, etc.). 
Artificial neural network modelling is essentially a 
black box operation linking input to output data 
using a particular set of nonlinear basis functions. 
ANN consists of simple synchronous processing 
elements, which are inspired by biological nervous 
systems and the basic unit in the ANN is the neuron. 
ANNs are trained using a large number of input data 
with corresponding output data (input/output pairs) 
obtained from actual measurement so that a 
particular set of inputs produces, as nearly as 
possible, a specific set of target outputs.  
Training MLN in a supervised method, many                                                                                        
studies have shown MLN ability to solve complex 
and diverse problems. 
 

2.2. Supervised learning   
Training of ANN consists of adjusting the weight 
associated with each connection (weights) between 
neurons until the computed outputs for each set of 
data inputs are as close as possible to the 
experimental data outputs. 
In other words, the error between the output and the 
desired output is minimized, possibly to zero. The 
error minimization process requires a special circuit 
known as supervisor; hence, the name, ‘supervised 
learning’. It is well known that during the design 
and raining of ANNs, factors such as:  Architecture 
of the ANN; Training algorithm and Transfer 
function need to be considered eventually. 
Said supervised training is characterized by the 
presence of pairs, Q input and output that we will 
((p1, d1), (p2, d2). . . (pQ, dQ)), which means a 
stimulus pi (input) and di target for this desired 
outputs [4].  
Neurons of successive layers are interconnected, 
each neuron calculates the weighted sum of its 
inputs and output calculates this amount modified 
by an activation function, for example, the sigmoid 
function: 
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Each input vector is passed forward through the 
network and an output vector is calculated. 
During training, the network’s output is 
compared to the actual observations, and an 
error term is created. This error term is called 
cost function. The cost function is an important 
concept in training, as it is a measure of how far 
away, we are from an optimal solution to the 
problem that we want to solve. Training 
algorithms search through the solution space in 
order to find a function that has the smallest 
possible cost. 
After training, the network reproduced the good 
output not only for the points of the learning base, 
but also for other inputs, that is known as 
generalization. 
The learning problem can be considered as an 
optimization problem, where it is to identify and 
minimize the error between the calculated output 
and the desired output. 
The multi-layered feed forward network trained 
usually with the back-propagation learning 
algorithm. The back-propagation learning algorithm 
is based on the selection of a suitable error function, 
whose values are determined by the actual and 
predicted outputs of the network. 
 
2.3 Input layer 

 
We suppose that B={x1,x2,…,xQ} the training base. 
Each observation xi is presented at input layer of 
artificial neural networks. 
In the training process, observations are sequentially 
input to the learning system in an arbitrary order. 
 
2.4 Hidden layers 

Consider a set of hidden layers (h1, h2, …., hN). 
Assuming ni the neurons number by each hidden 
layer hi.  

The outputs j
ih  of neurons in the hidden layers are 

computing as flows: 
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Where i
jkw ,  is the weight between the neuron k in 

the hidden layer i and the neuron j in the hidden 
layer i+1 , ni is the number of the neurons in the ith 

hidden layer, The output of the ith can be formulated 
as following:  
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2.6 Output layer 
The output layer has neurons to collect the outputs 
from the hidden layer hN..   
The neurons in the output layers are computing as 
flows: 









= ∑

=

Nn

k

k
Njk

N
i hwfy

1

,  

( ) ( )XWFyyyY mj ,,...,,...,1 ==   

Where jk
Nw ,  is the weight between the neuron k in 

the Nth hidden layer and the neuron j in the output 
layer, nN is the number of the neurons in the Nth 
hidden layer, Y=(y1,y2…,ym) is the vector of output 
layer, F  is the transfer function and W is the matrix 
of weights, it’s defined as follows: 
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Remark 

To simplify we can take n = ni   ∀ i = 1, ..., N for all 
hidden layers. where X is the input of neural 

network and f is the activation function and iW  is 

the matrix of weights between the ith hidden layer 

and the (i+1)th hidden layer for i=1,…,N-1,  0W  is 

the matrix of  weights between the input layer and 

the first hidden layer, and NW  is the matrix of  

weights between the Nth hidden layer and the output 
layer. 
  

 3. Optimization of Artificial Neural 

architecture  
In this section, general information about our 
approach is explained.   
 

Definition  
The problem of neural architectures optimization is 
to find the optimal number of hidden layers in the 
ANN, the number of neurons within each layer, and 
the good activation function, in order to maximize 
the performance of artificial neural networks [22]. 
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3.1 Problem formulation 

 The good performance is obtains by 
minimizing the error (distance) between the 
desired output and the calculated output. 
Determining the parameters has an impact on 
the performance of ANN. 
The training was done in a supervised learning that 
is for every input vector, the desired output is given 
and weights are adapted to minimize an error 
function that measures the discrepancy between the 
desired output and the output computed by the 
network. The mean squared error (MSE) is 
employed as the error function. 
In this article, a new optimization model is 
introduced, in order: 
 

• To optimize the artificial neural 
architecture, 

• To adjust the matrix of weights (learning)      
 
In this new proposed strategy, we can modelize the 
problem of neural architecture optimization as non 
linear constraint programming with mixed variables. 
We apply genetic algorithm to solve it.  
 
3.2 Modelization of neural architecture 

optimization problem 
For modelling, the problem of  neural architecture 
optimization , we have needed to define some 
parameters as follows: 
 
Notation:  
 

• N  : The maximum number of hidden    
  Layers.  

•  n0  : The number of neurons by in      
                      input. 
• nN+1 : The number of neurons by in   

              output. 
• ni        : The al number of  neurons by the                 
                     ith hidden layer i=1,…,N. 
• nopt        : The optimal number of hidden 

  layers. 
• X     : The input of ANN 
• hi      : The output of the hidden layer for    

               i=1,…,N. 
• Y  : The calculated (actual) output of    

               ANN 
• d       : The desired output of ANN 
• f  : The activation function of the all 

neurons. 
• F : The transfer function of artificial 

 neural network. 

• ui : The binary variable for i=1,…,N-1 
                     and ( )11 ,...,,..., −= Ni uuuU  

                            
The output of neural networks is computed by this 
expression: 
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The output of first hidden layer is defined by the 
following expression: 
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Fig 2: the output of the first hidden layer 

 
where ( )

0
,...,, 21 nxxx  is the input of neural 

networks. 
The following term give the calculated output by the 
hidden layer i 

 

( )


























































+−=

∑

∑

∑

−

−

−

=
−

−

=
−

−

=
−

−

−−−

1

1

1

1
1

1
,

1
1

1
,

1
1

1
1,

1111

i

i

i

i

n

k

k
i

i
nk

n

k

k
i

i
jk

n

k

k
i

i
k

iiii

hwf

hwf

hwf

uhuh  

 
where 1,..,2 −= Ni  
 

X 

0
,1 jw  

0
, jkw  

0
,0 jnw  

jh1  

x1 

xk 

0nx  

1
1h  

1
1
nh  

Hidden layer 1 Input layer (layer 0) 

1h  

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 529 Issue 3, Volume 8, March 2009



 

 

 
Fig 3: the output of the ith hidden layer 

 
The last hidden layer is calculated as flows: 
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The output of the neural network is calculated as 
flows:       
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Fig 4: the output of ANN 
 
 
Objective function:  
The objective function of the mathematical 
programming model is the error between the 
calculated output and desired output: 

2
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Constraints: 
The last constraints guarantee the existence of the 
hidden layers 
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We will know that we will always have the output 
layer and one of hidden layer, so we consider duress 
following. 
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If ui = 0 then the i
th hidden layer is deleted, and the 

output of (i+1)th hidden layer is computed by used 
the neurons of the (i – 1)th hidden layer. And we 
have hi = hi-1 . 
Otherwise ui = 1 then the i

th layer must be retained 

and we will: )( 1
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The non linear programming model 
The neural architecture optimization problem can be 
formulated as the following model:  
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jkwW is the matrix of  the weights, 

N is the number of hidden layers, and ni is the 
number of  neurons by the nth hidden layers.    
Variables that can be summed up search in the 
following matrix: 
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Remark  
The optimal number of hidden layers is defined as 
follows: 
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Our approach begins with a maximal number of 
hidden layers. The training process, all observations 
are sequentially input to learning system in an 
arbitrary order. The number of hidden layers and the 
values of weights are needed by the optimization 
model. In addition, the number of hidden layers 
must be decided simultaneously with a training 
phase (weights adjust).  
 

Example 

Let a multi-layer neural network with two hidden 
layers, In this example, the number of hidden 
layers is equal to 2, the number of neurons by 
each hidden layers is equal to3.    
The rule of the variable ui can be explained   by the 
following example: 
 
Size of  the observations set 10 
Dimension of desired space  2 
Dimension of input 3 
Number max of hidden layers  3 
Activation function f(x)=x 
n0 , n2, ,n3 3 

n1 4 
n4 2 
 

Remark 
The set of observation is generated randomly.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5: Example for the neural  architecture 
optimization 

 
 
The model corresponds to this example is defined as 
follows:  
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The transfer function is defined as: 
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Remark 

The ith hidden layer is deleted, the (i-1)th hidden 
layer is connected to the (i+1)th one. 
 
In this example, we have four cases: 
Case 1: 
u1=1 and u2=1 
Case 2: 
u1=1 and u2=0 
Case 3: 
u1=0 and u2=1 
Case 4: 
u1=0 and u2=0 
 
We studying each case, we obtained the optimal 
solution, where we have u1=0 and u2=1. 
Consequently, the first hidden layer is deleted, and 
the input is connected to the 2th hidden layer. 
 
 

The optimal architecture is defined as follows: 
  
 
 
 
 
 
 
 
 
 

 
 
 

Fig 6: Example for the neural architecture 
optimization 

  

4. Solving the obtained non linear 

programming model  
Genetic algorithm is proposed to solve this problem. 
Genetic Algorithm belongs to a class of 
probabilistic methods called “evolutionary 
algorithms” based on the principles selection and 
mutation. GA was introduced by J. HOLLAND [13] 
that it’s based on natural evolution theory of 
Darwin. Each solution represents an individual who 
is coded in one or several chromosomes. These 
chromosomes represent the problem’s variables. 
First, an initial population composed by a fix 
number of individuals is generated, then, operators 
of reproduction are applied to a number of 
individuals selected switch their fitness. This 
procedure is repeated until the maximums number 
of iterations is attained. G.A. has been applied in a 
large number of optimization’s problems in several 
domains [6], telecommunication, routing, 
scheduling, and it proves it’s efficiently to obtain a 
good solutions [2]. We have formulated the problem 
as a non linear program with mixed variables. 
 
Genetic Algorithm’s framework: 

 
  1. Coding individuals 
 2. Generate the initial population  
 3. Repeat  
  Evaluation individuals 
  Selection of individuals 
  Crossover  
  Mutation 
  Reproduction 
 Until attaining the criteria 
 

Input 

Output 

Hidden Layer h3 

Hidden Layer h2 

W3 

W2 

W0 
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Coding  

In our application, we have encoded an individual 
by two chromosomes, the first one represent the 
matrix of weights “W”, and the second represents 
the vector “u” which is an array of decision 
variables who takes 1 if the hidden layer is activated 
and 0 other. 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 

Fig 7: Coding 
 

Initial Population 
Individuals of the initial population are randomly 
generated, where vector “u” variables take the value 
0 or 1, and the matrix of weights takes random 
values in space IR.  
There are other ways to generate the initial 
population like applying others heuristics, this is the 
case when the research space is constrained what is 
not our case. 
 
Evaluating individuals 
In this step, each individual is assigned a numerical 
value called fitness which corresponds to its 
performance; it depends essentially on the value of 
objective function in this individual. An individual 
who has a great fitness is the one who is the most 
adapted to the problem. 
The fitness suggested in our work is the following 
function: 
 

)()( iobjectiveMiFitness −=  

 
where M>>0.  
 
Minimize the value of the objective function 
"objective" is equivalent to maximize the value of 
the fitness function. 
 

Selection  
The selection method used in this paper is the 
Roulette Wheel Selection RWS, which is a 
proportional method of selection, in this method; 
individuals are selected according to their fitness.  
The principle of RWS can be summarized in the 
following schema: 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 8: Selection RWS 
 
where  
 

 

 

 

Crossover 
The crossover is very important in the algorithm, in 
this step, new individuals called children are created 
by individuals selected from the population called 
parents. Children are constructed as follows: 
We fix a point of crossover, the parent are cut 
switch this point, the first part of parent 1 and the 
second of parent 2 go to child 1 and the rest go to 
child 2. 
In the crossover that we adopted, we choose two 
different crossover points, the first for the matrix of 
weights and the second is for Vector U. 
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Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig 9: Crossover 

 

 

Mutation  
The role of mutation is to keep the diversity of 
solutions in order to avoid local optimums. It 
corresponds on changing the values of one (or 
several) value (s) of the individuals who are (or 
were) (s) chosen randomly. 
 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 

Fig 9: Mutation 
 

 

 

 

 

 

Algorithm  
The scheme of the algorithm is depicted in the 
following figure.    

 
 

Fig 10: Algorithm description  
 
 

Training 
Base 

Coding 

Evaluating 
individuals 

 

Initial 
Population 

W 

Selection 

Crossover 
 

Mutation 

Evaluation 

Remplacement 

Stop 

 

Crossover 
point for 
vector U 

Crossover point 
for matrix of 
weights 

Parent 1 

Parent 2 

Before 

crossover 

 

 

Before 

mutation 

After 

mutation 

 

 

After 

crossover 

 

  Child 1 

Child 2 

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 534 Issue 3, Volume 8, March 2009



 

 
 
5. Experiments Results   
In this section, we provide the numerical examples 
to illustrate the potential applications of the 
proposed methodology. 
The architecture of multi layer network is used in 
this paper. 
The activation function is used in this architecture is 
given as: 
 

( )( ) 1exp1)( −+= xxf  
 

Performance evaluation 
Two different types of standard statistical were 
considered as statistical performance evaluation. 
The mean prediction error is calculated by the root 
mean squared error (RMSE) and mean percentage 
error (MAPE) were used. The performance 
evaluation criteria used in this article can be 
computed using the following expressions: 
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Where, Yi denotes the actual (calculated) value, d  
the predicted value, where the ith observation is 
counted from 1 to Q and Q is the total number of 
observations. 
The experimental settings for neural architecture 
optimization shows in table 1, in order to study 
some of the properties of data used: 
 
Population size 10 
Size of learning set 10 
Dimension of desired space  15 
Dimension of input 10 
Number max of hidden layers  10 
Number of neurons by each hidden 
layer 

10 

Table 1: experimental settings for neural 
architecture 

 
In order to test all theoretical results introduced in 
this paper, a computer program has been designed. 
Our algorithm was implanted in C++, and tested on 
instances generated randomly. The program was run 
in a compatible IBM, Pentium III  666MHz and 128 
Mb of RAM. The experimental results are presented 
in the table 2: 

 

Table 2: Results of neural architecture optimization

 N. Max of iteration  N nopt RMSE MAPE (%) Number of 
iteration 

CPU(s) 

100 6 4 1.41 24.56 19 2.25 
 6 2 1.53 23.212 25 2.20 
 8 5 0.86 17.20 96 3.08 
 8 4 0.85 30.77 73 3.08 
 10 3 1.25 13.75 55 3.96 
 10 7 1.28 21.28 37 4.12 
1000 6 4 1.08 19.02 213 22.58 
 8 5 1.02 15.21 627 31.55 
 8 2 1.16 20.35 613 31.26 
 10 4 0.87 12.99 752 48.30 
 10 7 0.91 14 915 49.45 
10000 6 5 0.90 15.19 9816 247.42 
 6 5 0.83 13.78 1432 247.4 
 8 4 0.73 11.88 9433 344.12 
 10 4 0.78 12.97 9043 481.70 
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In Table 2, we present the obtained number of 
hidden layers and the performance criteria, we 
analyse the performance of our method for different 
observations witch are generated randomly.  
In the following graphics, we interpret the obtained 
results for the problem of the neural architecture 
optimization. 
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Fig 11: Optimal solution for 100 iterations 
 
The numerical results assess the effectiveness of the 
theorical results shown in this paper, and the 
advantages of the new modelling. 
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Fig 12: Optimal solution for 1000 iterations 
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Fig 13: Optimal solution for 10000 iterations 

 
 
 

6. Conclusion 
ANN is widely accepted as a technology offering an 
alternative way to simulate complex and ill-defined 
problems. They have been used in diverse 
applications in control, robotics, pattern recognition, 
forecasting power systems, manufacturing, 
optimization, signal processing,…  
In this paper, we have proposed a new modelling 
for the neural architecture optimization problem. 
The GA is especially appropriate to obtain the 
optimization solution of the complex nonlinear 
problem. This method is tested to determine the 
optimal number of hidden layers in the ANN and 
the most favourable weights matrix, in order to 
minimize the error between the desired (predicted) 
output and the calculated output. Determining these 
parameters has an impact on the performance of 
ANN. Several directions can be investigated to try 
improving this method use a more efficient 
metaheuristics for example: tabu research, ant 
colony system [6]. Clearly, heuristical and 
mathematical approaches using a priori information 
would give rise to better performance and stability. 
To make this approach more efficient, it can be 
combined with other metaheuristics or it can be 
computationally optimised by introducing analytical 
improvements, such as replacing the hyperbolic 
tangent, with a linear function. 
Moreover, the approach introduced in this paper is 
also intrinsically easy to parallelize. 
Other experiment results are in progress for 
searching adequate values of parameters such as 
threshold value of the GA, Tabu research, and Ant 
colony system. 
Others studies are in progress to apply this approach 
to many problems such as: image processing, 
classification, image filtration [10], optimization.  
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