

Neural architectures optimization and Genetic algorithms

MOHAMED ETTAOUIL and YOUSSEF GHANOU
 UFR : Scientific calculation and Computing, Engineering sciences

Department of Mathematics and Computer science
 Faculty of Science and Technology of Fez

Box 2202, University Sidi Mohammed ben Abdellah Fez
MOROCCO

mohamedettaouil@yahoo.fr yghanou2000@yahoo.fr

Abstract: The artificial neural networks (ANN) have proven their efficiency in several applications: pattern
recognition, voice and classification problems. The training stage is very important in the ANN’s performance.
The selection of the architecture of a neural network suitable to solve a given problem is one of the most
important aspects of neural network research. The choice of the hidden layers number and the values of weights
has a large impact on the convergence of the training algorithm. In this paper we propose a mathematical
formulation in order to determine the optimal number of hidden layers and good values of weights. To solve
this problem, we use genetic algorithms. The numerical results assess the effectiveness of the theorical results
shown in this paper and computational experiments are presented, and the advantages of the new modelling.

Key-Words: Artificial neural networks (ANN), Non-linear optimization, Genetic algorithms, Supervised
Training, Feed forward neural network.

1. Introduction
In recent years, neural networks have attracted
considerable attention as they proved to be essential
in applications such as content-addressable memory,
pattern recognition and optimization [10], [7].
Learning or training of ANN is equivalent to finding
the values of all weights such that the desired output
is generated to corresponding input, it can be
viewed as the minimization of error function
computed by the difference between the output of
the network and the desired output of a training
observations set [3].
In most instances for neural networks, multilayer
neural networks that are trained with the back
propagation algorithm have been used. The major
shortcoming of this approach is that the knowledge
contained in the trained networks is difficult to
interpret [15] and [3]. Error Back propagation
algorithm for neural networks is based on gradient
descending technique. It suffers from problems of
iterative computing for training. We can use
evolutionary algorithms which realize a global
search [6].
Global search may stop the convergence to a non-
optimal solution and determine the optimum number
of ANN hidden layers. Recently, some studies in the
optimization architecture problems have been
introduced [8], in order to determine neural
networks parameters, but not optimally.

Traditional algorithms fix the neural network
architecture before learning [19], others studies
propose constructive learning [22], [23], it begins
with a minimal structure of hidden layer, these
researchers initialised the hidden layer, with a
minimal number of hidden layer neurons. The most
of researchers treat the construction of neural
architecture (structure) without finding the optimal
neural architecture [15].
In this paper, we propose a new modelling of this
problem as a mathematical programming. We apply
genetic algorithms to find the optimal number of
hidden layers, the activation function and the matrix
of weights. We formulate this problem as a non
linear programming with mixed constraints. Genetic
algorithm is proposed to solve it. Consequently we
determine the optimal architecture and we can
adjust the matrix of weights (learning or training the
artificial neural network). In our approach, we
assign to each hidden layer a binary variable witch
takes the value 1 if the layer is activated and 0
otherwise.
This paper is organized as follows: Section 2
describes the artificial neural networks. In Section 3,
we present the problem of optimization neural
architecture and a new modelling is proposed.
Section 4 shows how we apply a simple genetic
algorithm to solve this problem. Section 5 contains
illustrative simulation results.

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 526 Issue 3, Volume 8, March 2009

2. Artificial neural networks

architecture
Artificial neural network (ANN) is a computing
paradigm designed to imitate the human brain and
nervous systems, which are primarily made up of
neurons [4].

2.1. Multilayer network
The neural multilayer network (MLN) was first
introduced by M. Minsky and S. Papert in 1969 [4].
It has one ore more hidden neuron layers between
its input and output layers (Fig1), where there is no
connection between neurons in the same layer.
Usually, each neuron is connected to all neurons in
the next layer.

Fig1: Neural network structure

The Figure 1 shows a feed-forward neural network
with N hidden layers of neurons. Note that each
neuron of a certain layer is connected to each
neuron of the next layer.
Determining the parameters of the ANN has a large
impact on the performance of ANN, it must be
considered carefully. Parameters of the ANN are
network architecture, training algorithm and
activation function [7].

Definitions
The term “network architecture” refers to the
number of layers in the ANN and the number of
neurons in each layer. In general, it consists of an

input layer, one or more hidden layers and one
output layer. The number of neurons in the input
layer and the output layer are determined by the
numbers of input and output parameters,
respectively.
In order to find the optimal architecture, number of
neurons in the hidden layer has to be determined
(this number will be determined based on the ANN
during the training process by taking into
consideration the convergence rate, mapping
accuracy, etc.).
Artificial neural network modelling is essentially a
black box operation linking input to output data
using a particular set of nonlinear basis functions.
ANN consists of simple synchronous processing
elements, which are inspired by biological nervous
systems and the basic unit in the ANN is the neuron.
ANNs are trained using a large number of input data
with corresponding output data (input/output pairs)
obtained from actual measurement so that a
particular set of inputs produces, as nearly as
possible, a specific set of target outputs.
Training MLN in a supervised method, many
studies have shown MLN ability to solve complex
and diverse problems.

2.2. Supervised learning
Training of ANN consists of adjusting the weight
associated with each connection (weights) between
neurons until the computed outputs for each set of
data inputs are as close as possible to the
experimental data outputs.
In other words, the error between the output and the
desired output is minimized, possibly to zero. The
error minimization process requires a special circuit
known as supervisor; hence, the name, ‘supervised
learning’. It is well known that during the design
and raining of ANNs, factors such as: Architecture
of the ANN; Training algorithm and Transfer
function need to be considered eventually.
Said supervised training is characterized by the
presence of pairs, Q input and output that we will
((p1, d1), (p2, d2). . . (pQ, dQ)), which means a
stimulus pi (input) and di target for this desired
outputs [4].
Neurons of successive layers are interconnected,
each neuron calculates the weighted sum of its
inputs and output calculates this amount modified
by an activation function, for example, the sigmoid
function:

xe
xf

−+
=
1

1
)(

Hidden
layer h1

Output Y

Input X

Hidden
layer hi

Hidden
layer hN

W0

W1

Wi

WN

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 527 Issue 3, Volume 8, March 2009

Each input vector is passed forward through the
network and an output vector is calculated.
During training, the network’s output is
compared to the actual observations, and an
error term is created. This error term is called
cost function. The cost function is an important
concept in training, as it is a measure of how far
away, we are from an optimal solution to the
problem that we want to solve. Training
algorithms search through the solution space in
order to find a function that has the smallest
possible cost.
After training, the network reproduced the good
output not only for the points of the learning base,
but also for other inputs, that is known as
generalization.
The learning problem can be considered as an
optimization problem, where it is to identify and
minimize the error between the calculated output
and the desired output.
The multi-layered feed forward network trained
usually with the back-propagation learning
algorithm. The back-propagation learning algorithm
is based on the selection of a suitable error function,
whose values are determined by the actual and
predicted outputs of the network.

2.3 Input layer

We suppose that B={x1,x2,…,xQ} the training base.
Each observation xi is presented at input layer of
artificial neural networks.
In the training process, observations are sequentially
input to the learning system in an arbitrary order.

2.4 Hidden layers

Consider a set of hidden layers (h1, h2, …., hN).
Assuming ni the neurons number by each hidden
layer hi.

The outputs j
ih of neurons in the hidden layers are

computing as flows:

i

n

k

k
i

i
jk

j
i njandNihwfh

i

,...,1,...,2,
1

1
1

1
, ==








= ∑

−

=
−

−

For the first hidden layer is given as follows:

1
1

0
,1 ,...,1,

1

njxwfh
in

k
kjk

j =







= ∑

−

=

Where i
jkw , is the weight between the neuron k in

the hidden layer i and the neuron j in the hidden
layer i+1 , ni is the number of the neurons in the ith

hidden layer, The output of the ith can be formulated
as following:

),...,,(21 ni
iii

t
i hhhh =

2.6 Output layer
The output layer has neurons to collect the outputs
from the hidden layer hN..
The neurons in the output layers are computing as
flows:









= ∑

=

Nn

k

k
Njk

N
i hwfy

1

,

() ()XWFyyyY mj ,,...,,...,1 ==

Where jk
Nw , is the weight between the neuron k in

the Nth hidden layer and the neuron j in the output
layer, nN is the number of the neurons in the Nth
hidden layer, Y=(y1,y2…,ym) is the vector of output
layer, F is the transfer function and W is the matrix
of weights, it’s defined as follows:

[]Ni WWWW ,...,,...,0=

where () NiwW
i

i
nj
nk

i
jk

i ,...,0
11

1, ==
+≤≤

≤≤

and

()
11

1
0

,

+≤≤
≤≤
≤≤=

i

i
nj
nk
Ni

jk
iwW

Remark

To simplify we can take n = ni ∀ i = 1, ..., N for all
hidden layers. where X is the input of neural

network and f is the activation function and iW is

the matrix of weights between the ith hidden layer

and the (i+1)th hidden layer for i=1,…,N-1, 0W is

the matrix of weights between the input layer and

the first hidden layer, and NW is the matrix of

weights between the Nth hidden layer and the output
layer.

 3. Optimization of Artificial Neural

architecture
In this section, general information about our
approach is explained.

Definition
The problem of neural architectures optimization is
to find the optimal number of hidden layers in the
ANN, the number of neurons within each layer, and
the good activation function, in order to maximize
the performance of artificial neural networks [22].

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 528 Issue 3, Volume 8, March 2009

3.1 Problem formulation

 The good performance is obtains by
minimizing the error (distance) between the
desired output and the calculated output.
Determining the parameters has an impact on
the performance of ANN.
The training was done in a supervised learning that
is for every input vector, the desired output is given
and weights are adapted to minimize an error
function that measures the discrepancy between the
desired output and the output computed by the
network. The mean squared error (MSE) is
employed as the error function.
In this article, a new optimization model is
introduced, in order:

• To optimize the artificial neural
architecture,

• To adjust the matrix of weights (learning)

In this new proposed strategy, we can modelize the
problem of neural architecture optimization as non
linear constraint programming with mixed variables.
We apply genetic algorithm to solve it.

3.2 Modelization of neural architecture

optimization problem
For modelling, the problem of neural architecture
optimization , we have needed to define some
parameters as follows:

Notation:

• N : The maximum number of hidden
 Layers.

• n0 : The number of neurons by in
 input.
• nN+1 : The number of neurons by in

 output.
• ni : The al number of neurons by the
 ith hidden layer i=1,…,N.
• nopt : The optimal number of hidden

 layers.
• X : The input of ANN
• hi : The output of the hidden layer for

 i=1,…,N.
• Y : The calculated (actual) output of

 ANN
• d : The desired output of ANN
• f : The activation function of the all

neurons.
• F : The transfer function of artificial

 neural network.

• ui : The binary variable for i=1,…,N-1
 and ()11 ,...,,..., −= Ni uuuU

The output of neural networks is computed by this
expression:

() ()
1

,...,,,, 21 +
==

NnyyyYXWUF

The output of first hidden layer is defined by the
following expression:


























































=























=

∑

∑

∑

=

=

=

0

1

0

0

1

0
,

1

0
,

1

0
1,

1
1

1

1
1

1

n

k
knk

n

k
kjk

n

k
kk

n

j

xwf

xwf

xwf

h

h

h

h

Fig 2: the output of the first hidden layer

where ()

0
,...,, 21 nxxx is the input of neural

networks.
The following term give the calculated output by the
hidden layer i

()


























































+−=

∑

∑

∑

−

−

−

=
−

−

=
−

−

=
−

−

−−−

1

1

1

1
1

1
,

1
1

1
,

1
1

1
1,

1111

i

i

i

i

n

k

k
i

i
nk

n

k

k
i

i
jk

n

k

k
i

i
k

iiii

hwf

hwf

hwf

uhuh

where 1,..,2 −= Ni

X

0
,1 jw

0
, jkw

0
,0 jnw

jh1

x1

xk

0nx

1
1h

1
1
nh

Hidden layer 1 Input layer (layer 0)

1h

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 529 Issue 3, Volume 8, March 2009

Fig 3: the output of the ith hidden layer

The last hidden layer is calculated as flows:

()


























































+−=

∑

∑

∑

−

−

−

=
−

−

=
−

−

=
−

−

−−−

1

1

1

1
1

1
,

1
1

1
,

1
1

1
1,

1111

N

N

N

N

n

k

k
N

N
nk

n

k

k
N

N
jk

n

k

k
N

N
k

NNNN

hwf

hwf

hwf

uhuh

()Nn
N

k
NNN hhhh ,...,...,1=

The output of the neural network is calculated as
flows:

 1
1

, ,...,1 +
=

=







= ∑ N

n

k

k
N

N
jkj njhwfy

N

Fig 4: the output of ANN

Objective function:
The objective function of the mathematical
programming model is the error between the
calculated output and desired output:

2
),,(dWXUF −

Constraints:
The last constraints guarantee the existence of the
hidden layers

∑
−=

≥
1,..,1

1
Ni

iu

We will know that we will always have the output
layer and one of hidden layer, so we consider duress
following.

() IRwwW i
jk

nj
nk
Nii

jk

i

i

∈=
+≤≤

≤≤
≤≤

,
1
1
0

, ,
1

Where Ni ,...,0=

If ui = 0 then the i
th hidden layer is deleted, and the

output of (i+1)th hidden layer is computed by used
the neurons of the (i – 1)th hidden layer. And we
have hi = hi-1 .
Otherwise ui = 1 then the i

th layer must be retained

and we will:)(1
1

−
−= i

i
i hWfh

The non linear programming model
The neural architecture optimization problem can be
formulated as the following model:

()

{ }

















−=∈

∈=

≥

−

+≤≤
≤≤
≤≤

−

=
∑

1,...,11,0

1

:

),,(

)(

,
1
1
0

,

1

1

2

1

Niu

IRwwW

u

Sc

dXWUFMin

P

i

i
jk

nj
nk
Nii

jk

N

i
i

i

i

where

() { } 1
11 1,0,..., −
− ∈= N

NuuU

 Nh

N
jw ,1

N
jkw ,

N
jnN

w ,

jy

k
Nh

Nn
Nh

1y

1+Nny

Output (layer N+1) Hidden layer N

1
Nh

Y

1
1−ih

1−ih

1
,1
−i
jw

1
,
−i

jkw

1
,1

−

−

i
jni

w

j
ih

1
ih

in
ih

Hidden layer i

1

1
−

−
in

ih

k
ih 1−

ih

Hidden layer i-1

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 530 Issue 3, Volume 8, March 2009

()
11

1
0

,

+≤≤
≤≤
≤≤=

i

i
nj
nk
Nii

jkwW is the matrix of the weights,

N is the number of hidden layers, and ni is the
number of neurons by the nth hidden layers.
Variables that can be summed up search in the
following matrix:

[]11 ,...,,..., −= Ni uuuU

[]Ni WWWW ,...,,...,0=

where () NiwW
i

i
nj
nk

i
jk

i ,...,0
11

1, ==
+≤≤

≤≤

Remark
The optimal number of hidden layers is defined as
follows:

∑
−

=

=
1

1

N

i
iopt un

Our approach begins with a maximal number of
hidden layers. The training process, all observations
are sequentially input to learning system in an
arbitrary order. The number of hidden layers and the
values of weights are needed by the optimization
model. In addition, the number of hidden layers
must be decided simultaneously with a training
phase (weights adjust).

Example

Let a multi-layer neural network with two hidden
layers, In this example, the number of hidden
layers is equal to 2, the number of neurons by
each hidden layers is equal to3.
The rule of the variable ui can be explained by the
following example:

Size of the observations set 10
Dimension of desired space 2
Dimension of input 3
Number max of hidden layers 3
Activation function f(x)=x
n0 , n2, ,n3 3

n1 4
n4 2

Remark
The set of observation is generated randomly.

Fig 5: Example for the neural architecture
optimization

The model corresponds to this example is defined as
follows:

()

{ }
















∈

∈=

≥+

−

+≤≤
≤≤
≤≤

1,0,

1

:

),,(

)(

21

,
1
1

30
,

21

2

1

uu

IRwwW

uu

Sc

dXWUFMin

P

i
jk

nj
nk

ii
jk

i

i

where

() 3,...,0,
11

1
30

, ==
+≤≤

≤≤
≤≤ iwW

i

i
nj
nk

ii
jk is the matrix of

the weights.
The transfer function is defined as:





















=

∑

∑

=

=

)(

)(

),,(
3

1
3

3
2,

3

1
3

3
1,

k

k
k

k

k
k

hwf

hwf

XUWF

ih3 is the output for the i
th neuron by the 2th hidden

layer.

Input

Output

Hidden Layer h2

Hidden Layer h1

W2

W1

W0

W3

Hidden Layer h3

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 531 Issue 3, Volume 8, March 2009

() ,1

3

1
2

2
3,

3

1
2

2
2,

3

1
2

2
1,

212

3
3

2
3

1
3

3


























































+−=
















=

∑

∑

∑

=

=

=

k

k
k

k

k
k

k

k
k

hwf

hwf

hwf

uhu

h

h

h

h

() ,1

3

1
1

1
3,

3

1
1

1
2,

3

1
1

1
1,

111

3
2

2
2

1
2

2


























































+−=
















=

∑

∑

∑

=

=

=

k

k
k

k

k
k

k

k
k

hwf

hwf

hwf

uhu

h

h

h

h

,

3

1

0
3,

3

1

0
2,

3

1

0
1,

3
1

2
1

1
1

1


























































=
















=

∑

∑

∑

=

=

=

k
kk

k
kk

k
kk

xwf

xwf

xwf

h

h

h

h

Remark

The ith hidden layer is deleted, the (i-1)th hidden
layer is connected to the (i+1)th one.

In this example, we have four cases:
Case 1:
u1=1 and u2=1
Case 2:
u1=1 and u2=0
Case 3:
u1=0 and u2=1
Case 4:
u1=0 and u2=0

We studying each case, we obtained the optimal
solution, where we have u1=0 and u2=1.
Consequently, the first hidden layer is deleted, and
the input is connected to the 2th hidden layer.

The optimal architecture is defined as follows:

Fig 6: Example for the neural architecture
optimization

4. Solving the obtained non linear

programming model
Genetic algorithm is proposed to solve this problem.
Genetic Algorithm belongs to a class of
probabilistic methods called “evolutionary
algorithms” based on the principles selection and
mutation. GA was introduced by J. HOLLAND [13]
that it’s based on natural evolution theory of
Darwin. Each solution represents an individual who
is coded in one or several chromosomes. These
chromosomes represent the problem’s variables.
First, an initial population composed by a fix
number of individuals is generated, then, operators
of reproduction are applied to a number of
individuals selected switch their fitness. This
procedure is repeated until the maximums number
of iterations is attained. G.A. has been applied in a
large number of optimization’s problems in several
domains [6], telecommunication, routing,
scheduling, and it proves it’s efficiently to obtain a
good solutions [2]. We have formulated the problem
as a non linear program with mixed variables.

Genetic Algorithm’s framework:

 1. Coding individuals
 2. Generate the initial population
 3. Repeat
 Evaluation individuals
 Selection of individuals
 Crossover
 Mutation
 Reproduction
 Until attaining the criteria

Input

Output

Hidden Layer h3

Hidden Layer h2

W3

W2

W0

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 532 Issue 3, Volume 8, March 2009

Coding

In our application, we have encoded an individual
by two chromosomes, the first one represent the
matrix of weights “W”, and the second represents
the vector “u” which is an array of decision
variables who takes 1 if the hidden layer is activated
and 0 other.

Example:

Fig 7: Coding

Initial Population
Individuals of the initial population are randomly
generated, where vector “u” variables take the value
0 or 1, and the matrix of weights takes random
values in space IR.
There are other ways to generate the initial
population like applying others heuristics, this is the
case when the research space is constrained what is
not our case.

Evaluating individuals
In this step, each individual is assigned a numerical
value called fitness which corresponds to its
performance; it depends essentially on the value of
objective function in this individual. An individual
who has a great fitness is the one who is the most
adapted to the problem.
The fitness suggested in our work is the following
function:

)()(iobjectiveMiFitness −=

where M>>0.

Minimize the value of the objective function
"objective" is equivalent to maximize the value of
the fitness function.

Selection
The selection method used in this paper is the
Roulette Wheel Selection RWS, which is a
proportional method of selection, in this method;
individuals are selected according to their fitness.
The principle of RWS can be summarized in the
following schema:

Fig 8: Selection RWS

where

Crossover
The crossover is very important in the algorithm, in
this step, new individuals called children are created
by individuals selected from the population called
parents. Children are constructed as follows:
We fix a point of crossover, the parent are cut
switch this point, the first part of parent 1 and the
second of parent 2 go to child 1 and the rest go to
child 2.
In the crossover that we adopted, we choose two
different crossover points, the first for the matrix of
weights and the second is for Vector U.

Pi =

∑
=

n

i
i

i

f

f

1

Number choosen
randomly in [0.1]

I1 I
2

I
3

I4 I
5

I6 I
7

I8 I
9

I10

P
1

0 1

1 1 0 0 1 0 0 0 1

Vector u

The weight between the kth
neuron in layer i and jth neuron

in layer i+1: i
jkw ,

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 533 Issue 3, Volume 8, March 2009

Example:

Fig 9: Crossover

Mutation
The role of mutation is to keep the diversity of
solutions in order to avoid local optimums. It
corresponds on changing the values of one (or
several) value (s) of the individuals who are (or
were) (s) chosen randomly.

Example:

Fig 9: Mutation

Algorithm
The scheme of the algorithm is depicted in the
following figure.

Fig 10: Algorithm description

Training
Base

Coding

Evaluating
individuals

Initial
Population

W

Selection

Crossover

Mutation

Evaluation

Remplacement

Stop

Crossover
point for
vector U

Crossover point
for matrix of
weights

Parent 1

Parent 2

Before

crossover

Before

mutation

After

mutation

After

crossover

 Child 1

Child 2

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 534 Issue 3, Volume 8, March 2009

5. Experiments Results
In this section, we provide the numerical examples
to illustrate the potential applications of the
proposed methodology.
The architecture of multi layer network is used in
this paper.
The activation function is used in this architecture is
given as:

()() 1exp1)(−+= xxf

Performance evaluation
Two different types of standard statistical were
considered as statistical performance evaluation.
The mean prediction error is calculated by the root
mean squared error (RMSE) and mean percentage
error (MAPE) were used. The performance
evaluation criteria used in this article can be
computed using the following expressions:

Q

dY

RMSE

Q

i

ii∑
=

−
= 1

2

100
1

1

×
−

= ∑
=

Q

i
i

ii

Y

dY

Q
MAPE

Where, Yi denotes the actual (calculated) value, d
the predicted value, where the ith observation is
counted from 1 to Q and Q is the total number of
observations.
The experimental settings for neural architecture
optimization shows in table 1, in order to study
some of the properties of data used:

Population size 10
Size of learning set 10
Dimension of desired space 15
Dimension of input 10
Number max of hidden layers 10
Number of neurons by each hidden
layer

10

Table 1: experimental settings for neural
architecture

In order to test all theoretical results introduced in
this paper, a computer program has been designed.
Our algorithm was implanted in C++, and tested on
instances generated randomly. The program was run
in a compatible IBM, Pentium III 666MHz and 128
Mb of RAM. The experimental results are presented
in the table 2:

Table 2: Results of neural architecture optimization

 N. Max of iteration N nopt RMSE MAPE (%) Number of
iteration

CPU(s)

100 6 4 1.41 24.56 19 2.25
 6 2 1.53 23.212 25 2.20
 8 5 0.86 17.20 96 3.08
 8 4 0.85 30.77 73 3.08
 10 3 1.25 13.75 55 3.96
 10 7 1.28 21.28 37 4.12
1000 6 4 1.08 19.02 213 22.58
 8 5 1.02 15.21 627 31.55
 8 2 1.16 20.35 613 31.26
 10 4 0.87 12.99 752 48.30
 10 7 0.91 14 915 49.45
10000 6 5 0.90 15.19 9816 247.42
 6 5 0.83 13.78 1432 247.4
 8 4 0.73 11.88 9433 344.12
 10 4 0.78 12.97 9043 481.70

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 535 Issue 3, Volume 8, March 2009

In Table 2, we present the obtained number of
hidden layers and the performance criteria, we
analyse the performance of our method for different
observations witch are generated randomly.
In the following graphics, we interpret the obtained
results for the problem of the neural architecture
optimization.

0

2

4

6

8

10

12

1 2 3

N

nopt

RMSE

Fig 11: Optimal solution for 100 iterations

The numerical results assess the effectiveness of the
theorical results shown in this paper, and the
advantages of the new modelling.

0

2

4

6

8

10

12

1 2 3

N

nopt

RMSE

Fig 12: Optimal solution for 1000 iterations

0

2

4

6

8

10

12

1 2 3

N

nopt

RMSE

Fig 13: Optimal solution for 10000 iterations

6. Conclusion
ANN is widely accepted as a technology offering an
alternative way to simulate complex and ill-defined
problems. They have been used in diverse
applications in control, robotics, pattern recognition,
forecasting power systems, manufacturing,
optimization, signal processing,…
In this paper, we have proposed a new modelling
for the neural architecture optimization problem.
The GA is especially appropriate to obtain the
optimization solution of the complex nonlinear
problem. This method is tested to determine the
optimal number of hidden layers in the ANN and
the most favourable weights matrix, in order to
minimize the error between the desired (predicted)
output and the calculated output. Determining these
parameters has an impact on the performance of
ANN. Several directions can be investigated to try
improving this method use a more efficient
metaheuristics for example: tabu research, ant
colony system [6]. Clearly, heuristical and
mathematical approaches using a priori information
would give rise to better performance and stability.
To make this approach more efficient, it can be
combined with other metaheuristics or it can be
computationally optimised by introducing analytical
improvements, such as replacing the hyperbolic
tangent, with a linear function.
Moreover, the approach introduced in this paper is
also intrinsically easy to parallelize.
Other experiment results are in progress for
searching adequate values of parameters such as
threshold value of the GA, Tabu research, and Ant
colony system.
Others studies are in progress to apply this approach
to many problems such as: image processing,
classification, image filtration [10], optimization.

Acknowledgements

The authors would like to express their sincere
thanks for the referee for his/her helpful
suggestions.

References
[1] M. K. Apalak, M. Yildirim, R Ekici, Layer

optimization for maximum fundamental
frequency of laminated composite plates for
different edge conditions, composites science
and technology (68) 537-550, 2008.

[2] Bouktir, T., Slimani, L., Optimal power flow of
the Algerian Electrical Network using genetic
algorithms, WSEAS TRANSACTIONS on

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 536 Issue 3, Volume 8, March 2009

CIRCUITS and SYSTEMS, Vol. 3, Issue 6,
2004, pp. 1478-1482.

[3] INCI CABAR, SIRMA YAVUZ2, OSMAN
EROL1, ‘Robot Mapping and Map
Optimization Using Genetic Algorithms and
Artificial Neural Networks’, WSEAS
TRANSACTIONS on COMPUTERS, Issue 7,
Volume 7, July 2008.

[4] A. Cichoki, R. Unberhuen, ‘Neural Network
for Optimization and signal processing’, Jhon
Wiley & Sons, New York, 1993.

[5] Y. Chang, C. Low, ‘Optimization of a passive
harmonic filter based on the neural-genetic
algorithm with Fuzzy logic for a steel
manufacturing plant’, Expert systems with
Application, 2059-2070,2008.

[6] J Dréo, A. Pétrowski, P. Siarry, É. Taillard,
‘Méta-heuristiques pour l’optimisation
difficile’ , Éditions Eyrolles, 2003.

[7] G. Dreyfus, J. Martinez, M. Samuelides, M. B.
Gordon, F. Badran, S.Thiria, L.Hérault,
‘Réseaux de neurones. Méthodologie et
applications’, Edition Eyrolles 2e édition,
2003.

[8] E. Egriogglu, C, Hakam Aladag, S. Gunay, ‘A
new model selection straegy in artificiel neural
networks’, Applied Mathematics and
Computation (195) 591-597, 2008.

[9] M. Ettaouil, ‘Contribution à l’étude des
problèmes de satisfaction de contraintes et à la
programmation quadratiques en nombre entiers,
allocation statiques de tâches dans les systèmes
distribués’, thèse d’état, Université Sidi
Mohammed ben Abdellah, F.S.T. de Fès, 1999.

[10] M. Ettaouil, Y. Ghanou, ‘Réseaux de neurones
artificiels pour la compression et la filtration
de l’image médicale’, congres de la société
marocaine de mathématiques appliquées,
proceedings pages 148-150 Rabat 2008.

[11] M. Ettaouil, Y Ghanou, ‘Méta- heuristiques et
optimisation des architectures neuronales’,
JIMD’2 procedings ENSIAS Rabat, 2008.

[12] M. Ettaouil and C. Loqman, ‘Constraint
satisfaction problem solved by semi definite
relaxation’, WESAS TRASACTIONS ON
COMPUTER, Issue 7, Volume 7, 951-961,
2008.

[13] J. Holland, ‘Adaptation in natural and artificial
systems’. Ann Arbor, MI: University of
Michigan Press, 1992.

[14] Julio J. Valdes, Alan J. Barton1,’ Multi-
objective evolutionary optimization for
constructing neural networks for virtual reality
visual data mining: Application to geophysical
prospecting’, Neural Networks 20 (2007) 498–
508.

[15] T. Kohonen, ‘Self Organizing Maps’, Springer,
3e edition, 2001.

[16] T.Y. Kwok, D.K. Yeung, ‘Constructive
algorithms for structure learning in feed
forward neural networks for regression
problems’, IEEE Trans. Neural Networks 8
(1997) 630-645.

[17] CHE-CHERN LIN, ‘Implementation
Feasibility of Convex Recursive Deletion
Regions Using Multi-Layer Perceptrons’,
WSEAS TRANSACTIONS on COMPUTERS,
Issue 1, Volume 7, January 2008.

[18] H Peng, X Ling, ‘Optimal design approach for
the plate-fin heat exchangers using neural
networks cooperated with genetic algorithms’,
Applied Thermal Engineering 28 (2008) 642–
650.

[19] JOSEPH RAJ V. ‘Better Learning of
Supervised Neural Networks Based on
Functional Graph – An Experimental
Approach’, WSEAS TRANSACTIONS on
COMPUTERS, Issue 8, Volume 7, August
2008.

[20] Pedro M. Talavan, J. Yanez, ‘A continuous
Hopfield network equilibrium points
algorithm’, Computers & Operations Research
32 (2005) 2179–2196

[21] Z. Tang, C.Almeida, P.A Fishwick, ‘Time
series forecostng using neural network vs Box-
jenkins methodology’, Simulation 57
(1991)303-310.

[22] D. Wang, ‘Fast Constructive-Coverting
Algorithm for neural networks and its
implement in classification’, Applied Soft
Computing 8 (2008) 166-173.

[23] D. Wang, N.S. Chaudhari, ‘A constructive
unsupervised learning algorithm for Boolean
neural networks based on multi-level
geometrical expansion’, Neurocomputing 57C
(2004) 455-461.

WSEAS TRANSACTIONS on COMPUTERS Mohamed Ettaouil, Youssef Ghanou

ISSN: 1109-2750 537 Issue 3, Volume 8, March 2009

