
Triplet-based Topology for On-chip Networks

WANG ZUO, ZUO QI, LI JIAXIN
School of Computer Science and Technology

Beijing Institute of Technology
Beijing, 100081

China
qiushui@bit.edu.cn, Zqll27@bit.edu.cn, starforce@bit.edu.cn

Abstract: - Most CMPs use on-chip network to connect cores and tend to integrate more simple cores on a
single die. As the number of cores increases, on-chip network will play an important role in the performance of
future CMPs. Due to the tradeoff between the performance and area constraint in on-chip network designs, we
propose the use of triplet-based topology in on-chip interconnection networks and demonstrate how a 9-node
triplet-based topology can be mapped to on-chip network. By using group-caching protocol to exploit traffic
locality, triplet-based topology achieve lower latency and energy consumption than 2D-MESH. We run
multithreaded commercial benchmarks on multi-core simulator GEMS to generate practical traffics and
simulate these traffics on network simulator Garnet. Our experiment results show that triplet-based network can
increase the work-related throughput by 3%~11% and reduce average network latency by 24%~32% compared
with 2D-MESH, with the router energy consumption reduced by 13%~16% and the link energy consumption
reduced by 14%~16%.

Key-Words: - On-chip network, Cache protocol, Network latency, Energy consumption, Performance, Mapping

1 Introduction

In order to utilize the increasing number of
transistors available in modern VLSI technology,
processor designs tend to integrate more simple
cores instead of complicated processor on a single
die. As the number of cores increases in CMPs, on-
chip networks are widely used to provide efficient
communication between cores.

There are two different ways to implement on-
chip network. One is to use low-radix networks,
such as 2D-MESH found in the RAW processor [1],
the TRIPS processor [2], Intel’s Teraflops [3] and
the Tile64 processor [4]. With simple topologies,
low-radix networks can be mapped to on-chip
network with compact physical layout using
conventional Manhattan routing in horizontal and
vertical directions. Especially in tiled CMP designs,
the longest wire in the system is no greater than the
length or width of a tile [1]. Although low-radix
networks can be mapped efficiently, they lead to
several disadvantages such as high network latency
caused by long diameter. The other is to use high-
radix networks, such as butterfly network [5]. With
shorter network diameters, high-radix networks can
achieve the improvement on network latency and
energy consumption by reducing hop count between
cores. However, wiring requirements of high-radix
networks complicate physical layout which leads to
higher area cost [6]. We think that using high-radix

networks may not be a cost-effective way, while
exploiting traffic locality on low-radix network can
achieve both goals in performance and area cost.
Thus, we propose the use of triplet-based topology
in on-chip interconnection networks and describe
how triplet-based network can achieve performance
improvement and energy consumption degradation
with the help of group-caching protocol.

This paper is organized as follows. In Section 2,
we describe triplet-based topology and its routing
algorithm. Section 3 demonstrates how a 9-node
triplet-based topology can be mapped to on-chip
network and discusses the impact of various link
latencies on routing algorithms. Average network
latency model as well as static link load model is
proposed for triplet-based network in Section 4.
Group-caching protocol is presented in Section 5.
We evaluate triplet-based network and compare it
with 2D-MESH in Section 6. Related work is
discussed in Section 7 and we conclude in Section 8.

2 Triplet-based Topology and its New
Routing Algorithm

The basic component of triplet-based topology
[7] is a full-connected triplet which consists of three
nodes connecting with each other directly. As
shown in Fig.1, three full-connected triplets form a

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 516 Issue 3, Volume 8, March 2009

9-node network while larger networks can be
implemented by replacing each node with a full-
connected triplet iteratively. The node degree of
triplet-based topology is 3 while that of 2D-MESH
is 4. As buffers occupy approximately 60~80% of
router area [4] [6], triplet-based network consumes
less router area than 2D-MESH due to fewer buffers
needed by its lower node degree. Besides, the router
energy consumption of triplet-based network also
benefits from low node degree.

 (a) (b) (c)

Fig.1 Triplet-based topology

The basic routing algorithm presented in paper [7]
is described as follows:

1. If node X and node Y locate in the same full-
connected triplet, the minimal path from node X to
node Y is X—Y.

2. If node X and node Y locate in the same sub-
network consisting of 3K-1 full-connected triplets
and locate in the different sub-networks consisting
of 3K-2 full-connected triplets, packets from node X
to node Y chooses the minimal path, referred as
MIN(X—Y1), to enter the sub-network which node
Y locates, then choose the minimal path, referred as
MIN(Y1—Y), to traverse to node Y. Y1 is the first
node that packets from the sub-network which node
X locates to the sub-network which node Y locates
will pass.

3. Repeat step 2 iteratively to implement routing
for MIN(X—Y1) and MIN(Y1—Y).

Although the basic routing algorithm is efficient,
there are still some disadvantages it. First, the basic
routing algorithm is not a minimal routing algorithm
due to its non-global decision. For example, because
node I and node R locate in the two neighbouring 9-
node sub-networks, the basic routing algorithm will
choose I—H—F—E—J—L—P—R as the path
from node I to node R while the minimal path from
node I to node R is I—S—T—V—W—R. Although
the difference existed between the basic routing
algorithm and minimal routing algorithm is very
tiny [7], it still has negative impact on network
performance. Second, the basic routing algorithm
does not take deadlock into account.

In order to solve the non-minimal problem of the
basic routing algorithm, we introduce the use of the
transition node. When node X need send a packet to

node Y, we insert the transition node Z, which
locates in the shortest path, into the packet (the
transition node is calculated beforehand and stored
in each node). The routing process from node X to
Y is divided into two parts, node X to Z and node Z
to Y. For example, as shown in Fig.1, when node I
send packets to node R, we choose node S as the
transition node and insert it into packets. Packets
from node I to node R are first transferred to node S
with the help of the basic routing algorithm and then
transferred to node R. The benefits of these changes
are obvious: it almost inherits all the advantages of
the basic algorithm, such as the low complexity of
router design and the fast routing process (normal
table-based algorithm need read rout table in each
node and the basic routing algorithm will not), while
implementing the minimal routing.

In order to solve the deadlock problem, we assign
different weights to the links in different directions
and change the basic routing algorithm as follows:
during the route computation phase, if there are two
minimal paths, the output link with the minimal
weight is selected. As shown in Fig.2, the links in 0
degree direction are assigned weight 3, links in 60
degree direction are assigned weight 4 and links in
120 degree direction are assigned weight 5.
Although there are two shortest paths F—D—B—C
and F—H—G—C from node F to node C, packets
from node F to node C will be first sent to node H
because the weight of F—H is lighter than F—D,
then choose path H—G—C to arrive node C.
According to the same analysis, packets from node
C to node F will be first sent to node B, then choose
path B—D—F to arrive node F. By combining the
above rules and virtual channel technique, deadlock
will not occur in the ring B—C—G—H—G—D—B.

Fig.2 Link weight assignment of the 9-node triplet-
based topology

We should note that the basic routing algorithm is

based on the assumption that all links have the same
latency. However, when mapping triplet-based
topology to on-chip network using conventional
routing in horizontal and vertical directions, some

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 517 Issue 3, Volume 8, March 2009

links will have higher latencies than others thus the
minimal paths which we define according to
topology will be changed. We discuss the impact of
various link latencies on routing algorithm in the
next Section.

3 Mapping Triplet-based Topology to

onal routing techniques [8]
[9

On-chip Network
Although there are diag
] which can be used to map triplet-based topology

more efficiently, we still adopt conventional routing
in horizontal and vertical directions since physical
implement as well as area cost evaluation of triplet-
based network is not the topic concerned by this
paper. Fig.3 (a) describes how a 9-node triplet-based
topology can be mapped to on-chip network in tiled
CMPs. The nodes locating in a full-connected triplet
are placed vertically in a row, while the links
connecting full-connected triplets are placed
horizontally. Fig.3 (b) describes the physical layout
of 2D-MESH. The area costs of triplet-based
network is close to that of 2D-MESH though the
former’s layout is a little more complicated than the
latter’s.

(a) (b)

Fig.3 Ph triplet-

As shown in Fig.3, th
tile

ysical layout comparison between

based network and 2D-MESH

e wires between tile A and

C have almost twice the length of those between
tile A and tile B. Although we can reduce the
adverse impact of long wires on performance by
inserting repeaters or pipeline registers into the
longer wires [6], the impact of various wire
latencies on routing algorithm still exists. We made
the following changes to the basic routing algorithm
presented in Section 2. The first is that the minimal
path from tile F to tile C is changed from path F—
H—G—C to path F—D—B—C because long wires
between tile G and tile C add more latency to path
F—H—G—C. The second is that the minimal path
from tile B to tile H is changed from B—C—G—H
to B—D—F—H.

4 Traffic Models for Triplet-based
Network

 We assume that each node has the opportunity to
communicate with any other node in our model.
Parameter p (0<p<1) is used to denote acceptance
probability with which a node will receive the
packet from other nodes in the same full-connected
network. In order to analyze the impact of locality
on network traffic, we introduce locality factor α
(0<α≤1). If node X and node Y locate in the same
sub-network which consists of 3K-1 full-connected
triplets and locate in the different sub-networks
which consist of 3K-2 full-connected triplets, the
acceptance probability of node Y to receive the
packet from node X is p*αK-1.
 In most CMP designs, the network traffic is used
to maintain the cache coherence, such as the cache
coherence between L1 and L1 (protocol dependent),
between L1 and L2, between L2 and L2 (protocol
dependent) and the cache coherence between L2 and
memory. As the interleaving technique is applied to
both shared L2 banks and shared memory banks, the
traffic frequencies for nodes are almost the same in
the case of the same load for each node. α =1 means
all nodes in the network have the same acceptance
probability which probably matches the traffic
pattern under banked and shared L2 cache design.

4.1 Average Network Latency Model

According to the physical layout described by
Fig.3 (a), we set the latency of short wires to 1 cycle
and set the latency of long wires to 2 cycles.
According to the configuration of network simulator
present in Section 6, router latency is set to 4 cycles.
Table 1 lists the zero-load latency between nodes
according to the updated basic routing algorithm
presented in Section 3.

Table 1 Zero-load latency between nodes according
to the updated basic routing algorithm

 A B C D E F G H I

A XX 9 10 14 19 19 16 22 21

B 9 XX 9 9 14 14 15 19 20

C 10 9 XX 14 19 19 10 16 15

D 14 9 14 XX 9 9 20 14 19

E 19 14 19 9 XX 10 21 15 20

F 15 14 19 9 10 XX 15 9 14

G 16 15 10 20 21 15 XX 10 9

H 22 19 16 14 15 9 10 XX 9

I 21 20 15 19 20 14 9 9 XX

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 518 Issue 3, Volume 8, March 2009

 Based on the assumption that each node probably
rejects the same number of flits into network and
each node’s outgoing messages are equal to its
coming messages, the average zero-load network
latency of 9-node triplet-based network is depicted
as follows:

 3 199 9 279 averageL α

α
+ ×
+ ×+= (1)

According to Equation (1), network latency will
benefit from traffic locality. The lowest network
latency between nodes is 9 cycles which probably
matches the latency between the nodes in the same
full-connected triplet. It is worth mentioning that
Equation (1) is based on the assumption that each
node has the opportunity to communicate with any
other node in the network. However, as described in
paper [21] that a type of packets may only have a
limited selection of receivers among all nodes in
reality, thus Equation (1) needs some changes to
adapt real-life traffics. For example, according to
the group-caching protocol presented in the next
Section, each node only communicates with the
nodes in the same full-connected triplet and the
nodes locating in the same place of different full-
connected triplets (node A, node D and node G
locate in the same place of different full-connected
triplets). Under such condition, Equation (1) needs
to be modified as:

 3 65 9 99 averageL α
α

+ ×
+ ×+= (2)

4.2 Link Load Model

In Equation (3), we define the load of a link as a
sum of messages passing this link. Table 2 lists the
9-node network link load distribution based on
Equation (3) and the updated basic routing
algorithm presented in Section 3.

 (3) (
1

= pass link j
X Y

n

j N
i

T T
⎯⎯⎯⎯⎯→

=
∑)N

Taking link C—B as an example, because the
minimal path between node C and node F is C—
B—D—F, the communications between the two
nodes will inject α*t messages to link C—B during
time t. By analogy, we calculate the messages
injected by the communications between node C
and node D, node C and node E, node A and node D,
node A and node E, node A and node F during time

t, then add up all the messages. As shown in table 2,
the traffic load of link C—B is p*(1+5*α)*t.

Table 2 9-node triplet-based network link load
distribution

Link ID load Link ID load

A-B B-A A-C C-A 1+3*α F-D 1+7*α

D-E E-D E-F F-E 1+3*α G-C 8*α

G-I I-G H-I I-H 1+3*α C-G F-H 9*α

H-G 1+4*α B-D H-F 10*α

G-H C-B 1+5*α D-B 11*α

B-C D-F 1+6*α — —

We can see from Table 2 that if there no locally

distributed traffics (α = 1), the load of links between
full-connect networks will be 2 times higher than
that of links in full-connect networks; if traffics are
distributed locally in each full-connect network, for
example α = 0.5, the link load distribution will be
more symmetrical. We can also see from table 2 that
the revised minimal routing algorithm discussed in
Section 3 makes traffics concentrate on some links.
For example, the load of link D—B is a much
heavier than that of G—C. The impact of the revised
minimal routing algorithm on link load distribution
will be also alleviated as α value decreases.

5 Group-Caching for Triplet-based
Network
 Banked and shared L2 cache design is a good
choice to minimize the number of off-chip accesses
when the latency of accessing remote L2 banks is
not significant [16]. For example, [14] and [15] use
low latency crossbar to connect distributed L2 banks.
However, if we use low-radix networks, such as 2D-
MESH, as the connection substrate, banked and
shared L2 cache design seems a poor choice. As
data are spread evenly across all banks, only a small
fraction of references are satisfied by the local bank
while other references may need jump several hops
to access remote L2 banks. Hence, the average L2
access latency is heavily influenced by network
diameter. For triplet-based network, using banked
and shared L2 cache design is worse. Frequent
accessing remote L2 banks will block large mount
of traffic on the links connecting different full-
connected triplets, and the blocked traffic will
introduce more latency due to congestion.
 We think that there are two policies to reduce the
hop count. First, when a thread tries to load a page

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 519 Issue 3, Volume 8, March 2009

into L2 cache, this page should be loaded into the
L2 banks which are close to the core running this
thread. Second, if two or more threads share the
same data, multiple copies should be loaded into
different L2 banks with each copy placed close to its
corresponding core. Besides, we also need to control
the number of data copies properly, otherwise large
number of copies will prick up the inefficient use of
the aggregate L2 cache capacity so as to increase the
number of off-chip accesses.

A valuable idea to reduce the number of remote
L2 accesses is cooperative caching [16]. As most L2
accesses are satisfied by local private L2 cache,
remote L2 accesses are reduced compared with
banked and shared L2 cache design. Moreover, as
L2 caches cooperate caching just like a shared L2
cache, off-chip accesses are also significantly
reduced compared with private L2 cache design.

In this paper, we use group-caching to improve the
performance of 9-node triplet-based network. We
extend private L2 cache in [16] to a cache group
consisting of 3 interleaved banks belonged to the
nodes in the same full-connected triplet. Each cache
group behaves like a shared L2 cache independently
while the cache coherence among cache groups is
maintained by distributed directories implemented
by duplicating the tag architecture of L2 caches. As
most L2 accesses are served by local cache group,
remote L2 accesses are also significantly reduced
compared with banked and shared L2 cache design.
 When the L2 cache write actions occur, the
invalidation messages are also multicasted to the
other cache groups to mark other data copies invalid.
When a L2 cache read access is missed in local
cache group, query messages will be sent to the
other two cache groups to check whether the
accessing data (dirty or clean) is already loaded into
chip. If so, an off-chip memory access is avoided by
directly obtaining the data from another cache group.
As shown in Fig.4, when a L2 cache read miss
occurs in L2 bank C, two query messages will be
simultaneously sent to L2 bank F and L2 bank I to
judge whether carry an off-chip access or not
(because the address of cache group is interleaved
across its 3 cache banks, the data, which can be
cached in L2 bank C, can only be cached in L2 bank
F or L2 bank I).
 As cache group provide more cache blocks to
hold useful data on-chip than single private L2
cache, implementing cache-to-cache transfer of
clean data is enough to reduce off-chip accesses
compared with private L2 cache design. Compared
to cooperative caching [10], group-caching still has
some advantages. Cooperative caching uses Central
Coherence Engine (CCE) to backup the tags of all

private L2 cache and adopts special point-to-point
network to connect CCE and cores. Even if we
ignore the extra cost of special network and the
possible performance bottle-neck of CCE, placing
every core in the same distance to CCE is a hard
work.

L2 bank A
(duplicate tag)

L2 bank B
(duplicate tag)

L2 bank C
(duplicate tag)

L2 bank D
(duplicate tag)

L2 bank E
(duplicate tag)

L2 bank F
(duplicate tag)

L2 bank H
(duplicate tag)

L2 bank I
(duplicate tag)

Processor

L1 cache

Cache group I

Cache group II Cache group III

L2 bank G
(duplicate tag)

3

1

2

Off-chip
memory

4 5

6

Processor attempts read

No data block in cache group I then
send query message to L2 bank F

No data block in cache group I then
send query message to L2 bank I

No data block in cache group II

No data block in cache group III

Read this block from memory

1

2

3

4

5

6

 Fig.4. Group-caching design

6 Experiment
6.1 Experiment Methodology

We use Princeton’s Garnet network simulator [10]
to evaluate the 9-node triplet-based network and
compare it with 2D-MESH. Garnet models the
detailed features of state-of-the-art on-chip networks
and thus is suitable for low-level interconnection
network evaluations. We select fixed-pipeline model
in our experiment. Table 3 lists parameters used by
fixed-pipeline model. Besides, in order to obtain the
practical locality factor, source-destination matrix
is also introduced to trace the number of flits
traversing between nodes.

Table 3 Parameters of Garnet’s fixed-pipeline model

Network configuration Parameters

Flit size 16

Buffer size 4

Pipeline stage 5-stage

VCs per virtual network 4

Number of virtual network 5

Some papers [5] [22] use synthetic batch traffics,

such as uniform random (UR), to evaluate network
performance. However, these benchmarks do not
represent real-life traffics. In this paper, we run
multithreaded commercial benchmarks on multi-
core simulator GEMS [11] to generate practical
traffics. GEMS is a full-system execution-driven

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 520 Issue 3, Volume 8, March 2009

simulator based on Simics [12]. Table 4 lists the
processor and cache/memory configurations used in
GEMS. These parameters are independent of on-
chip network and benchmarks. We create the
network configuration file for 9-node triplet-based
network via the user-defined network interface
provided by GEMS. This configuration file records
the triplet-based topology, the various link latencies
and the link weights which are used by Garnet as
network configuration. We also create the network
configuration file for 9-node 2D-MESH.

Table 4 Processor and cache/memory parameters

Component Parameters

Processor UtraSPARCIII+, single issue

L1 I/D cache 64KB, 4-way, 128 byte/block, 3 cycles

L2 cache bank 2MB, 4-way, 128 byte/block, 12 cycles

Memory bank 1GB, 4KB/page,158 cycles

We use work-related throughput [19] as the metric

to evaluate the network performance and use Orion
[20] to evaluate the network power consumption.
Orion is a power model integrated with Garnet to
evaluate network power consumption using 100nm
technology. The commercial benchmarks used in
experiment include Apache (a static web server
benchmark based on SURGE [13] running on top of
Apache web server), SPECJBB2005 (a java server
benchmark) and OLTP (a scaled down TPC-C
benchmark to capture the performance behavior of
OLTP workloads [18]). Besides, we evaluate the
performance of multiple web servers on single CMP.
These different web servers have the same
configurations as Apache benchmark. Workload
parameters for benchmarks are reported in Table 5.

Table 5 Workloads parameters

Benchmark (transactions) Environment

Apache(10000) 2000files, 90 clients

JBB(20000) SPECjbb2005, 14 warehouses

OLTP(30) IBM DB2, mbenchkit, 10 clients

Multi-Apache(20000) 3 independent web servers

There are two protocols used in our experiment:

MESI_SCMP_bankdirectory protocol (referred as
MESI below) and group-caching protocol. The
former one, which uses banked, shared L2 caches as
directories, is widely used by tiled CMPs while the
latter one is presented to exploit the traffic locality
of 9-node triplet-based network. In order to exploit

traffic locality further, we use process bind API
provided by operating system (here we use Solaris’s
psrset command) to bind different web severs to
each cache group. As shown in Fig.5, three web
severs are bond to different cache groups. Under
such condition, as there is probably no data sharing
among different web servers, almost all L2 cache
accesses are satisfied by its local cache group thus
having more significant traffic locality.

Fig.5 Diagrams of generating traffic locality

6.2 Evaluation
6.2.1 Performance Evaluation

Fig.6 Performance comparisons between triplet-
based network and 2D-MESH

Fig.6 compares the performance between 9-node

2D-MESH and triplet-based network. When using
MESI protocol, the performance of 9-node triplet-
based network is not as good as that of 2D-MESH.
The throughout degradation of SPECJBB is much
more significant that of other benchmarks, which
means SPECJBB is more sensitive to network
latency. However, with the help of group-caching to
exploit locality, triplet-based network increases the
throughout by 3%~11% on Apache, SPECJBB and
OLTP benchmarks compared with 2D-MESH.
Especially, if top-level applications and low-level
architecture can be greatly matched, such as binding
different web servers to each cache group in the

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 521 Issue 3, Volume 8, March 2009

environment of multiple web servers, triplet-based
network achieves more significant improvement,
probably 27% on the throughout compared with 2D-
MESH.

6.2.2 Power Evaluation

Fig.7 Total router power comparisons between 2D-
MESH and triplet-based network

Fig.8 Total link power comparisons between 2D-
MESH and triplet-based network

 Total router power comparisons and total link
power comparisons are shown in Fig.7 and Fig.8.
Both of the power consumptions are normalized to
that of 2D-MESH using MESI protocol. As shown
in the two figures that triplet-based network using
MESI protocol reduces the total router power
consumption by 3%~9% and the total link power
consumption by 4%~6% compared with 2D-MESH.
We think the reason is, as more congestion blocks
the communications between cores, power decreases
as performance decreases. However, the significant
degradation in power consumption (router power
reduced by 13%~16% and link power reduced by
14%~16%) achieved by group-caching protocol
attributes to the reduced hop count.

Fig.9 describes the router power distributions of
2D-MESH and triplet-based network. In 2D-MESH,
the power distribution of routers is quite different
from each other. As shown in Fig.9 (a), the power

consumption of the center node is nearly 1.5 times
than that of the four nodes in the corners. We can
also see from Fig.9 (b) (c) that, the router power
consumption of triplet-based network distributes
more evenly under either MESI or group-caching
protocol. We think that the different router power
consumption probably reflects the loads for routers.
With router load distributed more evenly, triplet-
based network may benefit from the low congestion
inside routers.

(a)

(b)

(C)

Fig.9 Router power distribution comparisons: 2D-
MESH using MESI protocol (a), triplet-based

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 522 Issue 3, Volume 8, March 2009

network using MESI protocol (b) and triplet-based
network group-caching protocol (c)

tency Model Verification

6.2.3 La

atistical and
theoretical average network latencies under MESI

Benchmark
 α latencies latencies

Table 6 Comparisons between st

protocol

Statistical Theoretical Statistical

Apache 0.9676 14.5673 14.8771

SPECJBB 0.

M e 1.

9716 14.5728 14.7773

OLTP 0.9624 14.5601 14.7767

ulti-Apach 0579 14.6865 14.8250

Table 7 Comparisons between statistical and
theoretical average network latencies under group-

Benchmark
α latencies latencies

caching protocol

Statistical Theoretical Statistical

Apache 0.1206 10.0747 10.1898

SPECJBB 0.33

M e 0.

64 11.0674 11.1699

OLTP 0.1704 10.3363 10.3868

ulti-Apach 1907 10.4366 10.4751

We obtain practical locality factor α fr rce-

estination matrix. The practical locality factor α
p

 Related Works
networks utilize low-radix

ESH in the RAW processor

 network itself, some
v

Cheng [23] presented the work that
co

iscussed in
[8

 Conclusion and Future Work
et-based

to

om sou
d

robably equals to 1 for all benchmarks under MESI
protocol while α varies with different benchmarks
under group-caching protocol. We use Equation (1)
and Equation (2) to calculate theoretical average
network latencies and list them in Table 6 and Table
7. As shown in the two tables that the statistical
values approximately match the theoretical values,
while the little differences between them attribute to
the latency caused by contention. Besides, we can
also see from the two tables that, the group-caching
reduces average network latency by 24%~32%
compared with MESI protocol.

7
 Most proposed on-chip
networks such as 2D-M
[1]. In order to reduce network diameter, Balfour
and Dally [6] proposed the use of concentrating
mesh. James [16] also demonstrated how the
flattened butterfly topology can be applied to on-

chip networks to reduce network diameter as well as
network energy consumption.

Except for improving on-chip
aluable designs were also presented to reduce hop

count by improving cache management. A hybrid of
private, per-processor tag arrays and a shared data
array was used to implement controlled replication,
in-situ communication and capacity steeling in [17].
Jichuan Chang used private L2 cache and all private
L2 caches cooperate caching just like a shared L2
cache in [16]. As the frequently-accessed data is
held close to the requestor in the two designs, the
number of remote L2 accesses is significantly
reduced.

Liqun
mbined efforts on both network design and cache

management to improve the performance of CMPs.
They proposed an interconnection composed of
wires with varying latency, bandwidth, and energy
characteristics, and advocate intelligently mapping
coherence operations to the appropriate wires. We
also try to achieve performance improvement as
well as energy degradation through the combination
of triplet-based network and group-caching design.
Soteriou [21] presented the work that modeled on-
chip network traffic based on real-life traffic traces
obtained from full system simulations of three
different CMP architectures. In its empirically-
derived model, they derive the hop count
distribution model on the assumption that an
optimal mapping should place communicating
nodes as close as possible. However, such optimal
mapping is hard to implement in reality.

Diagonal routing technologies were d
] [9]. Diagonal routing with X-architecture, which

uses diagonal routing in 45 and 135 degree
directions, was reported in [8]. It was reported that
the path delay improved by 19.8% and the area
reduced by about 10% by applying diagonal routing
in conjunction with conventional Manhattan routing
in horizontal and vertical directions. In another
routing model, Y-architecture based on 0, 60 and
120 degree directions was proposed [9].

8

In this paper, we propose the use of tripl
pology in on-chip interconnection networks. Like

most low-radix networks, triplet-based network has
the same advantages such as low area cost and the
same disadvantages such as low performance due to
long diameters. According to our average network
latency model, if most traffic concentrates in each
group, the performance of triplet-based network will
benefit from the reduced hop count. Thus, we
propose group-caching to exploit the traffic locality

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 523 Issue 3, Volume 8, March 2009

of 9-node triplet-based network. Our experiment
results show that, with the help of group-caching
protocol, triplet-based network increases work-
related throughput by 3%~11% and reduces average
network latency by 24%~32% compared with 2D-
MESH, with total router power consumption
reduced by 13%~16% and total link power
consumption reduced by 14%~16%. Furthermore, if
top-level applications and low-level architecture can
be greatly matched, such as binding independent
tasks to different cache groups, triplet-based
network will achieve more significant improvement
on performance and power.

Our future work focuses on the following three
as

erage network latency model presented in
S

ng in horizontal and vertical
d

D-MESH to exploit
tr

cknowledgement
 supported by Beijin

K

eferences:
M.B.; Psota, J.; A.; Shnidman, N.;

 Sankaralingam, K.;
Hanson, H.; Shivakumar, P.; Keckler, S.W.;

nnect for a

ttina,

Chip

MP on-chip networks”, the

ithm in Triple-Based Hierarchical

onnect Architecture and Its Application to

l R. Marty, Min Xu,

berg, J.; Larsson, F.;

b workloads for network and

pects:
The av
ection 4 only gives the estimation of static average

network latency without taking congestion into
account. Thus, when traffic load increase sharply,
this model can not work well. Thus, our first work is
adjusting the average network latency model to
overload environment.

As conventional routi
irections leads to various link latencies for triplet-

based network, we consider using Y-architecture [9]
to do “perfect” mapping for triplet-based topology.
Thus, our second work is evaluating the perfect-
mapped triplet-based network.

We note the potential of 2
affic locality. Based on the group conception, the

basic component constructing 2D-MESH is a 4-
node rectangle with one extra hop count required for
the traffic between the nodes locating diagonally
(neighbor nodes in a rectangle need 2 hops). Our
third work is to evaluate the potential of 2D-MESH
to exploit traffic locality and compare it with triplet-
based network.

A

This paper is partially g
Alaey Discipline Program

R
[1] Taylor,

Strumpen, V.; Frank, M.; Amarasinghe, S.;
Agarwal, A.; Lee, W.; Miller, J.; Wentzlaff, D.;
Bratt, I.; Greenwald, B.; Hoffmann, H.;
“Evaluation of the Raw microprocessor: an
exposed-wire-delay architecture for ILP and
streams”, 31st Annual International Symposium
on Computer Architecture, 2004. Proceedings.
June 2004 Page(s):2 – 13.

[2] Gratz, P.; Changkyu Kim;
 serv

“On-Chip Interconnection Networks of the
TRIPS Chip”, Micro, IEEE Volume 27, Issue
5, Sept.-Oct. 2007 Page(s):41 - 50.

[3] Hoskote, Y.; Vangal, S.; Singh, A.; Borkar, N.;
Borkar, S.; “A 5-GHz Mesh Interco
Teraflops Processor Micro”, IEEE Volume 27,
Issue 5, Sept.-Oct. 2007 Page(s):51 – 61.

[4] Wentzlaff, D.; Griffin, P.; Hoffmann, H.;
Liewei Bao; Edwards, B.; Ramey, C.; Ma
M.; Chyi-Chang Miao; Brown, J.F.; Agarwal,
A.; “On-Chip Interconnection Architecture of
the Tile Processor” Micro, IEEE Volume 27,
Issue 5, Sept.-Oct. 2007 Page(s):15 – 31.

[5] Kim, John; Balfour, James; Dally, William;
“Flattened Butterfly Topology for On-
Networks” Annual IEEE/ACM International
Symposium on Micro architecture, 2007.
Page(s):172 – 182.

[6] Balfour, James; Dally, William J.; “Design
tradeoffs for tiled C
International Conference on Supercomputing,
Proceedings of the 20th Annual International
Conference on Supercomputing, 2006, p 187-
198.

[7] Qiao Baojun; Shi Feng; “A New Routing
Algor
Interconnection Network”, First International
Conference on Innovative Computing,
Information and Control, 2006. Page(s):725 –
728.

[8] I. Mutsunori, T. Mitsuhashi, et al “A Diagonal-
Interc
RISC Core Deisgn” ISSCC, pp. 684-689, 2002.

[9] H. Chen, B. Yao, et al, “The Y-Architecture:
Yet Another On-Chip Interconnect Solution”
ASPDAC, pp. 840-846, 2003.

[10] http://www.princeton.edu/~niketa/publications/
garnet-tech-report.pdf.

[11] Milo M.K. Martin, Daniel J. Sorin, Bradford
M. Beckmann, Michae

a R. Alameldeen, Kevin E. Moore, Mark D.
Hill, and David A. Wood “Multifacet's General
Execution-driven Multiprocessor Simulator
(GEMS) Toolset”, Computer Architecture
News, September 2005.

[12] P.S.; Christensson, M.; Eskilson, J.; Forsgren,
D.; Hallberg, G.; Hog
Moestedt, A.; Werner, B.; “Simics: A full
system simulation platform Magnusson”
Computer Volume 35, Issue 2, Feb. 2002
Page(s):50 – 58.

[13] Paul Barford; Mark Crovella; “Generating
representative We

er performance evaluation”, the 1998 ACM
SIGMETRICS joint international conference on

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 524 Issue 3, Volume 8, March 2009

Measurement and modeling of computer
systems table of contents Madison, Wisconsin,
United States Pages: 151 – 160.

[14] Barroso, L.A.; Gharachorloo, K.; McNamara,
R.; Nowatzyk, A.; Qadeer, S.; Sano, B.; Smith,

 Sparc processor” Micro,

hip Multiprocessors” 33rd

nch: Fast and Accur

ore, M. Xu, D. J. Sorin, M. D.

erformance

ip packet-switched

R.; “Interconnect-Aware

S.; “Piranha: a scalable architecture based on
single-chip multiprocessing” 27th International
Symposium on Computer Architecture, 2000
Page(s):282 - 293

[15] Kongetira, P.; Aingaran, K.; “Niagara: a 32-
way multithreaded
IEEE Volume 25, Issue 2, March-April 2005
Page(s):21 – 29

[16] Jichuan Chang; Sohi, G.S.; “Cooperative
Caching for C
International Symposium on Computer
Architecture, 2006. 2006 Page(s):264 – 276

[17] Chishti, Z.; Powell, M.D.; Vijaykumar, T.N.;
“Optimizing replication, communication, and in
capacity allocation in CMPs” International
Symposium on Computer Architecture, 2005.
Page(s):357 - 368

[18] Minglong Shao, Anastassia Ailamaki, Babak
Falsafi. “DBmbe ate C
Database Workload Representation on Modern
Microarchitecture” Conference of the Centre
for Advanced Studies on Collaborative
Research 2005.

[19] A. R. Alameldeen, M. M. K. Martin, C. J.
Mauer, K. E. Mo
Hill, and D. A. Wood. “Simulating a $2M
commercial server on a $2K PC”, IEEE
Computer 36(2):50–57, Feb. 2003.

[20] Hang-Sheng Wang; Xinping Zhu; Li-Shiuan
Peh; Malik, S.; “Orion: a power-p
simulator for interconnection networks” 35th
Annual IEEE/ACM International Symposium
on Microarchitecture, 2002 Page(s):294 - 305

[21] Soteriou, V.; Hangsheng Wang; “A Statistical
Traffic Model for On-Chip Interconnection
Networks” 14th IEEE International Symposium
on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems,
2006 Page(s):104 – 116.

[22] Guerrier, P.; Greiner, A.; “A generic
architecture for on-ch

terconnections” Design, Automation and Test
in Europe Conference and Exhibition, 2000,
Page(s):250 – 256.

[23] Liqun Cheng; Muralimanohar, N.; Ramani, K.;
Balasubramonian,

oherence Protocols for Chip Multiprocessors”
33rd International Symposium on Computer
Architecture, 2006 Page(s):339 – 351.

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 525 Issue 3, Volume 8, March 2009

