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Abstract: - Most CMPs use on-chip network to connect cores and tend to integrate more simple cores on a 
single die. As the number of cores increases, on-chip network will play an important role in the performance of 
future CMPs. Due to the tradeoff between the performance and area constraint in on-chip network designs, we 
propose the use of triplet-based topology in on-chip interconnection networks and demonstrate how a 9-node 
triplet-based topology can be mapped to on-chip network. By using group-caching protocol to exploit traffic 
locality, triplet-based topology achieve lower latency and energy consumption than 2D-MESH. We run 
multithreaded commercial benchmarks on multi-core simulator GEMS to generate practical traffics and 
simulate these traffics on network simulator Garnet. Our experiment results show that triplet-based network can 
increase the work-related throughput by 3%~11% and reduce average network latency by 24%~32% compared 
with 2D-MESH, with the router energy consumption reduced by 13%~16% and the link energy consumption 
reduced by 14%~16%. 
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1 Introduction 

In order to utilize the increasing number of 
transistors available in modern VLSI technology, 
processor designs tend to integrate more simple 
cores instead of complicated processor on a single 
die. As the number of cores increases in CMPs, on-
chip networks are widely used to provide efficient 
communication between cores. 

There are two different ways to implement on-
chip network. One is to use low-radix networks, 
such as 2D-MESH found in the RAW processor [1], 
the TRIPS processor [2], Intel’s Teraflops [3] and 
the Tile64 processor [4]. With simple topologies, 
low-radix networks can be mapped to on-chip 
network with compact physical layout using 
conventional Manhattan routing in horizontal and 
vertical directions. Especially in tiled CMP designs, 
the longest wire in the system is no greater than the 
length or width of a tile [1]. Although low-radix 
networks can be mapped efficiently, they lead to 
several disadvantages such as high network latency 
caused by long diameter. The other is to use high-
radix networks, such as butterfly network [5]. With 
shorter network diameters, high-radix networks can 
achieve the improvement on network latency and 
energy consumption by reducing hop count between 
cores. However, wiring requirements of high-radix 
networks complicate physical layout which leads to 
higher area cost [6]. We think that using high-radix 

networks may not be a cost-effective way, while 
exploiting traffic locality on low-radix network can 
achieve both goals in performance and area cost. 
Thus, we propose the use of triplet-based topology 
in on-chip interconnection networks and describe 
how triplet-based network can achieve performance 
improvement and energy consumption degradation 
with the help of group-caching protocol. 

This paper is organized as follows. In Section 2, 
we describe triplet-based topology and its routing 
algorithm. Section 3 demonstrates how a 9-node 
triplet-based topology can be mapped to on-chip 
network and discusses the impact of various link 
latencies on routing algorithms. Average network 
latency model as well as static link load model is 
proposed for triplet-based network in Section 4. 
Group-caching protocol is presented in Section 5. 
We evaluate triplet-based network and compare it 
with 2D-MESH in Section 6. Related work is 
discussed in Section 7 and we conclude in Section 8.  
 
 
2 Triplet-based Topology and its New 
Routing Algorithm 

The basic component of triplet-based topology 
[7] is a full-connected triplet which consists of three 
nodes connecting with each other directly. As 
shown in Fig.1, three full-connected triplets form a 
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9-node network while larger networks can be 
implemented by replacing each node with a full-
connected triplet iteratively. The node degree of 
triplet-based topology is 3 while that of 2D-MESH 
is 4. As buffers occupy approximately 60~80% of 
router area [4] [6], triplet-based network consumes 
less router area than 2D-MESH due to fewer buffers 
needed by its lower node degree. Besides, the router 
energy consumption of triplet-based network also 
benefits from low node degree. 

 
   (a)               (b)                                 (c) 

Fig.1 Triplet-based topology 
 

The basic routing algorithm presented in paper [7] 
is described as follows: 

1. If node X and node Y locate in the same full-
connected triplet, the minimal path from node X to 
node Y is X—Y. 

2. If node X and node Y locate in the same sub-
network consisting of 3K-1 full-connected triplets 
and locate in the different sub-networks consisting 
of 3K-2 full-connected triplets, packets from node X 
to node Y chooses the minimal path, referred as 
MIN(X—Y1), to enter the sub-network which node 
Y locates, then choose the minimal path, referred as 
MIN(Y1—Y), to traverse to node Y. Y1 is the first 
node that packets from the sub-network which node 
X locates to the sub-network which node Y locates 
will pass. 

3. Repeat step 2 iteratively to implement routing 
for MIN(X—Y1) and MIN(Y1—Y). 

Although the basic routing algorithm is efficient, 
there are still some disadvantages it. First, the basic 
routing algorithm is not a minimal routing algorithm 
due to its non-global decision. For example, because 
node I and node R locate in the two neighbouring 9-
node sub-networks, the basic routing algorithm will 
choose I—H—F—E—J—L—P—R as the path 
from node I to node R while the minimal path from 
node I to node R is I—S—T—V—W—R. Although 
the difference existed between the basic routing 
algorithm and minimal routing algorithm is very 
tiny [7], it still has negative impact on network 
performance. Second, the basic routing algorithm 
does not take deadlock into account.  

In order to solve the non-minimal problem of the 
basic routing algorithm, we introduce the use of the 
transition node. When node X need send a packet to 

node Y, we insert the transition node Z, which 
locates in the shortest path, into the packet (the 
transition node is calculated beforehand and stored 
in each node). The routing process from node X to 
Y is divided into two parts, node X to Z and node Z 
to Y. For example, as shown in Fig.1, when node I 
send packets to node R, we choose node S as the 
transition node and insert it into packets. Packets 
from node I to node R are first transferred to node S 
with the help of the basic routing algorithm and then 
transferred to node R. The benefits of these changes 
are obvious: it almost inherits all the advantages of 
the basic algorithm, such as the low complexity of 
router design and the fast routing process (normal 
table-based algorithm need read rout table in each 
node and the basic routing algorithm will not), while 
implementing the minimal routing. 

In order to solve the deadlock problem, we assign 
different weights to the links in different directions 
and change the basic routing algorithm as follows: 
during the route computation phase, if there are two 
minimal paths, the output link with the minimal 
weight is selected. As shown in Fig.2, the links in 0 
degree direction are assigned weight 3, links in 60 
degree direction are assigned weight 4 and links in 
120 degree direction are assigned weight 5. 
Although there are two shortest paths F—D—B—C 
and F—H—G—C from node F to node C, packets 
from node F to node C will be first sent to node H 
because the weight of F—H is lighter than F—D, 
then choose path H—G—C to arrive node C. 
According to the same analysis, packets from node 
C to node F will be first sent to node B, then choose 
path B—D—F to arrive node F. By combining the 
above rules and virtual channel technique, deadlock 
will not occur in the ring B—C—G—H—G—D—B. 

 

Fig.2 Link weight assignment of the 9-node triplet-
based topology 

 
We should note that the basic routing algorithm is 

based on the assumption that all links have the same 
latency. However, when mapping triplet-based 
topology to on-chip network using conventional 
routing in horizontal and vertical directions, some 
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links will have higher latencies than others thus the 
minimal paths which we define according to 
topology will be changed. We discuss the impact of 
various link latencies on routing algorithm in the 
next Section. 
 
 
3 Mapping Triplet-based Topology to 

onal routing techniques [8] 
[9

On-chip Network 
Although there are diag
] which can be used to map triplet-based topology 

more efficiently, we still adopt conventional routing 
in horizontal and vertical directions since physical 
implement as well as area cost evaluation of triplet-
based network is not the topic concerned by this 
paper. Fig.3 (a) describes how a 9-node triplet-based 
topology can be mapped to on-chip network in tiled 
CMPs. The nodes locating in a full-connected triplet 
are placed vertically in a row, while the links 
connecting full-connected triplets are placed 
horizontally. Fig.3 (b) describes the physical layout 
of 2D-MESH. The area costs of triplet-based 
network is close to that of 2D-MESH though the 
former’s layout is a little more complicated than the 
latter’s. 
 

       
(a)                                    (b) 

Fig.3 Ph  triplet-

As shown in Fig.3, th
tile 

       
ysical layout comparison between

based network and 2D-MESH 
 
e wires between tile A and 

C have almost twice the length of those between 
tile A and tile B. Although we can reduce the 
adverse impact of long wires on performance by 
inserting repeaters or pipeline registers into the 
longer wires [6], the impact of various wire 
latencies on routing algorithm still exists. We made 
the following changes to the basic routing algorithm 
presented in Section 2. The first is that the minimal 
path from tile F to tile C is changed from path F—
H—G—C to path F—D—B—C because long wires 
between tile G and tile C add more latency to path 
F—H—G—C. The second is that the minimal path 
from tile B to tile H is changed from B—C—G—H 
to B—D—F—H. 

4 Traffic Models for Triplet-based 
Network 

 We assume that each node has the opportunity to 
communicate with any other node in our model. 
Parameter p (0<p<1) is used to denote acceptance 
probability with which a node will receive the 
packet from other nodes in the same full-connected 
network. In order to analyze the impact of locality 
on network traffic, we introduce locality factor α 
(0<α≤1). If node X and node Y locate in the same 
sub-network which consists of 3K-1 full-connected 
triplets and locate in the different sub-networks 
which consist of 3K-2 full-connected triplets, the 
acceptance probability of node Y to receive the 
packet from node X is p*αK-1.  
 In most CMP designs, the network traffic is used 
to maintain the cache coherence, such as the cache 
coherence between L1 and L1 (protocol dependent), 
between L1 and L2, between L2 and L2 (protocol 
dependent) and the cache coherence between L2 and 
memory. As the interleaving technique is applied to 
both shared L2 banks and shared memory banks, the 
traffic frequencies for nodes are almost the same in 
the case of the same load for each node. α =1 means 
all nodes in the network have the same acceptance 
probability which probably matches the traffic 
pattern under banked and shared L2 cache design. 
 
4.1 Average Network Latency Model 

According to the physical layout described by 
Fig.3 (a), we set the latency of short wires to 1 cycle 
and set the latency of long wires to 2 cycles. 
According to the configuration of network simulator 
present in Section 6, router latency is set to 4 cycles. 
Table 1 lists the zero-load latency between nodes 
according to the updated basic routing algorithm 
presented in Section 3. 

Table 1 Zero-load latency between nodes according 
to the updated basic routing algorithm 

 A B C D E F G H I 

A XX 9 10 14 19 19 16 22 21 

B 9 XX 9 9 14 14 15 19 20 

C 10 9 XX 14 19 19 10 16 15 

D 14 9 14 XX 9 9 20 14 19 

E 19 14 19 9 XX 10 21 15 20 

F 15 14 19 9 10 XX 15 9 14 

G 16 15 10 20 21 15 XX 10 9 

H 22 19 16 14 15 9 10 XX 9 

I 21 20 15 19 20 14 9 9 XX 

WSEAS TRANSACTIONS on COMPUTERS Wang Zuo, Zuo Qi, Li Jiaxin

ISSN: 1109-2750 518 Issue 3, Volume 8, March 2009



 Based on the assumption that each node probably 
rejects the same number of flits into network and 
each node’s outgoing messages are equal to its 
coming messages, the average zero-load network 
latency of 9-node triplet-based network is depicted 
as follows: 
 
 3 199 9 279 averageL α

α
+ ×
+ ×+=  (1) 

According to Equation (1), network latency will 
benefit from traffic locality. The lowest network 
latency between nodes is 9 cycles which probably 
matches the latency between the nodes in the same 
full-connected triplet. It is worth mentioning that 
Equation (1) is based on the assumption that each 
node has the opportunity to communicate with any 
other node in the network. However, as described in 
paper [21] that a type of packets may only have a 
limited selection of receivers among all nodes in 
reality, thus Equation (1) needs some changes to 
adapt real-life traffics. For example, according to 
the group-caching protocol presented in the next 
Section, each node only communicates with the 
nodes in the same full-connected triplet and the 
nodes locating in the same place of different full-
connected triplets (node A, node D and node G 
locate in the same place of different full-connected 
triplets). Under such condition, Equation (1) needs 
to be modified as: 

 

 3 65 9 99 averageL α
α

+ ×
+ ×+=  (2) 

 
4.2 Link Load Model 

In Equation (3), we define the load of a link as a 
sum of messages passing this link. Table 2 lists the 
9-node network link load distribution based on 
Equation (3) and the updated basic routing 
algorithm presented in Section 3. 

 

  (3)   (
1

= pass link j
X Y

n

j N
i

T T
⎯⎯⎯⎯⎯→

=
∑ )N

Taking link C—B as an example, because the 
minimal path between node C and node F is C—
B—D—F, the communications between the two 
nodes will inject α*t messages to link C—B during 
time t. By analogy, we calculate the messages 
injected by the communications between node C 
and node D, node C and node E, node A and node D, 
node A and node E, node A and node F during time 

t, then add up all the messages. As shown in table 2, 
the traffic load of link C—B is p*(1+5*α)*t. 

Table 2  9-node triplet-based network link load 
distribution 

Link ID load  Link ID load 

A-B B-A A-C C-A 1+3*α  F-D 1+7*α 

D-E E-D E-F F-E 1+3*α  G-C 8*α 

G-I I-G H-I I-H 1+3*α  C-G F-H 9*α 

H-G 1+4*α  B-D H-F 10*α 

G-H C-B 1+5*α  D-B 11*α 

B-C D-F 1+6*α  — — 

 
We can see from Table 2 that if there no locally 

distributed traffics (α = 1), the load of links between 
full-connect networks will be 2 times higher than 
that of links in full-connect networks; if traffics are 
distributed locally in each full-connect network, for 
example α = 0.5, the link load distribution will be 
more symmetrical. We can also see from table 2 that 
the revised minimal routing algorithm discussed in 
Section 3 makes traffics concentrate on some links. 
For example, the load of link D—B is a much 
heavier than that of G—C. The impact of the revised 
minimal routing algorithm on link load distribution 
will be also alleviated as α value decreases. 

 
 

5 Group-Caching for Triplet-based 
Network 
 Banked and shared L2 cache design is a good 
choice to minimize the number of off-chip accesses 
when the latency of accessing remote L2 banks is 
not significant [16]. For example, [14] and [15] use 
low latency crossbar to connect distributed L2 banks. 
However, if we use low-radix networks, such as 2D-
MESH, as the connection substrate, banked and 
shared L2 cache design seems a poor choice. As 
data are spread evenly across all banks, only a small 
fraction of references are satisfied by the local bank 
while other references may need jump several hops 
to access remote L2 banks. Hence, the average L2 
access latency is heavily influenced by network 
diameter. For triplet-based network, using banked 
and shared L2 cache design is worse. Frequent 
accessing remote L2 banks will block large mount 
of traffic on the links connecting different full-
connected triplets, and the blocked traffic will 
introduce more latency due to congestion. 
 We think that there are two policies to reduce the 
hop count. First, when a thread tries to load a page 
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into L2 cache, this page should be loaded into the 
L2 banks which are close to the core running this 
thread. Second, if two or more threads share the 
same data, multiple copies should be loaded into 
different L2 banks with each copy placed close to its 
corresponding core. Besides, we also need to control 
the number of data copies properly, otherwise large 
number of copies will prick up the inefficient use of 
the aggregate L2 cache capacity so as to increase the 
number of off-chip accesses. 

A valuable idea to reduce the number of remote 
L2 accesses is cooperative caching [16]. As most L2 
accesses are satisfied by local private L2 cache, 
remote L2 accesses are reduced compared with 
banked and shared L2 cache design. Moreover, as 
L2 caches cooperate caching just like a shared L2 
cache, off-chip accesses are also significantly 
reduced compared with private L2 cache design. 

In this paper, we use group-caching to improve the 
performance of 9-node triplet-based network. We 
extend private L2 cache in [16] to a cache group 
consisting of 3 interleaved banks belonged to the 
nodes in the same full-connected triplet. Each cache 
group behaves like a shared L2 cache independently 
while the cache coherence among cache groups is 
maintained by distributed directories implemented 
by duplicating the tag architecture of L2 caches. As 
most L2 accesses are served by local cache group, 
remote L2 accesses are also significantly reduced 
compared with banked and shared L2 cache design. 
 When the L2 cache write actions occur, the 
invalidation messages are also multicasted to the 
other cache groups to mark other data copies invalid. 
When a L2 cache read access is missed in local 
cache group, query messages will be sent to the 
other two cache groups to check whether the 
accessing data (dirty or clean) is already loaded into 
chip. If so, an off-chip memory access is avoided by 
directly obtaining the data from another cache group. 
As shown in Fig.4, when a L2 cache read miss 
occurs in L2 bank C, two query messages will be 
simultaneously sent to L2 bank F and L2 bank I to 
judge whether carry an off-chip access or not 
(because the address of cache group is interleaved 
across its 3 cache banks, the data, which can be 
cached in L2 bank C, can only be cached in L2 bank 
F or L2 bank I). 
 As cache group provide more cache blocks to 
hold useful data on-chip than single private L2 
cache, implementing cache-to-cache transfer of 
clean data is enough to reduce off-chip accesses 
compared with private L2 cache design. Compared 
to cooperative caching [10], group-caching still has 
some advantages. Cooperative caching uses Central 
Coherence Engine (CCE) to backup the tags of all 

private L2 cache and adopts special point-to-point 
network to connect CCE and cores. Even if we 
ignore the extra cost of special network and the 
possible performance bottle-neck of CCE, placing 
every core in the same distance to CCE is a hard 
work. 
 

L2 bank A 
(duplicate tag)

L2 bank B 
(duplicate tag)

L2 bank C 
(duplicate tag)

L2 bank D 
(duplicate tag)

L2 bank E 
(duplicate tag)

L2 bank F 
(duplicate tag)

L2 bank H 
(duplicate tag)

L2 bank I 
(duplicate tag)

Processor 

L1 cache

Cache group I

Cache group II Cache group III

L2 bank G 
(duplicate tag)

3

1

2

Off-chip 
memory

4 5

6

Processor attempts read

No data block in cache group I then 
send query message to L2 bank F

No data block in cache group I then 
send query message to L2 bank I

No data block in cache group II

No data block in cache group III

Read this block from memory

1

2

3

4

5

6

 
 Fig.4. Group-caching design 

 
 
6 Experiment 
6.1 Experiment Methodology 

We use Princeton’s Garnet network simulator [10] 
to evaluate the 9-node triplet-based network and 
compare it with 2D-MESH. Garnet models the 
detailed features of state-of-the-art on-chip networks 
and thus is suitable for low-level interconnection 
network evaluations. We select fixed-pipeline model 
in our experiment. Table 3 lists parameters used by 
fixed-pipeline model. Besides, in order to obtain the 
practical locality factor, source-destination matrix 
is also introduced to trace the number of flits 
traversing between nodes. 

Table 3 Parameters of Garnet’s fixed-pipeline model 

Network configuration Parameters 

Flit size 16 

Buffer size 4 

Pipeline stage 5-stage 

VCs per virtual network 4 

Number of virtual network 5 

 
Some papers [5] [22] use synthetic batch traffics, 

such as uniform random (UR), to evaluate network 
performance. However, these benchmarks do not 
represent real-life traffics. In this paper, we run 
multithreaded commercial benchmarks on multi-
core simulator GEMS [11] to generate practical 
traffics. GEMS is a full-system execution-driven 
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simulator based on Simics [12]. Table 4 lists the 
processor and cache/memory configurations used in 
GEMS. These parameters are independent of on-
chip network and benchmarks. We create the 
network configuration file for 9-node triplet-based 
network via the user-defined network interface 
provided by GEMS. This configuration file records 
the triplet-based topology, the various link latencies 
and the link weights which are used by Garnet as 
network configuration. We also create the network 
configuration file for 9-node 2D-MESH. 

Table 4 Processor and cache/memory parameters 

Component Parameters 

Processor UtraSPARCIII+, single issue 

L1 I/D cache 64KB, 4-way, 128 byte/block, 3 cycles 

L2 cache bank 2MB, 4-way, 128 byte/block, 12 cycles 

Memory bank 1GB, 4KB/page,158 cycles 

 
We use work-related throughput [19] as the metric 

to evaluate the network performance and use Orion 
[20] to evaluate the network power consumption. 
Orion is a power model integrated with Garnet to 
evaluate network power consumption using 100nm 
technology. The commercial benchmarks used in 
experiment include Apache (a static web server 
benchmark based on SURGE [13] running on top of 
Apache web server), SPECJBB2005 (a java server 
benchmark) and OLTP (a scaled down TPC-C 
benchmark to capture the performance behavior of 
OLTP workloads [18]). Besides, we evaluate the 
performance of multiple web servers on single CMP. 
These different web servers have the same 
configurations as Apache benchmark. Workload 
parameters for benchmarks are reported in Table 5. 

Table 5 Workloads parameters 

Benchmark (transactions) Environment 

Apache(10000) 2000files, 90 clients 

JBB(20000) SPECjbb2005, 14 warehouses  

OLTP(30) IBM DB2, mbenchkit, 10 clients 

Multi-Apache(20000) 3 independent web servers 

 
There are two protocols used in our experiment: 

MESI_SCMP_bankdirectory protocol (referred as 
MESI below) and group-caching protocol. The 
former one, which uses banked, shared L2 caches as 
directories, is widely used by tiled CMPs while the 
latter one is presented to exploit the traffic locality 
of 9-node triplet-based network. In order to exploit 

traffic locality further, we use process bind API 
provided by operating system (here we use Solaris’s 
psrset command) to bind different web severs to 
each cache group. As shown in Fig.5, three web 
severs are bond to different cache groups. Under 
such condition, as there is probably no data sharing 
among different web servers, almost all L2 cache 
accesses are satisfied by its local cache group thus 
having more significant traffic locality. 

 

Fig.5 Diagrams of generating traffic locality 

 
6.2 Evaluation 
6.2.1 Performance Evaluation 

 

Fig.6 Performance comparisons between triplet-
based network and 2D-MESH 

   
Fig.6 compares the performance between 9-node 

2D-MESH and triplet-based network. When using 
MESI protocol, the performance of 9-node triplet-
based network is not as good as that of 2D-MESH.  
The throughout degradation of SPECJBB is much 
more significant that of other benchmarks, which 
means SPECJBB is more sensitive to network 
latency. However, with the help of group-caching to 
exploit locality, triplet-based network increases the 
throughout by 3%~11% on Apache, SPECJBB and 
OLTP benchmarks compared with 2D-MESH. 
Especially, if top-level applications and low-level 
architecture can be greatly matched, such as binding 
different web servers to each cache group in the 
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environment of multiple web servers, triplet-based 
network achieves more significant improvement, 
probably 27% on the throughout compared with 2D-
MESH. 

 
6.2.2 Power Evaluation 
 

 

Fig.7 Total router power comparisons between 2D-
MESH and triplet-based network 

 

Fig.8 Total link power comparisons between 2D-
MESH and triplet-based network 

 
  Total router power comparisons and total link 
power comparisons are shown in Fig.7 and Fig.8. 
Both of the power consumptions are normalized to 
that of 2D-MESH using MESI protocol. As shown 
in the two figures that triplet-based network using 
MESI protocol reduces the total router power 
consumption by 3%~9% and the total link power 
consumption by 4%~6% compared with 2D-MESH. 
We think the reason is, as more congestion blocks 
the communications between cores, power decreases 
as performance decreases. However, the significant 
degradation in power consumption (router power 
reduced by 13%~16% and link power reduced by 
14%~16%) achieved by group-caching protocol 
attributes to the reduced hop count. 

Fig.9 describes the router power distributions of 
2D-MESH and triplet-based network. In 2D-MESH, 
the power distribution of routers is quite different 
from each other. As shown in Fig.9 (a), the power 

consumption of the center node is nearly 1.5 times 
than that of the four nodes in the corners. We can 
also see from Fig.9 (b) (c) that, the router power 
consumption of triplet-based network distributes 
more evenly under either MESI or group-caching 
protocol. We think that the different router power 
consumption probably reflects the loads for routers. 
With router load distributed more evenly, triplet-
based network may benefit from the low congestion 
inside routers. 

 

(a) 

 

(b) 

 

(C) 

Fig.9 Router power distribution comparisons: 2D-
MESH using MESI protocol (a), triplet-based 
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network using MESI protocol (b) and triplet-based 
network group-caching protocol (c) 

tency Model Verification 
 
6.2.3 La

atistical and 
theoretical average network latencies under MESI 

Benchmark 
 α latencies latencies 

Table 6 Comparisons between st

protocol 

Statistical Theoretical Statistical 

Apache 0.9676 14.5673 14.8771 

SPECJBB 0.

M e 1.

9716 14.5728 14.7773 

OLTP 0.9624 14.5601 14.7767 

ulti-Apach 0579 14.6865 14.8250 

 

Table 7 Comparisons between statistical and 
theoretical average network latencies under group-

Benchmark 
α latencies latencies 

caching protocol 

Statistical Theoretical Statistical 

Apache 0.1206 10.0747 10.1898 

SPECJBB 0.33

M e 0.

64 11.0674 11.1699 

OLTP 0.1704 10.3363 10.3868 

ulti-Apach 1907 10.4366 10.4751 

 
We obtain practical locality factor α fr rce-

estination matrix. The practical locality factor α 
p

 Related Works 
networks utilize low-radix 

ESH in the RAW processor 

 network itself, some 
v

Cheng [23] presented the work that 
co

iscussed in 
[8

 Conclusion and Future Work 
et-based 

to

om sou
d

robably equals to 1 for all benchmarks under MESI 
protocol while α varies with different benchmarks 
under group-caching protocol. We use Equation (1) 
and Equation (2) to calculate theoretical average 
network latencies and list them in Table 6 and Table 
7. As shown in the two tables that the statistical 
values approximately match the theoretical values, 
while the little differences between them attribute to 
the latency caused by contention. Besides, we can 
also see from the two tables that, the group-caching 
reduces average network latency by 24%~32% 
compared with MESI protocol. 
 
 
7
  Most proposed on-chip 
networks such as 2D-M
[1]. In order to reduce network diameter, Balfour 
and Dally [6] proposed the use of concentrating 
mesh. James [16] also demonstrated how the 
flattened butterfly topology can be applied to on-

chip networks to reduce network diameter as well as 
network energy consumption.  

Except for improving on-chip
aluable designs were also presented to reduce hop 

count by improving cache management. A hybrid of 
private, per-processor tag arrays and a shared data 
array was used to implement controlled replication, 
in-situ communication and capacity steeling in [17]. 
Jichuan Chang used private L2 cache and all private 
L2 caches cooperate caching just like a shared L2 
cache in [16]. As the frequently-accessed data is 
held close to the requestor in the two designs, the 
number of remote L2 accesses is significantly 
reduced. 

Liqun 
mbined efforts on both network design and cache 

management to improve the performance of CMPs. 
They proposed an interconnection composed of 
wires with varying latency, bandwidth, and energy 
characteristics, and advocate intelligently mapping 
coherence operations to the appropriate wires. We 
also try to achieve performance improvement as 
well as energy degradation through the combination 
of triplet-based network and group-caching design. 
Soteriou [21] presented the work that modeled on-
chip network traffic based on real-life traffic traces 
obtained from full system simulations of three 
different CMP architectures. In its empirically-
derived model, they derive the hop count 
distribution model on the assumption that an 
optimal mapping should place communicating 
nodes as close as possible. However, such optimal 
mapping is hard to implement in reality. 

Diagonal routing technologies were d
] [9]. Diagonal routing with X-architecture, which 

uses diagonal routing in 45 and 135 degree 
directions, was reported in [8]. It was reported that 
the path delay improved by 19.8% and the area 
reduced by about 10% by applying diagonal routing 
in conjunction with conventional Manhattan routing 
in horizontal and vertical directions. In another 
routing model, Y-architecture based on 0, 60 and 
120 degree directions was proposed [9]. 
 
8

In this paper, we propose the use of tripl
pology in on-chip interconnection networks. Like 

most low-radix networks, triplet-based network has 
the same advantages such as low area cost and the 
same disadvantages such as low performance due to 
long diameters. According to our average network 
latency model, if most traffic concentrates in each 
group, the performance of triplet-based network will 
benefit from the reduced hop count. Thus, we 
propose group-caching to exploit the traffic locality 
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of 9-node triplet-based network. Our experiment 
results show that, with the help of group-caching 
protocol, triplet-based network increases work-
related throughput by 3%~11% and reduces average 
network latency by 24%~32% compared with 2D-
MESH, with total router power consumption 
reduced by 13%~16% and total link power 
consumption reduced by 14%~16%. Furthermore, if 
top-level applications and low-level architecture can 
be greatly matched, such as binding independent 
tasks to different cache groups, triplet-based 
network will achieve more significant improvement 
on performance and power. 

Our future work focuses on the following three 
as

erage network latency model presented in 
S

ng in horizontal and vertical 
d

D-MESH to exploit 
tr
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pects: 
The av
ection 4 only gives the estimation of static average 

network latency without taking congestion into 
account. Thus, when traffic load increase sharply, 
this model can not work well. Thus, our first work is 
adjusting the average network latency model to 
overload environment. 

As conventional routi
irections leads to various link latencies for triplet-

based network, we consider using Y-architecture [9] 
to do “perfect” mapping for triplet-based topology. 
Thus, our second work is evaluating the perfect-
mapped triplet-based network. 

We note the potential of 2
affic locality. Based on the group conception, the 

basic component constructing 2D-MESH is a 4-
node rectangle with one extra hop count required for 
the traffic between the nodes locating diagonally 
(neighbor nodes in a rectangle need 2 hops). Our 
third work is to evaluate the potential of 2D-MESH 
to exploit traffic locality and compare it with triplet-
based network. 
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