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Abstract: -Representation is a key concept for semiotics and for information systems. Stamper’s framework 
may be seen outlining what is required for the efficacy of signs in standing for (i.e., representing) something else 
in an organization, among many others. We explore how the efficacy and the efficiency of representation may 
be measured, which seems overlooked in available literature of information systems and organizational 
semiotics. And we approach this problem from the perspective of what we call the ‘information carrying’ 
relation between the representation and the represented. We model the represented as an information source and 
the representation an information carrier, and the ‘representing’ relationship between them as that of 
‘information carrying’. That is, information is carried and therefore flows. These then are further modeled 
mathematically as random variables and random events, and a special relationship between random events. This 
approach enables us to reveal a necessary condition for the efficacy and the efficiency of representation, and to 
measure it. To this end we extend Dretske’s semantic theory of information. The conviction that we put forward 
here is ‘No representation without information flow’, based upon which the efficacy and efficiency of a 
representation system may be measurable. 
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1   Introduction 
It would seem that the notion of representation is 
highly relevant to information systems and 
semiotics. The most fundamental concept of 
semiotics is ‘sign’, which is defined as ‘a signal or 
token which stands for something else’ (Stamper 
1997). Semiotics is said to be a domain of 
investigation that explores the nature and function 
of signs as well as the systems and process 
underlying signification, expression, representation, 
and communication (Guild to Semiotics).  
     Moreover, representation seems also a key issue 
for information systems (IS). For example, Shanks 
claims that representation is at the core of the 
discipline of information systems (Shanks 1999) 

and he considers issues of representation on aspects of 
quality from four semiotics levels, namely syntactic, 
semantic, and pragmatic levels and social world. At 
the semantic level, it is said that the goal is that the 
representation is complete and accurate at particular 
points in time (Lindland et al 1994, Shanks and Darke 
1998). This means that the representation should 
capture all the meaning accurately. 
Therefore representation is a key concept in 
organizational semiotics and in information systems. 
Many researchers in various fields have made serious 
endeavours to explore issues around ‘representation’ 
including ‘modes of representation’ (Weber 1997, 
Shimojima 1996, Barwise and Seligman 1997). Some 
researchers like Weber (1997) puts forward some 
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criteria based on notions of representations to make 
IS development sound, accurate and complete, but 
they are mainly pragmatically driven. Stamper’s 
(1997) framework may be seen outlining what is 
requited for the efficacy of signs in standing for (i.e., 
representing) something else in an organization, 
among many others. 

One thing seems to have been overlooked in the 
available literature of organizational semiotics and 
well-known literature of information systems, 
namely given something a to be represented by 
something else b, how can we explore whether b is 
able to represent a apart from the linguistic or the 
conventional meaning, if any, of b that is 
inter-subjectively decided by a community is a? 
And indeed, how does the linguistic or the 
conventional meaning of a sign/symbol come about 
in the first place? 

We submit that what links a sign and what the 
sign stands for is information in the sense that ‘what 
information a signal carries is what it is capable of 
‘telling’ us, telling us truly, about another state of 
affairs’ (Dretske 1981, p.44). We explore one 
condition for this efficacy and efficiency, which we 
wish to call the ‘information carrying’ condition 
between the representation and the represented. 
Note that in this paper we give a dual meaning to the 
word ‘representation’. One refers to the 
phenomenon that one thing stands for something 
else. The other refers to a thing that stands for 
something else. We hope that which one of the two 
meanings is used within a particular context would 
be clear within the context.  
We suggest looking at the problem of representation 
with an information theoretic framework, i.e., 
information creation at a source, and information 
carrying and transmission through representation. 
We draw on theory on information and information 
flow (Dretske 1981, Devlin 1991, Barwise and 
Seligman 1997) through which we put forward a 
quantifiable measure (a necessary condition) for the 
efficacy and the efficiency of a representation 
system, which is mainly concerned with the 
semantic level of semiotics. We define this 
condition as whether in information carrying using 
representation, an information carrier (i.e., a 
representation) is able to carry in full the 
information that it is supposed to. We investigate 
how different situations in it can happen. We 
quantifiably measure this ‘information carrying’ 
condition for representation. 

Our approach is this. We model the represented as 
an information source and the representations an 
information carrier, and the ‘representing’ 
relationship between them as that of ‘information 
carrying’. In other words, information is carried and 
therefore flows. We observe that normally what is 
represented can be seen as a random event, so is a 
representation. Furthermore the aforementioned 
‘information carrying’ relationship is therefore seen 
as a special relationship between two random events. 
This approach enables us to reveal a necessary 
condition for the efficacy and the efficiency of 
representation, and to measure it. To this end we 
extend Dretske’s (1981) semantic theory of 
information. 

The rest of the paper is structured as follows. We 
review some work in the literature on the link 
between representation and information flow in 
section 2, which should give some background on the 
problem that we are looking at, namely how the 
phenomenon of ‘representation’ may be approached 
from the perspective of information flow. We then 
give a simple motivating example in section 3. We 
model and analyze the represented, the 
representations, and the ‘information carrying’ 
relationship, which results in information flow 
between them in sections 4, 5 and 6 respectively. We 
give the notion of ‘information content’ of a state of 
affairs in section 7 in order to further emphasize that  
representation is possible only because of 
informational relationship between states of affairs. 
In section 8, we outline some implications of our 
work to be reported here for information systems 
design. We give conclusions in section 9.   
 
2 Representation Is Seen Liked with 

Information Flow 
There are many angles from which to investigate 
representation. Representation is highly relevant 
to presentation of information and information 
flow. Jerry Fodor feels that they are so closely 
related as to justify the slogan ‘No information 
without representation’ (Barwise and Seligman, 
p.235). Such a link is shown in Devlin’s Infon 
theory (1991), situation semantics of Barwsie and 
Perry (1983), Shimojima’s conceptual framework 
on representations (1996) and Barwise and 
Seligman’s representation system (1997). In 
addition, Wobcke (2000) and Cavedon (1995) 
discuss the link between reasoning and 
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information.  
Situation theory, especially the notion of 

‘infon’ (Devlin 1991) and inference based upon 
‘infons’ (Barwise and Etchemendy 1990), 
models representation from an information 
carrying perspective. For situation theory, 
information flow is about how we know about a 
situation by knowing something else in another 
situation. Following Devlin (1991), basic ‘item 
of information’ is called ‘infons’, which are a set 
of objects with their associated relations. Infon 
may be true or false only in certain situation. 
Some common properties of situations are 
situation types. Their relations are captured by 
using constraints by virtue of ‘informational 
connections/relationships’ (Dretske 1981). 
Information flow takes place when an agent 
applies a constraint between two situation types. 
That is, if an individual situation of one situation 
type is held through ‘anchoring’ parameters in 
the situation type, then due to the constraint, an 
individual situation of the other situation type is 
also held as a consequence of the former, also 
through anchoring parameters. What is made 
true by the latter is said to be in the information 
content of what is made true of the former.  

Barwise and Etchemendy (1990) envision 
the semantic analysis of representation. They 
assess representation and associated inferences 
beyond linguistics. Significantly, they discuss 
inference over information by using ‘constraint 
infon algebras’. In their theory, information (or 
information content) is represented in terms of 
‘infons’.  Infon algebra is put forward to perform 
inference. The models of infons are formulated 
by ‘distributed lattice’. Heterogeneous 
presentations of information content are 
captured in an independent way while the 
‘entailment’ relations are found in the context of 
situation theory. There are many interesting 
points. For example, they emphasize ‘coherent’ 
sets of basic infons, which is a set that carries 
genuine simultaneous information about a single 
situation if there is no reason to make the 
situations not to support the infons.  This notion 
is highly relevant to the concept of ‘normality’ 
mentioned in Cavedon (1995). The view taken 
by Cavedon (ibid.) is that to perform inference, 
tokens behave ‘normally’ unless certain 
information prevents it not to. Also, Barwise and 
Etchemendy (ibid.) state that 

‘pseudo-complements’ are the infons that are 
incompatible with the original set of infons. 
Infons are incompatible when, for example, 

σσ ∧ . This notion is important especially when 
inference takes place following ‘deterministic 
constraints’. Conflicts are not permitted in the 
inference if infons are detected to be incompatible. 
It appears that there are implied considerations 
about ‘background’ information during the 
inference, for example, in Barwise and 
Etchemendy (1990, p.71), although they do not 
provide an explicit definition.  

There is another interesting work in the 
literature. Shimojima (1996) constructs a 
conceptual framework to account for the 
differences between linguistic representation and 
diagrammatic representation. He identifies a 
number of phenomena, including free rides, 
over-specificity and self-consistency that are 
unique to diagrammatic representation. He 
stresses the significant role of structural 
constraints on representation. The notion of 
sound and accurate representation is also notable. 
This work is centered on representation of 
information, and the question of how 
representation can ever happen is not fully 
addressed. The framework captures constraints 
between the ‘source’ and ‘target’ in a 
representation system by defining ‘constraint 
projections’. The mechanism was then formulated 
under the ‘information flow channel’ framework 
to be the ‘representation system’ by Barwise and 
Seligman (1997). Although he concerns the 
connections between situations, i.e., the signaling 
relation ‘ ’, in presenting information, 
Shimojima does not put emphasis on this issue in 
further discussions on ‘constraint projections’. 
Moreover, despite that the source and target 
domains are defined based on states of affairs, 
there is not much consideration on formulating 
‘inter-winded’ relations between them in the 
framework. Without underpinnings of 
interconnections (Barwise and Seligman (1997) 
use the notion of ‘infomorphisms’ to formalize 
them), undesired representation may happen. 
Shimojima (ibid.) discusses the impact of 
different modes of representation to the efficacy 
of representation, but does not emphasize the 
content of a representation. Hence, his framework 
does not address the validity of a 
representation-based inference that may be linked 
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with information flow.  
Barwise and Seligman (1997) give a 

definition of representation system from three 
aspects, i.e., IF channel, token connections and 
constraints. That is, a representation system is 
formulated in terms of IF channel and its 
associated IF logic. The definition of 
representation system seems working well in 
cognition involved circumstances. There is still 
lack of consideration on the content of 
information flow. Only ‘normal tokens’ are able 
to support representations if there are constraints 
on the core that support the connections. It is 
very interesting to notice that a token connection 
being ‘normal’ is neither sufficient nor 
necessary for making a representation accurate.  

We observe that aforementioned Jerry 
Fodor’s (1982) claim ‘No information without 
representation’ is not quite right in that 
information is created due to reduction in 
uncertainty, which may or may not result in any 
representation of it. ‘No information flow 
without representation’ would make more sense. 
Furthermore, we are convinced that 
representation is possible only because of 
information flow. That is, only because one 
thing, say X, carries information that another 
thing, say Y, exists, can X represent Y. 
Moreover, the works that we have reviewed thus 
far do not provide us with a quantitative measure 
on representation, which makes the notion 
‘representation’ in the context of information 
systems at least appear immature. Based upon 
our conviction ‘No representation without 
information flow’, in this paper, we describe 
how the efficacy and efficiency of a 
representation system may be quantitatively 
measured.  

 
3 A Motivating Example 

We would need a representation system for 
many things we do. For example, supposing at a 
junction on High Street, we want to give 
indications to the traffic that travel from the East 
to the West that they can do one of the following 
things: 
a) ‘you may go straight on if the way is clear’ 
b) ‘you may turn left if the way is clear’ 
c) ‘you may turn right if the way is clear’  
d) ‘stop and wait behind the stop line on the 

carriageway’ 

 
Table 1 A representation system 

Suppose that we design a traffic signal system 
for the above as follows: 

As shown in table 1, for the above a), b) and c), 
we give a ‘green’ light, and d) we give either ‘red’ 
light, ‘amber’ light or ‘red and amber’ together.  

This would not appear to be a good 
representation system. But we want to find out 
why exactly it is not good and whether we can 
generalize what we will find. We give our 
analysis in this paper and it is based upon the basic 
idea that a representation carries the information 
that the represented exists.  A representation and 
what is to be represented by the representation in 
the most general sense are both states of affairs. 
Thus, the idea of ‘information carrying’ is a 
relationship between a signal and another state of 
affairs in that (we repeat) ‘what information a 
signal carries is what it is capable of ‘telling’ us, 
telling us truly, about another state of affairs’ 
(Dretske 1981).  

     Mathematical Equations must be numbered as 
follows: (1), (2), …, (99) and not (1.1), (1.2),…, (2.1), 
(2.2),… depending on your various Sections. 
 
4 The Represented 

Our approach starts with creating a mathematical 
model for this system. The ‘indication to traffic’ 
can be seen as a random variable having the 
abovementioned four possible values, namely 
those listed as a) to d), and each of ‘the variable of 
‘indication to traffic’ having a particular value’ is 
therefore a random event. We observe that the 
elementary component of what is represented 
normally can be seen as a random event, and the 
whole set of the represented can be seen as a 
collection of random events that are results of 
some selection process under certain conditions, 
and  each ‘run’ of a selection process results in the 
realization of one of the possible random events.  

Following Shannon (1949) and Dretske (1981), 
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we can now view such an aforementioned 
selection process as an information source. This 
is because we take the view that information is 
created due to reduction in uncertainty, and the 
realization of one of the possible random events 
removes other possible outcomes of the 
selection process whereby uncertainty namely n 
(n>1) possible outcomes is reduced to 1. Put 
informally, information is taken as created by or 
associated with a state of affairs among a set of 
other states of affairs of a situation, the 
occurrence or realization of which reduces the 
uncertainty of the situation. Reduction of 
uncertainty due to the realization of a random 
event can be quantified precisely as long as the 
unlikeliness, i.e., the probability, of the random 
event can be worked out. As a result of this, we 
can quantify a selection process as well.    

Given sa being a state of affairs (a random 
event) among a few others at a selection process 
S, then  

 
I(sa) = -logP(sa), 

 
where P(sa) is the probability of sa  is taken as 

the quantity of information created by sa, which 
is another and convenient measurement of the 
‘unlikeliness’ of sa. This is termed the surprisal 
of sa. The weighted mean of surprisals of all 
random events of S, denoted as I(S), and  

 
I(S) = -ΣP(si)logP(si), i = 1,…,n 

 
is called the entropy of S. 
For our example of ‘indication to traffic’ at 

that particular junction of High Street, let sa, sb, 
sc and sd denote the four random events 
involving the aforementioned following four 
values: 

a) ‘you may go straight on if the way is clear’ 
b) ‘you may turn left if the way is clear’ 
c) ‘you may turn right if the way is clear’  
d) ‘stop and wait behind the stop line on the 

carriageway’ 
Let us suppose that the four random events are 

equally likely, then the probability of sa P(sa) is 
1/4, and so are P(sb), P(sc) and P(sd).  We would 
have: 

 
I(sa) = -log P(sa) = log4 = 2 (bits) 
I(sb) = -log P(sb) = log4 = 2 (bits) 
I(sc) = -log P(sc) = log4 = 2 (bits) 
I(sd) = -log P(sd) = log4 = 2 (bits) 

 
These are the surprisals, and the entropy would 

be 
 
I(S) = -ΣP(si)*log P(si) = 4*1/4*( log4) = 2 

(bits). 
 
5 The Representations 

We now look at the representations, namely  
1) ‘green’ light,  
2) ‘red’ light,  
3) ‘amber’ light, 
4) ‘red and amber’ together.  

We consider these in isolation, i.e., 
disregarding how they link to the represented 
except their probabilities, which are affected (in 
this case almost determined) by those of the 
represented. We can also model them as a 
selection process, a random variable and four 
random events.  That is to say, the representations 
can also be seen as an information source in that 
some reduction in uncertainty takes place. Even 
though the representations are not independent of 
the represented, reduction in uncertainty does take 
place never the less. 

Assume that the 2), 3) and 4) above can occur 
with equal chances to respond to the represented 
d), namely ‘stop and wait behind the stop line on 
the carriageway’. Moreover, we denote the above 
1) to 4) with ra, rb, rc and rd respectively.  We 
would have probabilities for them respectively: ¾, 
1/12, 1/12, and 1/12. Then we would have the 
following surprisals and entropy for the 
representations R: 
 

I(ra) = -log p(ra) = log4/3 = 2 – log3 (bits) 
I(rb) = -log p(rb) = log12 = log4 + log3 = 2 + log3 

(bits) 
I(rc) = -log p(rc) = log12 = log4 + log3 = 2 + log3 

(bits) 
I(rd) = -log p(rd) = log12 = log4 + log3 = 2 + log3 

(bits) 
 

WSEAS TRANSACTIONS on COMPUTERS Junkang Feng, Yang Wang

ISSN: 1109-2750 498 Issue 3, Volume 8, March 2009



These are the surprisals, and the entropy 
would be 
 

I(R) = -ΣP(rj)*logP(rj) = ¾*(2 – log3) + 
3*1/12*(2 + log3) (bits). 

 
6 The ‘Information Carrying’ 

Relationship Between the 
Represented and The 
Representation 

As aforementioned, the represented can be seen 
as an information source. We now submit that 
the representations are information carriers 
because the representations can tell us truly 
something about the represented. Moreover, 
when something to be represented is not fully 
represented (we will define what is meant by 
‘full representation’ shortly), there must be the 
case where some information created at the 
information source is not carried by an 
information carrier. Such information is termed 
Equivocation. This is one hand. On the other 
hand, it is not always the case that all 
information that is created at the carrier (seen as 
an information source in its own right) comes 
from the represented. The information created 
by the representations themselves that is not 
accounted for by that at the represented is called 
Noise.  Whether there is a relationship of ‘being 
represented and representing’ between two sets 
of things (random events) and how well the 
representation is can be measured precisely by 
means of Equivocation and Noise as long as the 
probabilities including conditional probabilities 
of the relevant random events are available.  We 
now show how these can be done by using our 
running example. 

 
Equivocation 
Equivocation is the lost information that is 
created at the represented (events) but not 
carried by the representations.  Information is 
created due to reduction in uncertainty. 
Therefore, if we can work out what the bit of 
‘reduction in uncertainty’ that is lost is, i.e., not 
carried/represented, then we would obtain the 
equivocation.  Our approach to this problem 
goes like this. Suppose that the represented (note 

that this is only a random event, which would be a 
result of some selection process) is si, say sa, 
namely a) ‘you may go straight on if the way is 
clear’, and due to the way we have designed the 
representation system shown in section 2, the 
representation would be ra, namely 1) ‘green’ 
light. The whole ‘reduction in uncertainty’ 
measured by I(sa) due to the realization of sa can 
be seen as composed of two parts. One is the 
elimination of sd from the all four possible 
outcomes, which can be measured by I(sa or sb or 
sc) = -logP(sa or sb or sc). The other is the 
elimination of sb and sc from the set {sa, sb, sc}, 
which can be measured by -logP(sa/(sa or sb or sc)), 
where P(sa/(sa or sb or sc)) denotes the probability 
of sa under the condition (sa or sb or sc), and it is the 
same as ra. So -logP(sa/(sa or sb or sc)) = 
-logP(sa/ra). As ra only captures (represents) the 
first part of the reduced uncertainty, what is lost is 
the second part, which is equivocation. Both of 
them can be calculated by using the notion of 
surprisal as already shown above. We will 
generalize these and then move on to discuss 
average equivocations for a representation system 
in the subsections that follow.  

 
Equivocation for a particular representation and 
one of its corresponding represented events 
Following the approach just described above, 
given the represented si and the representation rj, 
the equivocation denoted by Esi(rj) would be 

-logP(si/rj), 
 
where P(si/rj) is the probability of si  under the 
condition rj. 

For our example concerning sa and ra, we would 
have  
 

Esa(ra) = –logP(sa/ra) = log3 (bits). 
 

That is to say, the represented sa is not fully 
represented by ra. What is represented is one of sa, 
sb and sc, which is the first part of the reduced 
uncertainty, namely ‘you may go if the way is 
clear’. This applies to sb and sc also. 

In the same way, we get  
 

Esd(rb) =-logP(sd/rb) = log1 = 0 (bit). 
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So is Esd(rc) and Esd(rd). That is to say, sd is 
fully represented by any of rb, rc or rd. 

Note that Shannon did not concern himself 
with such problems, so none provided. Dretske 
(1981) we believe gets it wrong as he uses a 
weighted mean of equivocations (see the next 
subsection) in place of the equivocation for the 
specific representation and one of its n (n ≥ 1) 
corresponding represented events. 
 
Equivocation for a particular representation and 
all its corresponding represented events 
For a particular representation, there could be 
more than one represented events corresponding 
to it. That is, one representation may be used to 
represent more than one state of affairs (event). 
For example, for ra, either sa, sb and sc 
corresponds to it at one time. For each pair of 
them, i.e., ra and sa, ra and sb, etc, equivocation 
may be different. It is desirable to find out on 
average how much information is lost as for as a 
particular representation is concerned. This is 
the weighted mean of equivocations for a 
particular representation with each represented 
that corresponds to it. It can be calculated by 
using the following formula: 

 
E(rj) = Σp(si/rj)*Esi(rj) = -Σp(si/rj)*log p(si/rj), i 
=1,…,n 
 

For example,  
 
E(ra)=-ΣP(si/ra)*logP(si/ra)=-P(sa/ra)*logP(sa/ra
)+P(sb/ra)*logP(sb/ra)+ 
P(sc/ra)*logP(sc/ra)=3*1/3*log3 = log3 (bits). 
 

Similarly we have  
 
E(rb) = -P(sd/rb)*logP(sd/rb) = 1*log1 = 0 (bit). 

 
In the same way, E(rc) and E(rd) are both 0 

bit. 
 
Equivocation for a representation system as a 
whole 
The whole set of representations, i.e., the 
representation system as a whole, normally 
would have more than one representation. We 
can calculate the overall average amount of lost 
information as a measure for looking at the 

efficacy of a representation system. This is the 
weighted mean of equivocations for each 
representation. The formula for it is 
 

E(r) = ΣP(rj) *E(rj), j = 1,…, n 
 

For our example,  
 
E(r)=  P(ra)*E(ra)+P(rb)*E(rb)+P(rc)*E(rc)+ 
P(rd)*E(rd) = ¾* log3 + 0+ 0+ 0 = ¾log3 (bits).  
 

This shows the average amount of lost 
information, i.e., the average of the parts of the 
reduction in uncertainty created at the information 
source that is not captured by the representations 
with this representation system. Given the entropy 
of the represented is 2 bits (see the end of section 
3), considerable information, i.e., ¾log3 bits, is 
lost, which leads to what may be called ‘under 
representation’. In addition to ‘under 
representation’, ‘over representation’ can also 
occur, which, we suggest, can be captured by 
using the notion of noise mentioned before.  
 
Noise 
Noise can be handled in a similar way to that for 
equivocation but in an opposite direction. Noise is 
the unaccounted-for information that is created at 
the representations but is not accounted for by the 
represented (events).  In other words, noise is the 
(part) of the reduction in uncertainty at the 
representations that is not accounted for by that at 
the represented.  

Suppose that the representation is rb, namely 2) 
‘red’ light, and due to the way we have designed 
the representation system shown in section 2, the 
represented that corresponds to rb would be sd, 
namely d) ‘stop and wait behind the stop line on 
the carriageway’. The whole ‘reduction in 
uncertainty’ due to the realization of rb can be 
seen as composed of two parts. One is the 
elimination of ra from the all four possible 
outcomes. The other is the elimination of rc and rd 
from the set of rb, rc and rd. The first part is 
accounted for by sd, as it eliminates ra, which is 
the only possible outcome it eliminates. Thus the 
second part of the reduction in uncertainty is 
entirely due to the representations’ ‘initiative’, 
which is noise. Both of them can be calculated by 
using the notion of surprisal, but we will only 
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discuss the second part here as it is noise. As we 
handle noise is the same as that for equivocation, 
we will only give the conclusions below. 
 
Noise for a particular represented event and one 
of representations that represents it 
Given the represented si and the representation 
rj, the noise denoted by Nri(sj) would be 
 

-logP(rj/si),  
 

where P(rj/si) is the probability of rj under the 
condition si. 

For our example, if we consider sd and rb, we 
would have  
 

Nrb(sd) =-logP(rb/sd) =log3 (bits). 
 

This also applies to rc and rd in relation to sd. 
In the same way, we get  
 

Nra(sa) =-logP(ra/sa) = log1= 0 (bit). 
 

So is Nra(sb) and Nra(sd). That is to say, with 
ra, there is no noise.  

Again, as for equivocations, Shannon (1949) 
did not concern himself with such problems, so 
none for it was provided. Dretske (1981) uses a 
weighted mean of noises (see the next 
subsection) in the place of the noise for a 
particular represented event and a particular 
representation that represents it, which we 
believe is incorrect. 

 
Noise for a particular represented event and all 
representations that represents it respectively 
This is the weighted mean of noises for each 
represented and a representation that represents 
it. It can be calculated by using the following 

formula: 
 

N(si) = ΣP(rj/si)*Nrj(si) = -Σ P(rj/si)*logP(rj/si), j = 
1,…, n 
 

For our example,  
 
N(sd)=-ΣP(rj/sd)*Nrj(sd)= -{P(rb/sd)*logP(rb/sd) + 
P(rc/sd)*logP(rc/sd) + P(rd/sd)*logP(rd/sd)} = 
3*1/3*log3 = log3 (bits).  
 
N(sa) = -P(ra/sa)*logP(ra/sa) = 1*log1 = 0 (bit).  
 

In the same way, N(sb) and N(sc) are both 0 bit. 
 
Noise for a whole set of represented events 
This is the weighted mean of noises for each 
represented (event). The formula for it is 
 
N(s) = ΣP(si)*N(si), i = 1,…, n 
 

For our example,  
 
N(s) = P(sa)*N(sa) + P(sb)*N(sb) + P(sc)*N(sc) + 
P(sd)*N(sd) = 0 + 0 + 0 + 1/4* log3 = 1/4*log3 
(bits).  
 

This shows the average amount of the 
unaccounted-for information at the 
representations, i.e., the average of the parts of the 
reduction in uncertainty created at the information 
carriers that is not accounted for by the 
represented events within this representation 
system. 
 
Summary of the analysis of the ‘information 
carrying’ relationship for our motivating example 
We now summarize our analysis for the running 
example in the tables below: 

 
Table 2 Equivocation and noise between each pair of individual representation and individual 

represented event 
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Table 3 Average equivocations 

 
Table 4 Average noises 
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To make our discussion more complete than it 
is now, we should cover two trivial cases, 
namely an event that is not represented by any 
representation, and a representation that does 

not represent anything. To this end we extend our 
example by adding two unrealistic situations 
shown in the last two rows in the following table. 

 
Table 5 The motivating example extended 

The state of affairs ‘reverse’ is not 
represented by any representation, so all 
information created (or should be created) by it 
would be lost, and it can be measured by its 
surprisal –logP(reverse), which is the 
equivocation associated with it. Similarly, the 
representation ‘blue light’ does correspond to 
any state of affair to be represented, thus all 
information crested due to its occurrence is 
noise, which can be measured also by its 
surprisal -logP(blue light). It is easy to note that 
the inclusion of the two trivial cases would 
change the overall average equivocation and the 
overall noise of the system as a whole. 

 
7 The Notion of ‘Information 

Content’ and How It Is Related 
To Representation 

The notion of ‘information-carrying’ between 
states of affairs can be further formalized with 
the notion of the information content of a state 
of affairs. Let us consider the following list: 
 
Example 1. That there is smoke carries the 
information that there is a fire.  
 
Example 2. That he is awarded a grade ‘A’ for 
his Programming course contains the 
information that Jack Brown has gained 70% or 
above for that course. 
 

These two examples show that states of 
affairs are sometimes linked due to regularities 
such as natural laws and norms of an 
organization, and because of which one can 
learn something about one thing from another.  

The strongest case of all is where the former can 
potentially tell the observer truly the existence of 
the latter. Such a phenomenon is termed the 
information content of a state of affairs.  

Dretske (1981, P.45) defines the notion of the 
‘information content’ of a state of affairs as 
follows: 
A state of affairs contains information about X to 
just that extent to which a suitably placed 
observer could learn something about X by 
consulting it. 
Following Dretske, we take information as in the 
form of ‘de re’, rather than ‘de dicto’, that is, in 
the form of ‘a’s being F carries the information 
that b is G’. Dretske (ibid.) establishes the 
following definition: 
       
Information Content: A signal r carries the 
information that s is F = The conditional 
probability of s’s being F, given r (and k), is 1 
(but , given k alone, less than 1).        

In this definition, k stands for prior knowledge 
about information source s.  

A state of affairs, say X, becomes a 
representation of another state of affairs, say Y, 
only because Y is in the information content of X. 
When such a link between X and Y is accepted by 
a community, it is taken for granted for the 
community that X represents Y and the 
community would no longer wonder how it 
became so in the first place.   
 

8 Implications For Information 
Systems Design 

The ideas that we have been developing here 
should help further our understanding of the 
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nature of information systems. That is, an 
information system and the real world domain 
that the information system refers to constitute a 
‘representation system’ in which the former is 
made of representations (also called the 
‘source’ by Barwise and Seligman (1997)), and 
the latter the represented (also called the ‘target’ 
by Barwise and Seligman (ibid.)). On this point, 
we would agree with Seta et al. (2006) in that 
conceptual modeling is an activity to build an 
idealized and simplified representation of 
selected semantics about some real-world 
domain. 

There is always a question of efficacy and 
efficiency for an information system, which 
may be taken as a foundation for formalizing 
methods and techniques for information 
systems development. For example, in database 
design, we would therefore want to make sure 
that all states of affairs of the real world domain 
be represented as the very minimal requirement. 
That is, there is no equivocation involved. 
Ideally, the database should provide just 
sufficient number of states of affairs to carry the 
information that the states of affairs of the real 
world domain exist. That is, there is no noise 
involved. In terms of ‘information content’ of 
states of affairs, the optimal design is achieved 
when real world states of affairs are all in the 
information content of a set of states of affairs 
of the database and this set is minimal in that the 
removal of any construct of the database would 
result in al least one of the real world state of 
affair being unrepresented. It is highly desirable 
to reveal how all these may be achieved.  

To this end, we notice that the ‘orthogonal 
database design principle’ put forward by 
Eessaar (2006) would seem relevant to 
identifing the states of affairs of the real world 
that need to be captured. Moreover, Wang and 
Feng 2007 may also be seen as part of the 
endeavor, and we shall report further work in 
due course.  
 

9 Conclusions 
Our fundamental conviction ‘No representation 
without information flow’ has led us to explore 
how the efficacy and efficiency of a 
representation system may be quantitatively 
measured. On this point, we now come to the 
following conclusions: 

The efficacy and the efficiency of a 
representation system can be approached from 
an ‘information carrying’ perspective and by 

using concepts and techniques associated with 
such a perspective. This results in the efficacy 
being looked at in terms of whether an individual 
state of affairs is fully, partially, not, or over 
represented by some representation (which is also 
a state of affairs in the most general sense), This 
also results in the efficiency being looked at in 
terms of whether an individual representation 
represents any state of affairs that is supposed to 
be represented. Then based upon these, we can 
look at the efficacy and the efficiency of the 
system as a whole in terms of the statistical 
characteristics of the ‘representing and 
represented’ relationship. In more details: 

For a state of affair si to be fully represented 
within a representation system, there is at least 
one representation rj such that the equivocation in 
relation to si and rj is 0 bit, and this is equivalent to 
the condition that the probability of si given rj is 1. 
The situation with ‘stop’ and ‘read’ in out 
running example is such a case. 

When there is more than one such rj, then si is 
over-represented, such as the case with the state 
of affairs ‘stop’, and the representations ‘red’, 
‘amber’ and ‘red and amber’ lights. 

For a state of affair si to be partially 
represented by a representation rj, the probability 
of si given rj must be grater than that of si without 
rj , but it is not 1, such as the case with ‘go straight 
on’ and ‘green’. 
If the probability of si given rj is the same as that 
of si without rj , then si is not represented by rj, 
such as the case with ‘stop’ and ‘green’. 

If the overall equivocation of a representation 
system is greater than 0 bit, then at least one state 
of affairs that is to be represented is not actually 
fully represented by the representations within 
the representation system. That is, the system is 
not of a full efficacy.  

An entirely irrelevant representation rj is a 
state of affairs such that for all si to be represented 
the probability of rj given si is the same as that of 
rj without si , such as the case with ‘blue’ light. In 
such a case, all information associated with the 
representation is noise. 
In a case of over-representation, there must be 
some noise, i.e., the noise is greater than 0 bit, 
such as the case with ‘red’, ‘amber’ and ‘red and 
amber’. 

If the overall noise of a representation system 
is greater than 0 bit, there must be either at least 
one entirely irrelevant representation or at least 
one case of over-representation, or both. In such 
a case, a representation system is not the most 
efficient (regardless whether it is of a full 
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efficacy).  
A point worth further investigation in the 

future by extending the work presented here is 
the question raised in section 1, namely how the 
linguistic or the conventional meaning of a 
sign/symbol comes about in the first place. We 
believe that to establish such meaning, the 
‘information carrying’ condition discussed here 
has to be met as well between a sign (i.e., a 
representation) and the meaning (i.e., the 
represented).     
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