
A Dual Simulation Environment for Simulating MAS in 
Telecommunication Networks 

 
    NADA MESKAOUI                   DOMINIQUE GAITI           KARIM Y. KABALAN 
    Lebanese University                  University of Troyes            American University of Beirut 
    Hadath – Lebanon                      12 Rue Marie Curies           Bliss Street 
     Lebanon                                           Troyes, Cedex                        Beirut - Lebanon 
    nadames@inco.com.lb                dominique.Gaiti@utt.fr      kabalan@aub.edu.lb 
 

 
Abstract— this paper presents a dual simulation environment for simulating different type of 

telecommunication networks integrating intelligent agents. Agents are considered as advanced tools 
for resolving complex issues in networking based on intelligent and dynamic features. To test the 
efficiency of these proposals, new simulation environments, integrating both agents and network 
components, are required. In this paper we propose an extension with intelligent capabilities to a 
networking platform. This dual simulation environment has been tested for implementing agents in a 
DiffServ network to improve its performance. Simulation results show the efficiency of integrating 
agents within telecommunication networks and also prove that such a dual simulation environment is 
needed to test new techniques based on agents and multi-agent systems in networking.  
 
Key-Words: Artificial  intelligence,  telecommunication, networks, single-agent systems, multi-agent 
systems, Diffserv network,  platforms.  
 
 
1 Introduction 
New approaches, in any domain, have to be 
validated by simulations before its real 
implementation. For this reason, different types 
of platforms were conceived in various domains 
to help researchers testing the efficiency of their 
proposals.  

Some Existing platforms are dedicated to 
simulate telecommunication networks and 
others for multi-agent systems. Networking 
platforms do not have intelligent capabilities. 
Also, platforms conceived for multi-agent 
systems’ simulation stress on the definition of 
the intelligent capabilities of the agent without 
taking into consideration the telecommunication 
networks’ elements. Network elements could be 
modeled and built within these platforms but 
this means that every networking component 
should be redefined, modeled and represented 
by agents [1]. Standard components and 
mechanisms that constitute a 
telecommunication network are not provided in 
this type of platforms. 

The objective of our work is to propose an 
intelligent framework to model and simulate 
intelligent features in networking in order to 
prove the efficiency of intelligent approaches – 
based on agents and multi-agents systems – in 
the improvement of telecommunication 
networks’ performance.  

This paper presents a platform having the 
ability to simulate both networks and multi-
agent systems. Having this platform, one can 
specify any type of agent’s behavior to interact 
with any node structure. The proposed platform 
is detailed in section 4 while sections 2 and 3 
present, respectively, the existing platforms for 
networks and Multi-Agent systems simulations. 
Section 5 shows some simulation results and a 
conclusion is provided in section 6. 

2 Platforms for network simulation 
In telecommunication networks simulations, 

two platforms’ categories are identified: open 
platforms for standard network simulations able 
to implement new techniques and network 

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 916 Issue 6, Volume 8, June 2009



functionalities and platforms specialized in the 
simulation of a specific type of networks able to 
implement new techniques but in the frame of 
their objectives. 

 
 

2.1 Network Simulator “NS-2” 
The Network Simulator “NS-2” [2] is an 

open, extensible, event-driven simulation 
engine implemented in C++ and using the 
MIT's Object Tool Command Language [3] 
(OTcl - an object-oriented version of Tcl [4]), 
as a command and configuration interface.  

A network topology is realized using three 
primitive building blocks: nodes, links, and 
agents. Agents are the objects that actively 
drive the simulation and could be thought of as 
the processes and/or transport entities that run 
on nodes (end hosts or routers). Traffic sources 
and sinks, dynamic routing modules and the 
various protocol modules are all examples of 
agents.  

Ns implements modules for some standard 
protocols and techniques [5]. Different routing 
protocols are available such as unicast, 
multicast, and hierarchical routing.  

The explicit congestion protocol XCP has 
been added to Ns-2.28. XCP is a feedback-
based congestion control system that uses 
direct, explicit, router feedback to avoid 
congestion in the network. It is designed for 
both scalability and generality.  

A Differentiated Services “DiffServ” module 
has been integrated into Ns-2.1b8. DiffServ, is 
an IP QoS architecture based on packet marking 
that allows packets to be prioritized according 
to user requirements. During the time of 
congestion, more low priority packets are 
discarded than high priority packets.  

Ns provides a module for simulating mobile 
networking. This module covers the internals of 
a mobile node, routing mechanisms and 
network components that are used to construct 
the network stack for a mobile node. 

Extensions that enable the simulation of 
satellite networks are also available in ns. In 
particular, these extensions enable Ns to model 
either traditional geostationary ``bent-pipe'' 
satellites with multiple users per 
uplink/downlink and asymmetric links, or 

geostationary satellites with processing 
payloads (either regenerative payloads or full 
packet switching), or polar orbiting LEO 
constellations such as Iridium and Teledesic. 
Other modules are also available, like MPLS, 
radio propagation, direct diffusion and others. 
 

 
2.2 J-Sim 

J-Sim [6] is an open, component-based, 
compositional simulation environment, 
proposed in the frame of research cooperation 
between the Ohio State University and the 
University of Illinois at Urbana-Champaign, 
and built entirely in Java upon the notion of the 
autonomous component architecture.  

The behaviors of the J-Sim components are 
defined in terms of contracts and can be 
individually designed, implemented, tested, and 
incrementally deployed in a software system. A 
system can be composed of individual 
components in much the same way a hardware 
module is composed of IC chips. Moreover, 
components can be plugged into a software 
system, even during execution. This makes J-
Sim a truly platform-neutral, extensible, and 
reusable environment. 

J-Sim also provides a script interface to allow 
integration with different script languages such 
as Perl, Tcl or Python. A fully integrated J-Sim 
with a Java implementation of the Tcl 
interpreter (with the Tcl/Java extension) already 
exists and is called Jacl. So, similar to NS-2, J-
Sim is a dual-language simulation environment 
in which classes are written in Java (for NS-2, 
in C++) and “glued” together using Tcl/Java. 
However, all the public classes/methods/fields 
in Java can be accessed naturally in the Tcl 
environment without the need to export them to 
the Tcl environment as required in NS-2. 

This component-based architecture makes it 
possible to compose different simulation 
scenarios – for different networks’ architectures 
– from a set of basic components and classes 
proposed by J-Sim and/or defined by the user.  

The generic node structures defined in J-Sim 
along with the different implemented 
techniques are detailed in the following 

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 917 Issue 6, Volume 8, June 2009



sections. This is because our proposal is based 
on this platform. 

 
 

2.2.1 A generic node structure 
J-Sim proposes an implementation of an 

abstract network model “INET” [7] on the top 
of the component-based architecture. This 
model defines the generic structure of a node 
and several generic network components with 
their associated contracts.  

The internal node structure, either an end host 
or a router, is defined in INET in two 
layers instead of four layers as in the TCP/IP 
model or seven layers as in the OSI model. 
These two layers are the Upper Protocol Layer 
“UPL” and the Core Service Layer “CSL” 
presented in Figure 1. The UPL contains 
transport, signaling, and application protocol 
modules. The CSL provides a set of well-
defined services, which are common in most 
network architectures, to modules in the UPL. 
In some sense, the network layer, the link layer 
and the physical layer are encapsulated into the 
core service layer.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Users may then compose a network scenario 

in a plug-and-play fashion, by connecting 
components in their desired manner. Users may 
also subclass an appropriate component and 
redefine new attributes and methods to 
incorporate their own protocols and algorithms.  

2.2.2 Implemented techniques 
Different techniques are implemented within 

J-Sim like IntServ, DiffServ, MPLS and Active 
Networks.  
The IntServ technique is specified within J-Sim 
in 18 Java classes [6]. This implementation 
defines quality of services requirements in 
terms of end-to-end delay, inter-destination 
jitter, inter-packet jitter, and minimum 
bandwidth packet loss rate.  

A DiffServ package [8] is built on the top of 
the INET network model. This package 
implements the various classes that may serve 
as the building blocks for DiffServ, and 
includes markers/taggers, service profile, 
policers/shapers and queue management 
algorithms.  

The implementation of MPLS [9] within J-
Sim defines two basic components: forwarding 
table component and MPLS component. The 
forwarding table keeps information about the 
configured labels within the MPLS network by 
associating an IP prefix or an incoming label 
with an outgoing interface, and the MPLS 
component routes packets according to the 
configuration of the forwarding table. 

The Active Network [10] was implemented in 
a package that holds classes specific to the 
active network functionalities. In addition, 
minor modifications to some existing Java 
classes were also introduced. 
Other platforms 

NS-2 and J-Sim are platforms conceived for 
network simulations, not related to any type of 
networks. In the same category, there is OPNET 
[11], which is a commercial network simulator. 
Other types of platforms for simulating a 
specific network environment, such as INSANE 
[12] and ANTS [13] that respectively simulates 
ATM [14] and active networks [15] were also 
proposed. 

 
 
3 Platforms for MAS simulation  

Agents and MAS oriented programming is an 
advanced software-modeling paradigm 
proposed by researches in the distributed 
artificial intelligence domain. It addresses the 
need for software systems to exhibit rational 
human-like behavior in different domains. 

Core Service Layer (CSL) 

Transport   Routing      Signalling 

App1 App2 

Interfaces to other nodes 

UPL: 
Application layer 
Transports layer 
Protocols layer 

CSL: 
Network layer 
Link layer 
Physical layer 

Figure 1. The J-SIM architecture 

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 918 Issue 6, Volume 8, June 2009



Traditional software systems make it difficult 
to model rational behaviors and often programs 
written in these systems experience limitations, 
especially when attempting to operate in real-
time environments.  

MAS platforms are characterized by their 
architectures able to build systems that work on 
the full range of tasks expected from an 
intelligent agent, from highly routine to 
extremely difficult, open-ended problems. They 
have the ability to represent and use appropriate 
forms of knowledge and a full range of problem 
solving methods. They interact with the outside 
world and learn about all the aspects of the 
tasks executed by the agents and their 
performance on them. These types of platforms 
are goal-oriented, based on states and operators. 
They continually try to select and apply 
operators to states until the achievement of a 
specific goal.  

Different platforms were proposed for multi-agent 
systems simulation like JAFMAS, DECAF, JACK, 
DEMAS and others, each having its proper 
implementation and fields of application.  

 
 

3.1 JAFMAS  
The Java-based Agent Framework for Multi-

agent Systems “JAFMAS” [16] is a multi-agent 
system platform written in Java for developing 
cooperation knowledge and protocols between 
different agents. It provides sixteen main Java 
classes and the user, who desires to develop his 
application using JAFMAS, has to extend only 
four of these classes. 

This platform provides the essential 
communication, interaction and coordination 
mechanisms to application developers and 
offers the possibility to define different agents’ 
behaviors and enables these agents to work 
together and coherently achieve their goals and 
those of the multi-agent system as a whole. 

 
 

3.2 DECAF 
The Distributed Environment Centered Agent 

Framework “DECAF” [17], [18] toolkit 
proposes a platform suitable for research 
activities in the multi-agent systems domain. It 
allows the design, development, and operation 
of intelligent agents to achieve solutions in 

complex software systems. It provides the 
necessary architectural services, for building 
intelligent cooperating agents: communication, 
planning, scheduling, execution monitoring, 
coordination, learning and self-diagnosis. 
Control and programming of DECAF agents is 
assisted by a graphical user interface called the 
plan-editor.  

DECAF provides a platform for development 
of different agents’ behaviors and interactions. 
DECAF is written in Java and makes extensive 
use of the Java threads capabilities to get      
improved performance as each agent runs 
concurrently within its own thread. 
 
 
3.3 JACK 

JACK Intelligent Agents [19] is an agent 
oriented development environment fully 
integrated within the Java programming 
language to provide agent-oriented extensions 
to Java. This extension defines new base 
classes, interfaces and methods, provides 
additions to the Java syntax to support new 
agent-oriented classes, definitions and 
statements and also provides semantic extension 
(runtime differences) to support the execution 
model required by an agent-oriented software 
system. 

An agent is presented in JACK as an entity 
having a set of believes about the world, a set of 
events to respond to, a set of goals and a set of 
plans that describes how to handle the different 
goals and events. 
 
 
3.4 DMAS 

The Distributed Multi-Agent System Builder 
“DMAS Builder” [20] is a 100% Java 
development environment/tool that supports the 
development of multi-agent systems that are 
totally independent from the used operating 
system. It has two main components: the 
development environment and the package of 
classes supporting agent-oriented programming. 

DMAS provides a set of classes to help 
building a MAS application. The “Agent” class 
is the highest class in the agent hierarchy and 
contains features and methods required for any 
type of agents. An agent has an identifier, a 

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 919 Issue 6, Volume 8, June 2009



“Mailbox” to receive and send messages, a list 
of tasks to achieve, and a specific behavior. The 
agent could also build and integrate a 
knowledge base thanks to a list of classes 
provided for this purpose. 

DMAS offers a graphic specification and 
validation of all the provided components, a 
complete and automatic source code generation 
(in java) of all system components, and an 
exploration mechanism allowing system 
development and execution independent from 
DMAS builder. It also supports very good code 
extensibility and offers an abstraction of 
communication mechanisms and protocols 
between agents and various components. 
 
 
4 The proposed platforms 

To build a platform with both networking and 
MAS capabilities, we believe that it would be 
easier to extend one of the existing platforms in 
the networking domain with intelligent 
functionalities instead of extending a MAS 
platform with networking features. This is 
because our objective is to prove the efficiency 
of agents and MAS in resolving complex issues 
in networking, so the same agents’ 
infrastructure, with just different agents’ 
behaviors, will be integrated in different types 
of networks.  As most networking platforms 
implement different types of networks, it is 
easier to use them instead of implementing the 
different networks’ types in a MAS platform. 
 
 
4.1 Choice of a Network simulator 

Different simulation environments were 
proposed to simulate telecommunication 
networks as described in the previous sections. 
All these platforms, each within its objectives, 
have succeeded in providing users with 
approximation of the realistic functioning of 
their networks. To choose a platform for our 
proposal, we had to evaluate different aspects 
like the architecture of the software, the 
simulation framework and technique, the 
performance scalability, and the implementation 
of the standard Internet protocols. As a result 
the J-Sim/INET simulation environment was 
chosen.  

J-Sim/INET is a dual-language environment 
that seems to be a simple and well-defined 
component-based software architecture. Java is 
used to create components and a script language 
is used as a glue or control language that 
integrates components in a desired fashion at 
run time and provides a high-level dynamic 
control. These facilitate fast prototyping of 
customized simulation scenarios, and runtime 
configuration and diagnosis. Otherwise, J-Sim 
provides synchronization methods to further 
extend programming flexibility, and have the 
ability to work with both discrete event 
simulation and real-time process-based 
simulation. 

J-Sim implements different techniques like 
DiffServ, IntServ, MPLS and Active Networks 
and supports major Internet protocols like IP, 
TCP, UDP, OSPFv2, BGP-4, and the pseudo-
network interface drivers NIC, sockets, global 
Internet topology construction and IP address 
assignment. This offers the user the flexibility 
of implementing an application for any type of 
standard networks without the need to define 
standard protocols and techniques. 

Concerning NS-2, its architecture is not so-
structured and the mixture of compiled and 
interpreted classes makes it difficult to 
understand and validate NS-2 codes. Otherwise, 
NS-2 provides substantial support for 
simulation of TCP, routing, and multicast 
protocols, but due to the special node structure 
in NS-2, it is non-trivial, and sometimes 
difficult, to include other protocols/algorithms 
or accommodate other network architectures in 
it [6]. In addition, NS-2 has just some 
implementations of the standard techniques. 

Finally, the other platforms for Networks’ 
simulations are dedicated for a specific 
network. It is so obvious that these types of 
specialized environments cannot be used in our 
proposal as an open platform able to support 
simulations for any network type and protocol 
is required.  
 
 
4.2. Choice of a MAS simulator 

Different simulation environments were 
defined for the simulation of multi-agent 
systems as described above. An evaluation of 

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 920 Issue 6, Volume 8, June 2009



these platforms was proposed in [20]. This 
evaluation considers the following criteria: the 
tool’s methodology and flexibility, the learning 
and communication facilities, the simplicity of 
the transition between development and 
implementation, the database and MAS 
management support, the automatic code 
generation and graphical support, the code 
extensibility, the simplicity of the 
implementation and deployment, and finally 
documentation.  

Results showed that JACK offers great 
possibilities at the implementation level even if 
it requires a lot of effort, but it doesn’t have any 
specification at the methodology level and 
suffers from a great gap in terms of graphic 
utilities. DECAF and JAFMAS are 
environments supporting different levels of 
development process and emphasize planning 
and interactions between agents but do not deal 
with implementation and deployment. Finally, 
DMAS is considered in [20] as the “idealistic” 
complete MAS development environment that 
puts emphasis on development facility and 
simplicity, provides useful implemented options 
to programmers and offers several agent types, 
each having different characteristics and 
behaviors. 

For our proposed solution, we need to extend 
the J-Sim simulation environment with 
intelligent functionalities required for 
telecommunication networks applications. As 
none of the predefined platforms is dedicated 
for MAS simulation within telecommunication 
networks, we decided to build an extension to J-
Sim inspired from all the existent MAS 
platforms. This gives us the flexibility to choose 
from each MAS environment the features that 
fit the most the telecommunication networks’ 
requirements and also to add some required 
elements and features. 
 
 
4.3 J-Sim Extension 
    The implementation of the proposed model is 
based on an extension to the J-Sim simulation 
environment. J-Sim provides many standard 
functionalities and mechanisms for the building 
of a network node structure. These mechanisms 

and services are provided as components and 
packages.  

To add intelligent capabilities to the J-Sim 
node structure, we defined an agent package. 
The description of this package, its 
implementation and its interface with other 
existing packages and components within J-Sim 
are next presented along with the way to define 
agents’ behaviors related to specific 
applications. 
 
 
4.3.1 The agent package – Architecture 

The Agent package is developed in JDK1.4. 
As shown in Fig. 2, the agent package is 
structured in different components that provide 
the essential interaction/coordination and data 
management mechanisms for application 
developers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The user, according to the required agents’ 
type and behavior, defines the multi-agent 
system application. This application benefits 
from the services provided by the social model, 
which determines the way the agent 
communicates, cooperates, and interacts with 
other agents in the system in order to bring 
about a coherent solution. During its 
communication, the agent exchanges messages 
using a common agent-independent language 
defined by the Linguistic layer. In these 
messages, the agent exchanges resources and 
knowledge and then stores acquired data in the 
data model. To reason on this data, the agent 
implements a rule-base that contains the needed 
rules to decide about its future actions. These 
rules are invoked by the inference engine. 

Figure 2. The Agent Package 
Architecture

User Multi-Agent Application 

Databas Linguistic Resourc

Communication Infrastructure

Rule-base 

Social Model Inference 
E i

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 921 Issue 6, Volume 8, June 2009



4.3.2 The Agent package - java classes 
We propose an implementation of the agent 

package in 18 main java classes that provide the 
essential elements and entities for the 
developers of intelligent applications within a 
telecommunication network. Five of these 
classes, were originally taken from the 
JAFMAS platform with some modifications to 
adapt them to our proposed model. The classes 
of this package and the relationship between 
them are shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The relationship between the different models 

and java classes is described in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The agent processes data and rules, has a list 
of resources and manages conversations with 
other peers. When it receives a message, it takes 
different actions according to the message 
intent: if the message is related to a 
conversation, the agent sends it to the message 
router for processing. The message router 
directs it to the related conversation for 
treatment. The message will be so stored in the 
message queue of the conversation. The 
received message may hold information that 
modifies the conversation state and may induce 
rules execution or require being stored in the 
agent’s database. If the agent receives a 
message providing data, it updates its database. 
In case the agent receives information 
concerning a resource, it directs it to the 
concerned resource manager for processing. 
 
 
4.3.3 Interfacing the agent package and other 
components 

The agent package was integrated to J-Sim 
and implemented on the top of the core service 
layer (CSL) as shown in Figure 5. This gives 
the agent the possibility to benefit from the 
different services provided by the CSL 
especially those related to message transfer and 
information retrieval. 

 
 
 
 
 
 
 
 
 
 
 

 
 
The core service layer provides a set of well-
defined services to the modules implemented in 
the upper protocol layer. These services are: 
- Data services give the upper protocol layer 

“UPL” the possibility to send and receive 
packets to and from the network, via the data 
services ports.  

Agent extends 
Component 

Belief_Sets 

BeliefSet 

data 

Manipulates

Is a list of 
Instantiates 
and 
manipulates 

Group 

Is member of 

RescHistoryResource 

RequiredResc 
extends 

Resource 

ProvidedResc 
extends 

Resource 

Has Has  

ContractNetReply 
extends 

Conversation 

ContractNet 
extends 

Conversation 
is a 

is a Manipulates 

Manipulates 

Conversation 

ConvRule 

MsgRouter 

IMessage 

MsgQueue 

has 

Adds 
message 

Instantiates 
and controls 

Has 

Instantiates and 
controls 

Creates 
and sends 

Is a Is a 

IMessage 

Creates 
and sends 

RuleBase Rules 
Controls Has 

Figure 4. Relationship between the different 
entities of the agent package 

Core Service Layer (CSL) 

Transport      Routing       Signalling    Agents 

App1 App2

Interfaces to other nodes 

UPL: 
Application layer 
Transports layer 
Protocols layer 

CSL: 
Network layer 
Link layer 
Physical layer 

Figure 5. The J-SIM architecture 

Figure 3. Classes of the package and their 

Resources 

Possesses 

Social Model 

Agent 

Possesses 

ConvRul 
Conversation  

Rules and 
Data 

Communication Model 

IMessage 

MsgQueue 

J-Sim
 com

m
unication aspects 

Routes 

Receives 

MsgRouter 

Transmit 
message  

Answers 

Have 

Manages 

Request data 

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 922 Issue 6, Volume 8, June 2009



- Identity services allow the upper protocol 
layer “UPL” modules to query or configure 
the identities of the node.  

- Routing table services allow UPL modules 
to query or configure the routing table of the 
node.  

- Interface/Neighbor services, allow UPL 
modules to query the interface/neighbor 
information related to the different 
interface(s) of the node.  

- Multi-cast services offer the possibility to 
join and leave a group; 

- Packet filter configuration services, allow 
UPL modules to configure the packet filters 
in the core service layer; 
 

Other interfaces could be defined between the 
agent package and applications or protocols 
implemented on the top of the core service 
layer. Specification of these types of interfaces 
is related to the intelligent application defined 
by the user as extension to the agent package. In 
order to establish an interface between the agent 
package and a specific component, the user has 
to define a port in both components and specify 
a contract to formalize the exchange of 
information. 

 
 

4. How to implement a specific application 
In order to implement a specific application, 

the user has to proceed in two steps: 
Specification and implementation. 
 
 
4.1  Step1 – Specification 

Specification means to identify the different 
types of agents, members of the multi-agent 
system, the groups, the production rules and 
resources. 

According to the multi-agent system 
specificities, one or different agent types may 
be defined. In case all the agents have the same 
aims and provide common functionalities, only 
one agent type is required. For each defined 
type, the user has to specify the agent behavior, 
which defines the way the agent treats incoming 
information and interacts with other agents. 

Within the multi-agent system, different 
comities and groups having specific properties 

could be defined. The identification of these 
different groups should be also performed 
within this phase. This is in addition to the 
specification of the resources required and 
provided by the agent to store data along with 
the different reasoning rules used by the agent 
to decide future actions. 
 
 
4.2  Step2 – Implementation 

The first task in the implementation is to 
define the extension to the “agent.java” class. 
This class should contain parameters and 
methods that reflect the agent type and 
determine its behavior.  

The agent’s knowledge/belief is represented 
in a tuple-based relational model. We have so to 
determine the name and type of each element of 
a specific relation. This requires an extension of 
the “BeliefSet.java” class for each required 
relation type. An extension of the data class is 
also required to define the different types of 
elements that constitute a relation. 

In order to define the different resources 
required and provided by the agents, extension 
to both “ProvidedResc.java” and 
RequiredResc.java” classes should be 
implemented for each resource. Also, the 
production rules needed by the agent are 
specified in the extension to both “Rules.java” 
and “RuleBase.java” classes. 

Finally, a list of java classes that extend both 
“Conversation.java” and “convRule.java” 
classes should be implemented to specify the 
interaction of the agent with other peers within 
the multi-agent system. As conversation is 
defined as an agent’s plan to achieve a goal, 
based on interactions with other agents, we 
have to identify every possible conversation 
that each agent can engage in, and represent 
those conversations by developing a finite state 
machine model for each of them. These finite 
state models identify the different conversation 
classes in the application. The finite state 
machine model that represents conversations is 
rule-based descriptions of what an agent does in 
certain situations. These rules define each 
transition of the finite state machine. We have 
so to identify in the extension of 
“ConvRule.java” the various execution 

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 923 Issue 6, Volume 8, June 2009



conditions and actions for each rule of the 
conversation. 

 
 

5. Simulation results 
We tested our dual-simulation environment 

by integrating agents in a DiffServ network to 
resolve the problem of service quality 
degradation of some specific DiffServ traffic 
types in case congestion occurs. 

We consider two sources S1 and S2 that 
respectively send to two destinations D1 and D2 
traffic with two different levels of quality of 
services, where the traffic sent by S1 demands a 
higher level of quality of services than the 
traffic sent by S2. The throughput of both 
sources S1 and S2 is configured as to force 
congested situation in one of the DiffServ 
network links. 

Figure 6 shows great loss of S2 packets if 
congestion occurs and no agents are 
implementation within the DiffServ nodes. 
After the integration of agents within the 
DiffServ nodes better results were perceived. 
These agents have a behavior that tries to 
increase the S2 traffic throughput (minimize 
drops) and balance the traffic load within the 
network when congestions occur. These results 
are shown in Figure 7. 

Figure 7 shows for both S1 and S2 traffics, 
the difference between the throughputs 
perceived by the sources and the destinations. 
In this simulation all the S1 and the S2 traffic 
are received by the destination, without drops of 
S2 packets.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
6. Conclusion 

This paper proposes an implementation of a 
new type of platforms for simulating agents and 
multi-agent systems within telecommunication 
networks. The implementation is based on an 
extension of the J-Sim networks’ simulation 
platform with intelligent capabilities. The 
extension has been inspired from platforms 
dedicated to MASs simulations. 

The proposed platform was tested for 
integrating agents and MAS in 
telecommunication Networks. Different agents’ 
behaviors has been defined and compared, for 
example an agent behavior was specified to 
prevent and resolve congested situations in 
networking. The simulation results show great 
improvement in the network behavior after the 
integration of the intelligence represented by 
the agents’ implementation. Other simulations 
are presented in our previous works [22] and 
[23], they all give better results after agents 
integration. 

Finally, we can conclude that the proposed 
dual simulation environment enabled to 
measure the efficiency of adding different 
levels of intelligence - represented by intelligent 
agents - in different types of networks. We 
believe that agents and MASs will help the 
future networks’ generation reaching a high 
level of service treatment and network 
management and control. This requires the 
usage of the dual simulation environment 
described in this paper to test and compare 
different agents’ behaviors. 

 

S2 lossNo S1 
loss 

Figure 6. DiffServ network without 

 Throughput 

Figure 7. The throughput of the S1 and S2 
traffic after the agent’s integration

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 924 Issue 6, Volume 8, June 2009



 References 
 
[1] Merghem L., “Une Approche 

Comportementale pour la Modélisation et 
la Simulaion des Réseaux de 
Télécommunications”, P.H.D. report, 
Paris 6 University (France), 2003. 

[2] NS-2, available at: 
www.isi.edu/nsnam/ns/, updated 2008. 

[3] OTCl http://otcl-
tclcl.sourceforge.net/otcl/, 2007 

[4] TCL 
http://www.tcl.tk/man/tcl8.5/tutorial/tcltut
orial.html 

[5] http://www.isi.edu/nsnam/ns/doc/node1.ht
ml 

[6] J-Sim team, Ohio State University, 
available at: www.J-Sim.org, updated 
2005. 

[7] http://www.j-
sim.org/drcl.inet/inet_tutorial.html, 2003 

[8] http://www.j-
sim.org/drcl.diffserv/diffserv.html , 2003 

[9] http://www.info.ucl.ac.be/~bqu/jsim/mpls
_desc.html , 2003 

[10] http://www.j-sim.org/contribute.html, 
2006 

[11]  http://www.opnet.com , 2008 
[12] Mah B. A., “INSANE Users Manual”, the 

Tenet Group, Computer science division 
of the University of California at 
Berkeley, available at: 
http://citeseer.ist.psu.edu/499053.html   

[13] Wetherall D., Guttag J. and Tennenhouse 
D., “ANTS: A Toolkit for Building and 
Dynamically Deploying Network 
Protocols”. IEEE OPENARCH'98, San 
Francisco, CA, April 1998. 

[14] Muller N., “ATM Introduction to 
Asynchronous Transfer Mode”, available 
at: 
www.ghostship.com/infosyssec/secatm1.h
tm, 1995. 

[15] Tennenhouse D., Smith J., Sincoskie D., 
Wetherall D. and Minden G., “A Survey 
of Active Network Research”, IEEE 
Communications Magazine, Vol. 35, No. 
1, 1997, pp 80-86. 

[16] JAFMAS team, available at: 
http://www.ececs.uc.edu/~abaker/JAFMA
S/ 

[17] McGeary F., “DECAF Programming: An 
Introduction”. Foster McGeary Computer 
and Information Sciences University of 
Delaware mcgeary, available at: 
www.eecis.udel.edu/~decaf/papers/DECA
FIntro.pdf, April 9, 2001. 

[18] Graham J. R., Decker K. S. and Mersic 
M., “DECAF – A Flexible Multi-Agent 
System Architecture”. Kluwer Academic 
Publisher, September 1, 2000. 

[19] Barbuceanu M and Fox M., “COOL: A 
Language for Describing Coordination in 
Multi Agent Systems”. In Proceedings of 
the First International Conference on 
Multi-Agent Systems (ICMAS-95), 1995. 

[20] Garneau T. and Delisle S., “A New 
General Flexible and Java-Based Software 
Development Tool for Multi-Agent 
Systems”. In Proceedings of the 2003 
International Symposium on Information 
Systems and Engineering (ISE 2003), 
Montreal (Quebec, Canada), July 2003. 

[21] J-Sim team, Ohio State University, “The 
Abstract Network Model (INET)”, Part I, 
available at: : www.J-Sim.org, December 
15, 2003. 

[22] N. Meskaoui, D. Gaiti and, K. Y. Kabalan, 
“Implementation of a multi-agent system 
within a Diffserv network to improve its 
performance.” In Proc. of the 2003 
International Symposium on Information 
Systems and Engineering, ISE2003, 
Montreal, Canada, July 2003. 

[23] N. Meskaoui, “A framework to model and 
simulate multi-agent systems within 
telecommunication networks: new 
environment, tools and behaviors,” P.H.D. 
thesis, Paris 6 University, Paris, France, 
2004. 

 
    

WSEAS TRANSACTIONS on COMPUTERS Nada Meskaoui, Dominique Gaiti, Karim Y. Kabalan

ISSN: 1109-2750 925 Issue 6, Volume 8, June 2009




