
The Software Quality Economics Model for Software Project
Optimization

LJUBOMIR LAZIĆ, AMEL KOLAŠINAC, DŽENAN AVDIĆ

Technical Faculty
University of Novi Pazar

Vuka Karadžića bb, 36 300 Novi Pazar
SERBIA

llazic@np.ac.yu, akolisinac@np.ac.yu, dzavdic@np.ac.yu. http://www.np.ac.yu

Abstract: - There are many definitions of quality being given by experts that explains quality for manufacturing
industry but still unable to define it with absolute clarity for software engineering. To enable software designers
to achieve a higher quality for their design, a better insight into quality predictions for their design choices is
given. In this paper we propose a model which traces design decisions and the possible alternatives. With this
model it is possible to minimize the cost of switching between design alternatives, when the current choice
cannot fulfill the quality constraints. With this model we do not aim to automate the software design process or
the identification of design alternatives. Much rather we aim to define a method with which it is possible to
assist the software engineer in evaluating design alternatives and adjusting design decisions in a systematic
manner. As of today there is very little knowledge is available about the economics of software quality. The
costs incurred and benefits of implementing different quality practices over the software development life cycle
are not well understood. There are some prepositions, which are not being tested comprehensively, but some
useful Economic Model of Software Quality Costs (CoSQ) and data from industry are described in this article.
Significant research is needed to understand the economics of implementing quality practices and its behaviour.
Such research must evaluate the cost benefit trade-offs in investing in quality practices where the returns are
maximized over the software development life cycle. From a developer’s perspective, there are two types of
benefits that can accrue from the implementation of good software quality practices and tools: money and time.
A financial ROI calculation of cost savings and the schedule ROI calculation of schedule savings are given.

Key-Words: - Software Quality, Quality Cost Model, TQM, Cost optimization, ROI calculation

1 Introduction
Most important thing in analysis of the cost of
quality is visibility in development cycle. It is the
visibility gained form cost of quality analysis that
enable the QA people involved to focus their
attention on those activities which discover, and
correct the root cause of the software defects. This
root cause analysis (through Pareto technique or any
other method) allows the QA people to determine
how the development process can be improved to
prevent major area cause of defects.
There are many definitions of quality being given by
experts that explains quality for manufacturing
industry but still unable to define it with absolute
clarity for software engineering [1,12]1. In cost

1 This work was supported in part by the Ministry of
Science and Technological Development of the Republic
of Serbia under Grant No. TR-13018.

quality analysis we should identify what we are
trying to achieve, the goals should be defined and
that should be measurable. So that analysis can
verify that it is actually increasing the quality level
or not.
There is very little research is available about what
quality initiative should be taken and how it reduces
your development cycle and improves product
quality. Significant research is needed to understand
the economics of implementing quality practices
and its behaviour. Main focus in quality
management is how to make profitable decisions on
quality expenditures [2-6].
With respect to quality initiatives we can divide the
organizations into two categories, one are those who
do not believe that process improvement and
training of the human resources would bring in any
improvement in quality. They think this is extra
cost. Whereas second kind of organizations who
have realized the importance of processes and its
continuous improvement, plus good care of the staff

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 21 Issue 1, Volume 8, January 2009

mailto:llazic@np.ac.yu
mailto:akolisinac@np.ac.yu
mailto:dzavdic@np.ac.yu

and their knowledge upgrading [7-10].
Organizations those who have realized the
importance of high quality and process efficiency
normally find it difficult to start the improvement
cycle [6-9]. They find it difficult to convince their
top management to allocate budget for the quality
initiatives. The real issue is of investment, not the
cost. The investment in software quality, like any
investment has an immediate cost, with an expected
net payback. There is where Quality Cost Analysis
could be used as effective tool to make them
understand the ROI [7,11]. As we all know that top
management does understand the language of
money very well. They would like to increase sales
and have more profits. Task of QA people is to
relate the Cost of quality as investment and its
benefits are increased revenue.
To enable software designers to achieve a higher
quality for their design, a better insight into quality
predictions for their design choices should be given.
In this paper we propose a model which traces
design decisions and the possible alternatives. With
this model it is possible to minimize the cost of
switching between design alternatives, when the
current choice cannot fulfill the quality constraints.
With this model we do not aim to automate the
software design process or the identification of
design alternatives. Much rather we aim to define a
method with which it is possible to assist the
software engineer in evaluating design alternatives
and adjusting design decisions in a systematic
manner.
Case studies of the success stories can be presented
to the top management as tool to increase their
understanding high quality and how to go about
that. The major problems we see with these case
studies are that there is no local research available
[8,9]. The possible argument of the top management
could be; that these practices do not suits our culture
or our environment. What is required is the research
in preparing the local case studies and research for
the organizations that have implemented the TQM
and those who have not. The comparison of both
will provide good starting point for the management
of such organization. There are some prepositions,
which are not being tested comprehensively, but
some useful Economic Model of Software Quality
Costs and data from industry are described in this
article [5-12]. Significant research is needed to
understand the economics of implementing quality
practices and its behaviour. Such research must
evaluate the cost benefit trade-offs in investing in
quality practices where the returns are maximized
over the software development life cycle.

2 Software Quality Dimensions and
Models

2.1 Software quality

One would expect software quality to determine
the cost for developing software. It would also
determine the value of the software, hence the
market price. To an economist, optimal quality
would normally be different from technical
perfection. Before we can identify the value-
maximizing strategies, we need to know more about
the different dimensions of software quality and
empirical evidence how quality is perceived and
valued, both by the developing engineers and by
users or on the market. Is it possible to come up
with general models for the optimal (economical)
Cost of Software Quality. The question is how
important different quality dimensions are from an
economical point of view: That the code is optimal?
That the user-interface is perfect balance between
different dimensions of software quality, e.g.
between different levels of user-friendliness and
long run handling efficiency?

Although no standard industry definition exists
for what constitutes good quality in software, it is
generally taken to mean that a software product
provides value (satisfaction) to its users, makes a
profit, generates few serious complaints, and
contributes in some way to the goals of humanity
(or at least does no harm) [1,7,11]. Software quality
is difficult to define because there is no single
comprehensive and complete standard definition of
its lexicon. Various aspects and terms are found in
sources such as ISO 9000-3, Institute of Electrical
and Electronics Engineers Software Engineering
Standards, and various books on the subject.

The following are the key dimensions of software
quality.

• Level of satisfaction: The degree to which
customers or users perceive that a software product
meets their composite needs and expectations.

• Product value: The degree to which a software
product has value for its various stakeholders
relative to the competitive environment.

• Key attributes (“ilities”): The degree to which
a software product possesses a combination of
desired properties, e.g., reliability, portability,
maintainability.

• Defectiveness: The degree to which a software
product works incorrectly in target user
environments due to debilitating operational defects.

• Process quality: In relation to the development

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 22 Issue 1, Volume 8, January 2009

process by which the product is produced, it means
good people doing the right things in an effective
way.

A definition fashioned from the above aspects
should be created for your organization and for each
project. Every application or business domain faces
a specific set of software quality issues, and
software quality must be defined accordingly. For
example, mission-critical applications have
extremely stringent operational needs, whereas
typical information system applications must focus
on general measures of customer satisfaction. It also
is important for each software development project
to define its specific meaning of software quality
during the planning phase. Such a definition
contributes to the basis for setting objectives and
practical measures of quality progress and
determination of readiness for release to customers.

The new standard SQuaRE [13] consists of 14
documents grouped under five thematic headings:

• Quality Management, defining all common
models, terms and definitions referred to by all other
standards in the SQuaRE series,

• Quality Model, probably updated version of
ISO/IEC 9126-1 [22],

• Quality Measures, derived from ISO/IEC 9126
and ISO/IEC 14598,

• Quality Requirements, standard for supporting
the specification of quality requirements, and

• Quality Evaluation, providing requirements,
recommendations and guidelines for software
product evaluation.

Characteristics of software product lines as well as
experience with several existing quality modeling
approaches have guided us in defining three main
requirements for appropriate quality modeling:
flexibility, reusability, and transparency.

Flexibility - A quality model should be flexible
because of the context dependency of software
quality. There are several quality contexts: company
context, project context and process context.
Company context includes the unique characteristics
of a specific software company where the model is
used. A flexible quality modeling approach should
be applicable across different companies. However,
employment of the approach in different companies
should result in unique quality models that reflect
the unique characteristics of each single company.
Project context combines unique characteristics of a
particular software project like its domain (e.g., web
application, embedded system) or different views on

the quality represented by different project
stakeholders.

For example, a system end-user may think about
software reliability in terms of failure density,
whereas a software developer may also notice the
relation between reliability and software design
complexity. A flexible quality modeling approach
should be applicable to any project domain and
incorporate views (on quality characteristics and
their relationships) of all relevant project
stakeholders.

Process context reflects the characteristics of a
software development process like its stability or
availability of measurable objects in different
process phases. A flexible quality model should not
assume a stable process. The modeling approach
should allow creating the model tailored to
company- specific characteristics of the
development process. Postulating a stable process
would make a modeling approach inapplicable in
most software companies due to the lack of stable
processes. A very important issue in quality
modeling is the phases of the software lifecycle to
which the model is applicable. In essence, quality
modeling is more effective the earlier it can start in
the software lifecycle, and the more process phases
it embraces. From the perspective of controlling the
quality, early quality evaluation allows timely
identification and elimination of potential quality
problems. For instance, elimination of a design
defect during software operation could cost a
hundred times as much as if the defect would be
identified and removed already in the design phase.

In early phases of the software lifecycle, hardly any
measurable items are available. Therefore, the
flexible approach should integrate all the
characteristics of a software project environment
that influence the quality of a software product.

Those could be product characteristics (e.g., design
complexity), process characteristics (e.g., inspection
efficiency) as well as resource characteristics (e.g.,
designer experience). To improve model accuracy, it
should also take advantage of people’s experience
and, besides quantitative (measurement-based) data,
it should cope with qualitative input, e.g., experts’
assessments. During subsequent phases of
development both, the software system and the
whole software project environment are the subjects
of continuous change. As the project evolves, new
products are developed, new processes are applied,
and more measurable artifacts are available. In order

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 23 Issue 1, Volume 8, January 2009

to control the quality of a software product, the
quality model should evolve in parallel to software
changes. The modelling approach should cope with
missing data as well as allow easy re-estimation of
quality evaluations, as the new and more precise
data appear.

2.2 Review of Existing Quality Models
A quality model is the set of characteristics and the
relationships between them, which provide the basis
for specifying quality requirements and evaluating
quality. Of course, the quality model used will
depend on the kind of target product to be evaluated.
In this sense, the current standards and proposals
define “generic” quality models. The main problem
is that these models are too general for specific
areas, such as components or component-based
systems design (CBSD). In this sense, some authors
have started to propose particular models and
metrics for software components [14,15]. In
particular, our initial proposal is shown in Table 1.
This model is a refinement of ISO 2196,
particularizing it for components: some of the sub-
characteristics disappear, and others change their
meaning. See reference [14] for a detailed
description of the model.

Table1: Comparison between the quality models [2]

In addition, it is important to classify the model’s
quality characteristics according to several criteria
[16]:

1) First, we need to discriminate between those
characteristics that make sense for individual
components (that we will call local characteristics)
and those that must be evaluated at the software
architecture level (global characteristics). For
instance, Fault Tolerance is a typical quality
characteristic that depends on the software

architecture of the application. On the contrary,
Serializable is a property applicable to individual
components only.

2) The moment in which a characteristic can be
observed or measured also allows establishing
another classification. Thus, we have those
characteristics observable at runtime (e.g. Usability)
and those observable during the product life-cycle
(e.g. Maintainability) [17].

3) We need to have also into account the phase
within the CBSD life cycle where the quality
attribute is applicable: Assessment, Integration,
Testing, Operation, or Maintenance.

4) It is also important to identify the target users of
the quality model, as ISO standards explicitly state.
In our case, these users are mainly software
architects and designers, which need to evaluate the
COTS components available in software
repositories (or that can be bought from software
components vendors) in order to be incorporated
into the software product they are building. In this
sense, the model focuses more on the
“programmatic” interfaces of components than on
their “user” (GUI) interfaces, i.e., we are
particularly concerned with the API’s defining the
services provided by the components so they can be
composed and integrated with other programs.
Other kinds of possible users include: acquirer,
evaluator, developer, maintainer, supplier, end-user
and quality manager.

5) For COTS components, it is essential to
distinguish between internal and external metrics.
Internal metrics measure the internal attributes of
the product (e.g. specification or source code)
during design and coding phases. They are “white-
box” metrics. On the other hand, external metrics
focus on the system behavior during component
testing and operation, from an “outsider” point of
view. External metrics are more appropriate for
COTS components, due to its “black-box” nature.
However, internal metrics cannot be completely
discarded, since some internal attributes of a
component may provide an indirect measurement of
its external characteristics. These metrics are also
valid to the component developer, who uses them to
assess the quality of the product produces. In case of
component based systems internal metrics are also
needed, since they will help evaluate the quality of
the composition of the internal components that
make up the system. Therefore we will distinguish
between four main categories: External to a

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 24 Issue 1, Volume 8, January 2009

component-based system; External to a COTS
component; Internal to component-based system;
and, Internal to a COTS component Finally, it is
important to note that there are other kind of
marketing characteristics such as price, technical
support, license conditions, etc.—not directly
related to technical quality—which may be of great
importance when selecting components. In this
paper we will concentrate on quality characteristics
only, leaving the rest of characteristics for further
research.

2.3 Comparison of the Quality Models
According to [18], there are two kinds of
approaches to model product quality: fixed -model
and define-your-own model.

The fixed-model solution provides a fixed set of
qualities so that identification of customer-specific
characteristics results in a subset of those in a
published fixed model. To control and measure each
quality characteristic, the characteristics, measures,
and relationships associated with the fixed model
are used. Examples of such models are presented in
articles [19-25].

They contrast the define-your-own-model approach,
where not a specific set of quality characteristics is
defined, but rather – in cooperation with the user – a
consensus on relevant quality characteristics is
identified for a particular system.

These characteristics are then decomposed (possibly
guided by an existing quality model) to measurable
quality characteristics and related metrics. The
relationships between quality characteristics and
sub-characteristics could then be defined either
directly by project stakeholders (directly-defined
model) or generated automatically (indirectly
defined model). Directly-defined models have the
form of dependency graphs and examples of such
approaches are presented in: [26-30].

Indirectly-defined models result from the
application of various techniques, so that software
project stakeholders can influence the quality model
by choosing the technique and its parameters.
However, they have no direct influence on the
output quality model. Quality relationships
represented in such models are often so complex
that project stakeholder has difficulties with
understanding them. The main domains from which
such models come are mathematics and artificial
intelligence. There are also some known attempts to

employ other approaches such as multi criteria
decision aid [31]. Examples of mathematical models
are: multiple regression models [32], Alberg
diagrams [33], and logistic regression models [34].
Typical artificial intelligence approaches are:
decision and classification trees [22], genetic
algorithms [36], neural networks [37], case-based
reasoning [38], data mining [39], and fuzzy expert
systems [40].

Fixed -model approaches lack the flexibility
requirement. They define a constant set of quality
characteristics and relationships between them.
However, it is unrealistic to assume that it is
possible to define a prescriptive view of necessary
and sufficient quality characteristics to describe
quality requirements at every company, for every
project and every stakeholder. There is probably
some amount of quality characteristics and
relationships universally true for all organizations
and projects, but most of them differ from
organization to organization and from project to
project.

Horgan [41] tries to identify such universal
characteristics to compare quality across projects.
He introduces Key Quality Factors (KQFs) as
common for every project and every company.
However, KQFs are high -level quality
characteristics like maintainability or correctness
already known from ISO9126 [22] or McCall’s [21]
models. Such an approach limits the comparability
of project quality to only high-level characteristics.
Furthermore, the level of reusability of quality
experience gained in past projects and stored in such
universal models depends on the level of project
similarity and is usually limited by the lack of
indicators of similarity.

The common problem of fixed-model approaches is
that they are limited to quantitative (measurement-
based) and product-related data, whereas in early
stages of the software lifecycle hardly any
measurable products are available.

Some of the latest fixed-model methods (e.g., [25])
broaden the scope of measurement on processes and
resources but are still unable to profit from
qualitative data like, for example, experts’
assessments.

Fixed-model approaches lack transparency in a way
that they impose the model architecture without
providing the logic behind it and without describing
how the higher-level characteristics are decomposed

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 25 Issue 1, Volume 8, January 2009

to lower-level sub-characteristics and metrics. They
also do not provide guidelines on how to use
measurement results to evaluate software product
quality. Some models seem not to be even
consistent as how the characteristics are
decomposed. In addition the distinction between
particular quality characteristics according to their
definitions is not clear. For example, the average
developer will not be able to distinguish between
characteristics like interoperability [21], adaptability
[22], and configurability [24], as they might be
regarded as being identical. Define-your-own-model
approaches address some of transparency and
flexibility weaknesses of fixed-model approaches.
They do not impose any prescriptive set of
characteristics, so that product-, process- and
resource-related characteristics could be combined.
Directly-defined models like SQUID [29] provide a
description of how to decompose high-level quality
characteristics into lower-level sub-characteristics
and metrics. However, they say hardly anything
about how to compose measurement data and
propagate it into quality prediction. The exception is
the approach presented in [30] that uses Bayesian
Belief Nets (BBNs) to propagate quality
assessments from a graph based model.

Indirectly-defined models also cope with combining
measures into quality evaluations, however, they
face some transparency and flexibility problems.
For example, statistical approaches deal with the
problem of composing metrics into quality
prediction using, for instance, regression equations.

Nevertheless, Ohlson and Alberg [33] claim that
character of measurement data only allows ordering
modules according to their quality rather than giving
objective quality assessments. They also point out
that many statistical models that assume normal
distribution are applied to model software quality,
whereas in many cases such assumptions cannot be
made. As far as the reusability of statistical models
is concerned, only general conclusions coming from
multiple applications of the model are usually
reused as guidance within other projects. For
instance, Briand and Wuest [32] state that coupling
between software modules indicates quality risks,
but the same conclusions cannot be made regarding
cohesion.

The quantitative character of the input for statistical
models limits their application in early stages of the
software lifecycle where only few measurement
objects are available. Companies that have no
measurement programs may experience difficulties

with the efficient application of mathematical
models in any stage of the software lifecycle.

However, statistical models, unlike directly-defined
ones, do cope with redundant and contradicting
quality characteristics. The Principal Component
Analysis could be employed to identify a non -
redundant set of characteristics and metrics. Some
more interactive solution could be found in one of
the recent approaches to model non –functional
requirements: QARCC [20] and NFR -Framework.
In those approaches, the user supported by the
automated tool identifies overlaps in the graph-
based model.

Recent experiments with artificial intelligence
approaches have not brought any breakthrough
solutions either. Despite the possibility of
combining qualitative and quantitative data for more
exact early evaluations, their ability to reuse quality
experiences across projects is still limited by project
similarity. Machine learning models like decision
trees or neural networks require a significant
amount of training data to achieve satisfactory
accuracy of quality estimations. Even then, the
result of an evaluation could be of very low
accuracy when an evaluated project differs
substantially from the past ones. In addition, the
structure of a neural network lacks transparency.

An important problem, common to all kinds of
quality models, is still the lack of comprehensive
guidelines on how to produce a consensus view of
quality characteristics and their relationships [41],
as well as the inability to reuse quality experiences
across different projects and companies to improve
the efficiency of quality estimation.

The last issue is tool support. Since quality models
should to support software practitioners and
minimize quality assurance effort, automated tools
are required. Most of the existing quality approaches
include dedicated software tools.

In general, there is no consensus yet on how to
define and categorize software product quality
characteristics. Here we will try to follow as much
as possible a standard terminology, in particular the
one defined by ISO 9126 [22]. In ISO 9126, a
quality characteristic is a set of properties of a
software product by which its quality can be
described and evaluated. A characteristic may be
refined into multiple levels of sub-characteristics.
An attribute is a measurable physical or abstract
property of an entity. By making a measurement, a

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 26 Issue 1, Volume 8, January 2009

- Part 3: Internal Metrics measure is assigned to an attribute of an entity,
using a metric. A metric is the defined measurement
method and the measurement scale and the measure
is the number or category assigned to an attribute.

- Part 4: Quality in use metrics

Moreover, this document (ISO 9126-1) – Quality
Model – contains a two-part quality model for
software product quality, that is:

The Table 1 from [2] compares characteristics of
different quality models. The table illustrates the
characteristics and their updates during the last 30
years.

1. Internal and external quality model;
2. Quality in-use model.

The first part of the two-part quality model
determines six characteristics in which they are
subdivided into twenty-seven sub-characteristics for
internal and external quality, as in Figure 1. These
sub-characteristics are a result of internal software
attributes and are noticeable externally when the
software is used as a part of a computer system. The
second part of the two-part model indicates four
quality in-use characteristics, as in Figure 2.

Besides the famous ISO 9000, ISO has also release
the ISO 9126: Software Product Evaluation: Quality
Characteristics and Guidelines for their Use-
standard [22] (among other standards). ISO 9126 in
the table is based on revision from 1998, which is
version between ISO/IEC 9126:1991 and ISO/IEC
9126:2001.
The ISO/IEC 9126:2001 contains 4 parts:
- Part 1: Quality Model
- Part 2: External Metrics

Fig. 1. ISO 9126 quality model for external and internal quality (characteristics and sub-characteristics)

Finally, the fourth document of the ISO 9126 series
– quality in-use measures – contains a basic set of
measures for each quality in-use characteristic,
explanations of how to apply them, and examples of

how to use them in the software product lifecycle.
The quality in-use measures shown on Fig. 3 are
classified by the characteristics defined in ISO
9126-1 and Guidelines for their use [22].

Fig. 2. ISO 9126 quality model for quality in-use (characteristics)

3. Maintainers. Furthermore, this set of ISO standards could be used

by the following intended users during the software
development life cycle:

4. Evaluators.
5. Acquirers.
6. Suppliers. 1. Developers.
7.Users2. Quality managers.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 27 Issue 1, Volume 8, January 2009

Fig. 3. ISO 9126: Software Product Evaluation: Quality Characteristics and Guidelines for their Use

This paper is going to show that as new domains
evolve and are understood there is a need to review
our interpretation of quality in those new domains
and where appropriate new domain-specific quality
factors identified as in a new, fast growing area of
Web design. Web site development is maturing from
the enthusiastic experimental practice of early years
to a more professional discipline, addressing the
needs of Web site visitors and owner organizations.
Quality is central to this maturing and it is necessary
to have a full understanding of the meaning of
quality in the context of the ever-changing Web.
In order to understand the quality requirements of a
Web site, it is necessary to consider the purpose of
Web site software. From a user perspective there is a
substantial range of “need-to-include” features,
which are appropriate to Web sites.
Web sites need to be easy-to-find, easy-to-download
and easy-to-understand. Users need to be confident
with the content of the site and with the objectives
of the site owner. Web sites need to be interactive
and need to incorporate a full range of navigational
aids. From an organizational perspective, Web site
software is intended to communicate an
organizational image and message, to inform
visitors to the site, to support access to information
and knowledge and to support the sale of products

and services through electronic commerce. These
objectives for Web site applications are different to
those of traditional applications, which generally
perform a data processing activity. Consequently,
Web sites have different quality considerations.

This paper identifies five new quality factors for the
Web (visibility, credibility, intelligibility,
engagibility and differentiation), together with their
characteristics and a checklist of enablers, which can
be used by specifiers, designers, developers and
evaluators to create quality Web sites. All of these
quality factors must be considered as part of a Web
site development strategy. However, they were
devised prior to the commercialization of the
Internet and are more focused towards traditional
data processing and information retrieval.

This research shows that they are insufficient for
the requirements, opportunities and challenges for
both user and organization, which are presented by
the changing and active Web. Also, the last decade
marked the first real attempt to turn software
development into engineering through the concepts
of Component-Based Software Development
(CBSD) and Commercial Off-The-Shelf (COTS)
components. The idea is to create high-quality parts

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 28 Issue 1, Volume 8, January 2009

and join them together to form a functioning system.
One of the most critical processes in CBSD is the
selection of the COTS components from a
repository that meet the user requirements. Current
approaches try to propose appropriate quality
models for the effective assessment of such
components. These proposals define quality
characteristics, attributes, and metrics, which are
specific to the particular nature of COTS
components and CBSD. However, we have found
that the information required evaluating those
components using those quality models and metrics
is not usually available in the existing commercial
software repositories. Depending on the projects’
similarity level quality model should support the
reuse of measurement data as well as quality
characteristics and their relationships. On the one
hand, reusable quality modeling will reduce the time
and cost of quality assurance. On the other hand, it
will improve the accuracy and efficiency of quality
evaluation, as subsequent experience can contribute
to improving existing models. For example, the
same model could be reused in every new release of
the same software product, and experience from a
previous release could be incorporated into an
improved model used in the next release.
Characteristics of software product lines as well as
experience with several existing quality modeling
approaches have guided us in defining three main
requirements for appropriate quality modeling:
flexibility, reusability, and transparency. A quality
model should be flexible because of the context
dependency of software quality. There are several
quality contexts: company context, project context
and process context. On the one hand, reusable
quality modeling will reduce the time and cost of
quality assurance. On the other hand, it will improve
the accuracy and efficiency of quality evaluation, as
subsequent experience can contribute to improving
existing models. For example, the same model could
be reused in every new release of the same software
product, and experience from a previous release
could be incorporated into an improved model used
in the next release. A quality model should provide
the rationale of how certain characteristics are
related to others and how to identify their sub-
characteristics. Transparency of a quality model
also means that the meaning of the characteristics
and relationships between them are clearly
(unambiguously) defined. People involved in model
development and application should understand it in
order to gain knowledge from it as well as to

identify redundancies or contradictions among
quality characteristics. An example of a
contradiction could be modularization in object-
oriented software. It improves software reliability,
but usually at some cost in efficiency. The model
should also allow the project stakeholder to directly
interfere in the model structure to modify it if
needed.

3 Cost of Software Quality (CoSQ)

3.1 Economics of Quality - Literature review
Cost of quality represents any and all costs that

organization incurs from having to repeat a process
more than once in order to complete the work
correctly. Cost of quality (CoQ) is an accounting
technique introduced by Juran in 1951 as a means of
providing justification to management for
investments in process improvements. Cost of
software accounting (CoSQ) is useful to enable our
understanding of the economic trade-offs involved
in delivering good-quality software. Commonly
used in manufacturing, its adaptation to software
offers the promise of preventing poor quality but,
unfortunately, has seen little use to date [3].
Different authors and researcher have used different
ways to classify components for quality cost, if we
look carefully their understanding about various
components are approximately the same.

Pressman [7] has divided the cost of quality into
Prevention, appraisal, and failures. As explained by
Rex Black [4] that: “Investing in Software Testing,
decrease The Cost of Software Quality”. He has
mentioned costs of quality into two major types:
conformance and nonconformance as shown on Fig.
4.

CoSQ = Cost Conformance + Cost non-conformance

The definition and categories of quality costs may

be given differently by diverse authors. Some use
the terms “quality costs”, “costs of quality,” “eco-
nomics of quality,” “poor quality cost,” “price of
non-conformance,” or “cost of poor quality.” The
American Society for Quality (ASQ), Quality Cost
Committee defined ‘quality costs’ as a measure of
the costs specifically associated with the
achievement or non-achievement of product or
service quality. The total of the quality costs
includes prevention costs of nonconformance to
requirements, appraising costs of product or service
for conformance to requirements, and failure costs

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 29 Issue 1, Volume 8, January 2009

of products not meeting requirements. As the quality
function evolved from inspection (quality control) to
more preventive activities (quality assurance),
quality cost collection was expanded into
prevention, appraisal, and failure costs [(Gryna,
1999; Cartin, 1999 and Campanella, 2003)]. Failure
costs are divided into two subcategories: internal
and external. Dan Houston [3] has defined Cost of
quality in his article "Cost of Software Quality: A
Means of Promoting Software Process
Improvement" as follows;

CoSQ = Prevention Cost + Appraisal Cost + Internal
failure Cost + External failure Cost

Fig. 4 The Cost of Software Quality

By now we have clear understanding of four

components of the Quality cost. With the help of
these four components we will discuss the
theoretical model suggested by researcher based on
the results gathered from the manufacturing
industries. Following Fig. 5, is graphical
presentation of the CoSQ given by most researchers
[2-3], [5-6].

Fig. 5. The cost of high reliability

The above graph is showing that for achieving

high reliability, close to red dot (almost zero defect)
the cost is very high but achieving a reasonable level
(area between two green dots) of quality does not

require very high cost. To remove defect after
reaching at very low defect density the cost of
detection would be very high (Rs.500/KLOC)
whereas the defect detection was relatively easy as
numbers of defect were high (high defect density)
the cost to remove defect is approximately 10 times
lesser. Cost mentioned on the graph are imaginary
numbers just to give an idea that cost of defect
removal at high defect density would be lower and
cost at low defect density would be high.

Several studies [42-44] described meanings of these
quality cost categories as follows:

• Prevention costs (PC) are those costs associated
with quality planning, designing, implementing and
managing the quality system, auditing the system,
supplier surveys, and process improvements.

CoSQ

Conformance Non-Conformance

• Appraisal costs (AC) are associated with
measuring, evaluating, or auditing products, and
product materials to ensure conformance with
quality standards and performance requirements.

• Failure costs (FC) are those losses associated with
the production of a nonconforming product; they
can be divided into internal and external.

• Internal failure costs (IFC) are associated with
failures and defects of processes, equipment,
products, and product materials that fail to meet
quality standards or requirements.

• External failure costs (EFC) are generated by
defective products, services, and processes during
customer use. They include warranties, complaints,
replacements or recalls, repairs, poor packaging,
handling, and customer returns.

3.2 Statement of Problem
Implementing effective quality cost program has
made most companies reduce scraps/rework and
costs of poor quality. It also has led to the develop-
ment of a strategic quality improvement plan
consistent with overall organizational goals. Quality
cost information is rarely exchanged among
businesses. Quality professionals are still trying to
determine the main factors and measures aiding in
the successful quality cost programs and what
problems can be incurred in the quality cost program
implementation. The purpose of this study was to
identify main factors and measures that aid in the
success of the quality costs program and problems

Prevention Appraisal Internal External

Processes writing &
reviews

Training (Quality /
SPC Education)

Quality Planning

Testing

Review

Inspection

Defect report

Re-inspection

Re-testing

Re-work

Product returned &
replacement

Warranty Expenses

Loss of market share

Customer dissatisfaction

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 30 Issue 1, Volume 8, January 2009

that quality professionals might experience in
implementation. The three primary questions are:

Research Question 1: What are the main factors and
measures that aid the success of the quality costs
program at the surveyed organizations?

Research Question 2: What are problems
experienced in implementation of the quality costs
program at the surveyed organizations?

Research Question 3: For each of the four categories
of the cost of quality (prevention, appraisal, internal
failure, and external failure), which category is the
highest priority for cost reduction?

In order to answer the research questions, the
descriptive data from more than 50 product teams
across the industry 630 respondents were
summarized and divided into three sections.

3.2.1 Factors and measures
Research question one: What are the main factors

and measures that aid the success of the quality
costs program at the surveyed organizations?

Many of the teams interviewed in surveyed companies
as part of acquisitions. Each of these acquired teams
had different level of software engineering maturity
and had their own quality processes and
measurements. The Standardized Software Quality
Assessment model – SSQA [45], as a quality
assessment program, is applied in order to find out
main factors and measures that aid the success of the
quality costs program at the surveyed organizations.
The SSQA is a very important component of the
company Quality Management System (QMS). QMS
is defined in ISO 9001 as “the organizational
structure, responsibilities, procedures, processes and
resources for implementing quality management
necessary to achieve the quality objectives” (see
reference #1 for more information on QMS). In
every company, quality management has shifted
emphasis from merely the reduction of things gone
wrong to emphasis on the increase in things done
right for the customer. This new emphasis on quality
management has fostered an environment of
productivity improvement in processes as well as
product and service offerings. Equally important, it
emphasizes communication, teamwork and employee
satisfaction. Feedback from companies' customers
was that they appreciate SSQA's program effort and
that the adoption of the QMS had improved the
communication, the quality and the overall customer
satisfaction. The Quality Management System
(QMS) that was implemented at surveyed companies

is illustrated in Fig. 6. The three key elements of such
Quality Management System are:

• Common processes,
• Measures, and
• Continuous improvement

Fig. 6: Quality Management System (QMS)

For every software product introduced, including
upgrades of previously released products, all the
three elements of the Quality management System
are essential for meeting and exceeding customer
satisfaction. A key element of the Quality
management system is the SSQA Quality
Assessment methodology that enables a disciplined
quality improvements on a product-by-product basis.

Our quality assessment journey started several years
ago, as integral part of the “quality partnerships” that
we initiated with our key customers. The first step in
deployment of a quality assessment program was to
select a suitable quality assessment scheme that
addresses the quality and business needs of the
company.
We used the following selection criteria:
• Suitable to software industry culture
• Scalability to individual software product teams
with varying maturity levels
• Providing a quantitative measure
• Leading to continuous and quantifiable
improvements
• Ability to conduct assessments quickly and with
minimum effort
• Assessment methodology that support quality
partnership with company's customers

We evaluated two general quality assessment
schemes - ISO9000 and the Malcolm Baldrige

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 31 Issue 1, Volume 8, January 2009

National Quality Award and three software industry
specific assessment schemes – CMM,
SPICE/ISO15501, and the semiconductor industry
recommended assessment program – SSQA
(Standardized Software Quality Assessment). We
reviewed our selection criteria with companies'
customers and the final recommendations were to
select the SSQA as the most suitable assessment
vehicle in software industry by which different
product teams can evaluate and improve the maturity
and effectiveness of their software development
practices. In addition, we extended the standard
SSQA methodology to include our own methodology
for periodic mini-assessments that are very important
in driving continuous quality improvements by the
different product teams.

The two parts of the company assessment program
are:

• Full Assessments: Base-line quality assessments of
each product team (interview 10-15 engineers from
R&D, QA and Management). For the base-line
assessments we use the standard SSQA methodology

• Mini-Assessments: Periodic quality reviews with
each product team - Driving continuous quality
improvements. For the mini-assessments we use our
own methodology which is an extension to the
standard SSQA methodology.

We use software quality assessments at the product
level to determine the current maturity level of the
product software development engineering practices;
to foster quality improvement; to share “best
practices;” and to ensure that the product software
development and support processes are effective in
achieving customer satisfaction.

Base-line SSQA Assessments: Product base-line
SSQA assessments are conducted once per product.
The intent of base-line assessments is to determine
the base line status and scoring of the software
development processes, to point out strengths, and to
identify opportunities for improvement. Using the
SSQA methodology, the Assessment Review Team
interviews across section of the product team
engineers, and collects evidence on the processes that
have been deployed in the management,
development, rollout, and support of the software
product. During the review process the assessment
team compares the current quality system to a
“perfect” or ideal quality system, as described in the
SSQA 12-element guidelines. These 12 elements are
listed below. The assessment team scores the current

software maturity level each of the 12 quality
elements, evaluating each on four categories:
management commitment, approach, deployment
and results. Taken together, the 12 assessment
elements provide a comprehensive evaluation of the
product team commitment to software quality and
customer satisfaction.
The 12 SSQA assessment elements
1. Planning Process
2. Specifications and Reviews
3. Coding Practices
4. R&D Testing
5. Regression Suites
6. Alpha Testing
7. Beta Testing
8. Entry/Exit Criteria
9. User and Training Documents
10. Bug Management
11. Support Services
12. Customer Feedback

Base-line quality assessments are conducted to
review the software engineering maturity levels of
different product teams. Typically, the assessment
review team interview 10-15 members of each
product team, representing Management, R&D,
Marketing, Application Engineers, Tech Pub and
Operations.

The “checklist” of subjects that we used in the
interviews is shown below:
Checklist used in interviews:
Product Life-Cycle
•Establish basis - product overview, goals, team,...
•Requirements - defined , reviewed, changed ….
•Plans & progress monitoring
•Functional & design specs, coding, unit tests
•Test process, Alpha, Beta
•Rollout planning
•Phase hand-off criteria, release criteria ….
•Release coordination ….

Customer support
•Defect management process
•Communicating with customers
•Metrics, response time, backlog ….

Support Systems
•Management support
•Staffing, skill, and training
•Quality goals
•Code Reviews
•Customer interactions / feedback
•Release Management
•QA / customer advocate

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 32 Issue 1, Volume 8, January 2009

•Configuration Management
•Tech publications
•Computing Resources & Backup

During the interviews, the assessment team verify
deployment against the company software
development life cycle process. Following each
interview, the assessment review team provide
detailed report to each interviewee on his/her
interview finding – including strengths and suggested
areas for improvements.
The SSQA methodology also includes a detailed
guide to be used by the Assessment Review Team to
determine objectively the scoring levels for the 12
SSQA elements. A score ranging from 0 (poor) to
10 (outstanding) identifies the maturity level of each
quality element, including process definition,
process deployments, results obtained, priorities,
and impact on the customers.
• Level 0 - No systematic approach apparent
• Level 1-2 - Beginning of a process in place;
although decentralized and fragmented
• Level 3-4 - Process direction is being defined;
more centralized and less fragmented
• Level 5-6 - Significant effort underway.
Deployment in major areas. Some results being
realized.
• Level 7-8 - Effective quality system fully in place.
Significant, positive results. All areas involved.
• Level 9- 10 - Setting the standard for achieving
Total Customer Satisfaction.

Periodic Mini-Assessments:
In every company, one of the main goals of the
quality assessment program is to drive continuous
quality improvements by the different product
teams. For this reason, we extended the standard
SSQA methodology for full-assessments of the
base-line quality maturity levels of different product
teams, to include quick methodology for periodic
mini-assessments that are very important in
increasing quality awareness and in driving
continuous quality improvements by the different
product teams.
Typically, every 6-12 months, we conduct for each
product a 2-hours mini-assessment review with the
product “core team” – 6 to12 key people of the
product team that represent the R&D, the Marketing
and the Application Engineering functions of the
product team. The “template” questions that are
covered in the mini-assessments reviews are shown
below. Also, for the scoring of the mini-assessments
we use our company “standard” scoring, which is a
scoring level between –2 to +2 (+2 = very satisfied,

+1 = satisfied, 0 = neutral, -1 = weak, -2 = very
weak) that is used to measure the process maturity,
results obtained, and the impact on customers.

Sample Results
Base-line quality assessments are conducted to
determine the base line software engineering
maturity level for each product. The assessment
includes a review of the status of the software
development processes, looking at strengths, and
identifying opportunities for improvement.
The assessment team scores the software maturity
level each of the 12 quality elements, evaluating each
on four categories: management commitment,
approach, deployment and results. Taken together,
the 12 assessment elements provide a comprehensive
evaluation of the product team commitment to
software quality and customer satisfaction. A
numerical score ranging from 0 (poor) to 10
(outstanding) is given to each of the 12 quality
elements. The total scoring for the product is an
average of the scorings for the 12 elements.

At the end of the base-line assessment, an
assessment report is presented to the product team
and their management. The report provides a macro
view of the state of the quality system, recognize
achievements, point out shortcomings and
opportunities, and offers recommendations.
Periodic Mini-Assessments, are conducted,
typically, every 6-12 months, we conduct for each
product a 2-hours mini-assessment review with the
product “core team” – 6 to12 key people of the
product team that represent the R&D, the Marketing
and the Application Engineering functions of the
product team. The main goal is to drive continuous
quality improvements by the different product
teams. For each of the 12 elements, we summarize
the status, strengths and improvement opportunities
that were recommended by the product core team. In
addition, the core team recommends the scoring.

The mini-assessment report also includes a list of the
key improvement activities that the core team agreed
to carry out. An example of such a list is shown
below: Continuous improvement plan for next 6
months: (1) # of Bugs: Reduce WDC of backlog by
25% (2) Vigilance on coding errors: # of Lint errors -
target: 0 fatal warnings at code freeze. # of Purify
errors - target: 0 at code freeze (3) Regression Suite:
Increase line coverage (PurCov) by 15% (4) # of
undocumented error messages: Reduce # of
undocumented messages from 30% to 20%, etc.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 33 Issue 1, Volume 8, January 2009

3.2.2 Problems in quality costs implementation
Research question two: What are problems that you
experienced in implementation of the quality costs
program at your organization?

The answers from participants were varied and can
be summarized into four groups: measurements,
people, process, and information. Each group has
components that caused unsuccessful quality cost
programs in the manufacturing environment.

1) Measurements include lack of an appropriate
system and incorrect methods of collecting quality
cost categories.

2) People issues were lack of support from the
senior leadership team, and lack of cooperation from
the accounting and finance departments, and
managers and employees who are deficient in
knowledge of ‘Cost of Quality’ and training.

3) Process contains inconsistency from plant to plant
and ineffective process standards.

4) Information indicates lack of clear instruction and
inadequate information to properly design and
process.

Furthermore, several respondents indicated that a
culture that favors correction over prevention also
led to an unproductive quality cost program.

3.2.3 Quality cost reduction
Research Question three: For each of the four
categories of the cost of quality (PC, AC, IFC, and
EFC), which category do you think is the highest
priority for cost reduction?

A number of respondents expressed that PC and
EFC were the highest priority for cost reduction.
They agreed that prevention costs provided tools
and training for reducing wastes in the process.
Among forty respondents who answered this
question, fifteen voted for EFC, fourteen for PC,
nine for IFC, and two for AC.

These factors, measures and problems identified
from the survey results were then used in developing
an empirical model of quality costs to assess the
quality management systems in the manufacturing
environment.
The procedure for using the economics model to
compare defect-detection techniques starts with the
compilation of a list of all the faults that were found
by the defect detection techniques (DDT) [12]. They
are simply numbered and enriched with additional
information. This information should at least be
estimations of the MTTF, the severity, and the
change effort. The latter is divided into the specific

values for each period. Having this list, the faults
can be assigned to the set of internal and external
failures for each technique.
This can be used to calculate the costs regarding
internal and external failures for each technique in
order to optimize software quality cost.
The appraisal costs are also needed to get the
complete cost calculation. We therefore calculate
the appraisal costs by adding at least tool and
personnel costs. Some of this information is
available from defect databases and accounting. The
remaining values have to be estimated by experts.
Especially for the revenues estimating is the only
possibility.
We do not have hard data about the cost savings
because the failures do not occur. However, they
cannot be ignored because they are the main benefits
of using defect-detection techniques. Therefore
estimates are important and necessary for the quality
economics of DDTs [12]. The comparison can
finally be based on the costs only or on further
metrics such as in the IOSTP [8,9]. Test activities
across the project include Sequential usage of defect
detection techniques.
 If defect-detection techniques are analyzed that are
used one after the other, the procedure has to be
slightly changed. The defects that were revealed and
removed before a technique is used cannot be
counted as external failures for that technique. Only
faults found after the technique under investigation
are external failures.

As mentioned above this blurs the data for all
techniques because if an extremely effective
technique was used that found a lot of defects that
were removed before the next technique is applied,
the next one cannot be as effective as it normally
would be with all faults still in the software.
However, this is an inherent problem. What we can
do is to experiment with different orders of the
techniques and with different amounts of effort
spent for each technique. This way we can find the
optimal combination of techniques [10]. An
example can be found in the following sections.

The costs of achieving quality and the costs due
to lack of quality have an inverse relationship to one
another: as the investment in achieving quality
increases, the costs due to lack of quality decrease.
This theoretical model is shown below in Fig. 7.
This shows that as appraisal and prevention cost
increases, the failure cost will decrease until an
optimum point is reached. After this optimum point,
the increase in appraisal will not be offset by the
decreased in failure cost. Researcher have noticed

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 34 Issue 1, Volume 8, January 2009

that in the initial phase appraisal measures cause
internal failure to increase as these measures detect
more errors at early stages, but error removal at
early stage is much cheaper compare to error
removal at later stage. But overall appraisal
activities decrease external failure as a result total
failure decreases. A small increase in prevention
measures will normally create a major decrease in
total quality cost.

Fig. 7. Model of software quality

3.3 Quality Cost Analysis
The objective of the quality cost analysis is not to

reduce the cost, but to make sure that the cost spent
are the right kind of cost and that maximize benefit
derived form that investment. Traditional view of
the cost of quality revolved around failure related
activities. Due to quality cost analysis the major
emphasis has been shifted to prevention and
appraisal. As we all know that corporate understand
the language of money, quality cost analysis
emerged the concept of studying quality related cost
as means of communication between the quality
staff department and company managers. Challenge
is how do you go about taking economic
considerations into account when designing or
modifying a system?
• How do you account for the costs involved?
• How can costs and benefits be "traded-off"

against quality attributes or functionality?
A cost benefit analysis is done to determine how

well, or how poorly, a planned action will turn out.
Although a cost benefit analysis can be used for
almost anything, it is most commonly done on
financial questions. Since the cost benefit analysis
relies on the addition of positive factors and the

subtraction of negative ones to determine a net
result, it is also known as running the numbers.

A cost benefit analysis finds, quantifies, and adds
all the positive factors. These are the benefits, and
then it identifies, quantifies, and subtracts all the
negatives, the costs. The difference between the two
indicates whether the planned action is advisable.
The real trick to do a cost benefit analysis well is
making sure you include all the costs and all the
benefits and properly quantify them.

The key consideration in any analysis of the cost
of quality is visibility. It is the visibility gained form
cost of quality analysis that enable the QA people
involved to focus their attention on those activities
which discover, and correct the root cause of the
software defects. This root cause analysis allows the
QA people to determine how the development
process can be improved to prevent further defects.
Following Fig. 8, is the graph, that is showing the
theoretical model of CoSQ, adopted form Knox [3].
CoQ is a proven technique in manufacturing
industries both for communicating the value of
quality initiatives and for indicating quality initiative
candidates. CoSQ offers the same promise for the
software industry, but has seen little use to date.
Initial uses of CoSQ show that it can be a very large
percentage of development costs, 60 percent or
higher for organizations which are unaware of
improvement opportunities. CoSQ has demonstrated
its value in measuring the ROI of a software
improvement program across the software industry.

SEI CMM Levels

Fig. 8. Knox’s Theoretical CoSQ Model for
CMM Levels Model [3]

Starting with a the total CoSQ (TCoSQ) at 60% of
development costs (based on two industry figures)

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 35 Issue 1, Volume 8, January 2009

for CMM level 1 organizations, Knox used
manufacturing experience to hypothesize that CMM
level 5 organizations can cut this CoSQ by about
67%. He then rationalized the four component costs
at each CMM level. His model suggests that for
level 3 organizations, CoSQ is about half of
development costs.

3.4 Defect Potentials and Defect Removal
Efficiency Analysis

There are two very important measurements of
software quality that are critical to the industry:

1. Defect potentials
2. Defect removal efficiency

All software managers and quality assurance
personnel should be familiar with these
measurements because they have the largest impact
on software quality, cost, and schedule of any
known measures.
The phrase defect potentials refers to the probable
numbers of defects that will be found during the
development of software applications. As of 2008,
the approximate averages in the United States for
defects in five categories, measured in terms of
defects per function point and rounded slightly so
that the cumulative results are an integer value for
consistency with other publications by the Capers
Jones [11], follow.
Note that defect potentials should be measured with
function points and not with lines of code. This is
because most of the serious defects are not found in
the code itself, but rather in requirements and
design. Table 2 shows the averages for defect
potentials in the U.S. circa 2008.

Table 2 Averages for Defect Potential [11]
The measured range of defect potentials is from just
below two defects per function point to about 10
defects per function point. Defect potentials
correlate with application size. As application sizes
increase, defect potentials also rise. A useful
approximation of the relationship between defect
potentials and defect size is a simple rule of thumb:
application function points raised to the 1.25 power
will yield the approximate defect potential for
software applications. Actually, this rule applies

primarily to applications developed by organizations
at Capability Maturity Model®(CMM®) Level 1. For
the higher CMM levels, lower powers would occur.
Reference [11] shows additional factors that affect
the rule of thumb.
The phrase defect removal efficiency refers to the
percentage of the defect potentials that will be
removed before the software application is delivered
to its users or customers. As of 2007, the average for
defect removal efficiency in the U.S. was about 85
percent. If the average defect potential is five bugs –
or defects – per function point and removal
efficiency is 85 percent, then the total number of
delivered defects will be about 0.75 per function
point. However, some forms of defects are harder to
find and remove than others. For example,
requirements defects and bad fixes are much more
difficult to find and eliminate than coding defects.
At a more granular level, the defect removal
efficiency against each of the five defect categories
is approximate in Table 3.

Table 3 Defect Removal Efficiency [11]
Note that the defects discussed in this section
include all severity levels, ranging from severity 1:
show stoppers, down to severity 4. Obviously, it is
important to measure defect severity levels as well
as recording numbers of defects.

4 Software Testing Economics -
Hypothetical Case Study
According to the National Institute of Standards and
Technology (NIST), eighty percent of the software
development costs of a typical project are spent on
identifying and fixing defects. With today’s
executive mandates for speed and agility, such
expense to repair is not only unnecessary, it borders
on corporate irresponsibility and demonstrates a lack
of ability to align IT processes with overall business
goals. Software Quality Optimization™ (SQO™)
is a forward-thinking approach to software quality
that integrates people, processes and technologies
toward one specific goal: it ensures that software
deployment is synchronized with business goals to

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 36 Issue 1, Volume 8, January 2009

achieve competitive advantage. SQO is a
continuous, iterative process throughout the
application lifecycle resulting in zero-defect
software that delivers value from the moment it goes
live.

In this paper, we will:

• Explore the true costs of software defects and their
impact on application performance

• Challenge the traditional philosophy that “testing
equals quality,” and demonstrate how quality
processes implemented throughout the application
lifecycle can result in measurable performance
improvements

• Share seven best practices for optimized
application quality and identify the four steps to
implement optimized software quality processes

• Provide a definition for a quality optimization
platform that drives quality efficiencies across the
enterprise, and show you how investing in such a
platform can help your organization minimize the
costs associated with application development and
realize the full potential from your application
investments.

4.1 The Real Cost of Software Defects

It is obvious that the longer a defective application
evolves the more costly it is to repair. But how
much more? The answer might surprise you.
According to the CTO of one software development
organization, a bug that costs $1 to fix on the
programmer’s desktop costs $100 to fix once it is
incorporated into a complete program, and many
thousands of dollars if it is identified after the
software has been deployed in the field [46], as
described on Fig. 9. Barry Boehm, one of the
industry’s leading experts on software quality, has
published several studies [47,48] over nearly three
decades that demonstrate how the cost for removing
a software defect grows exponentially for each
downstream phase of the development lifecycle in
which it remains undiscovered. Since the original
study, Boehm’s results have been confirmed in a
number of subsequent studies [7,11,49]. Further,
another major research project conducted recently
by the United States Department of Commerce,
National Institute of Standards and Technology
showed that in a typical software development
project, fully 80% of software development dollars

are spent correcting software defects. The same
NIST study also estimated that software defects cost
the U.S. economy, alone, $60 billion per year [49].
Many organizations view the software development
lifecycle as a linear process with discrete functions:
design, develop, test and deploy. In reality, the
software development lifecycle is a cyclical function
with interdependent phases. Quality assurance has a
role in every phase of that lifecycle, from
requirements review and test planning, to code
development and functional testing, to performance
testing and on into production.

Fig. 9 Engineering Rules for Cost Of Defect
Removal [46]

It was unanimously agreed that quality and quality
assurance is more than strictly testing at the end of
the development process. Starting quality initiatives
early and paying attention to quality throughout the
development, deployment and production effort is
key in order to achieve a baseline goal of zero-
defect software.

Testing Equals Quality?

The days when a quick testing phase was squeezed
between end of development and deployment date –
if it was done at all – are long gone. So is the idea
that quality can be “tested into” software. Quality
assurance as an overarching concept embracing all
aspects of quality management is now a firmly
entrenched part of software development practices
by best-of-breed companies. The quality concept
goes significantly beyond testing. Software Quality
Optimization is a holistic approach to everything an
organization does throughout the software
application lifecycle. Quality frameworks such as
the Capability Maturity Model® Integration

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 37 Issue 1, Volume 8, January 2009

(CMM®/CMMI®) and the ISO® 9001 Quality
Management System embody total quality concepts
by suggesting processes that define and document
every aspect of software development for every
phase of the life cycle. Depending on the size of the
organization and the industry segment, these quality
frameworks may be a perfect fit or may need to be
tailored to suit the organization. Regardless of the
chosen approach, quality should be the mantra for
any organization that values its customers and is
accountable to the business needs of the enterprise.
“Test first” concepts are the cornerstone of the
newly emerging Agile development paradigm [5]
but there is more to holistic quality management
than just testing. Quality principles such as peer
reviews and design for testability can be applied
throughout the development phases from
requirements specifications to design and code.
Along the way, increasingly powerful quality
automation solutions can be deployed to support the
quality initiative. Testing early may seem to be an
oxymoron to some people. After all, you need code
before you can test. Or do you? The Agile
development community has turned traditional
beliefs about testing upside down with their slogan
“test first”. Of course you cannot test software in
the conventional sense when no code is written. But
other things can be tested. For example,
requirements specifications can be “tested” for
completeness before any development begins.
Close collaboration between testers, programmers,
and requirements analysts in structured reviews of
the specifications provides a mechanism for
detecting and correcting defects in these upstream
work products. This is most effective when the
users are involved directly with development and
quality personnel. Early collaboration allows test
plans and test cases to be developed in parallel
during the specification phases. Apart from the
obvious benefit of having these materials ready
before the first testable code emerges and thereby
accelerating the testing phase, there are other, more
subtle benefits. In particular, developing test plans
early on can show logic flaws in the design before
coding starts, which avoids unnecessary rework later
on. It can also show that certain parts of the software
are difficult if not impossible to test exhaustively.
Design for testability is therefore encouraged and
makes later testing much easier.

An environment that is optimized for software
quality helps you to [12]:

Develop more efficiently and produce a higher
quality product because you

• Eliminate defects at the time they are introduced
into the engineering process

• Improve staff utilization by freeing them up to
focus on new functionality, rather than dealing with
unplanned rework or fixing defects

• Reuse test assets and eliminate duplicated efforts

• Significantly reduce the risk of project failure

Deploy faster and significantly reduce ongoing
maintenance costs because you

• Integrate quality throughout the lifecycle, and
therefore eliminate late project surprises that impact
software release schedules

• Enable collaboration between personnel
responsible for various aspects of quality, leveraging
quality assets from earlier quality phases to
downstream phases

• Reduce error turnaround time by finding errors
sooner

• Are able to release a zero-defect application and
therefore benefit from the tremendous savings
associated with not having to repair at the back-end

Improve customer satisfaction and build competitive
advantage because you

• Become a more nimble organization and are able
to more quickly respond to changing customer needs
and the underlying business processes that support
them

• Accelerate go-live timelines and improve your
organization’s time-to-market value

Optimizing software quality is driven by two
important items: selecting the most appropriate best
practices to help an organization achieve its specific
business goals and utilizing a platform capable of
supporting those best practices. Quality practices
can include peer reviews, test planning and test case
development. Strong, overall test management and
metrics can be used to monitor application quality
and the effectiveness of testing activities. Test
automation, test management and application
performance management software solutions can
significantly support an organization’s quality
optimization goals by introducing significant labor
efficiencies through test asset reuse and repeatability
of test results, as well as providing visibility into
quality metrics and enabling the cross-departmental
collaboration necessary between all personnel
responsible for the various aspects of quality.
Fortunately, there is a substantial body of
knowledge describing the most highly valued best

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 38 Issue 1, Volume 8, January 2009

practices for software quality assurance in pre-
production and production environments. The most
direct approach for optimizing quality practices is to
leverage this body of knowledge, selecting those
practices that most directly support quality
optimization goals.

Gone are the days when quality could be viewed as
an "after thought", something to be fit in at the end
of a development project - if there was any time left.
Now, software quality optimization is viewed as
strategically important by forward thinking
companies. These organizations realize that an
emphasis on quality does have a significant return
on investment (ROI) attached to it, resulting from
reduced cycle times, quicker time to market,
efficient use of quality resources and lower ongoing
cost of maintenance. Success depends on the
integration of early, continuous and collaborative
quality practices throughout the application
lifecycle. Additionally, and not insignificantly,
brand image and customer satisfaction are enhanced
with deployment of high quality applications.

Seven of the most effective quality best practices are
provided below.

1. Incorporate peer reviews into your software
development lifecycle. Industry experts have
demonstrated that peer reviews can remove an
impressive 60-90% of software defects in the
lifecycle phase in which they were introduced
[5,7,11,12]. This statistic, alone, makes peer reviews
the number one software quality practice to adopt.
Through peer reviews, software specifications and
source code are reviewed by various members of the
software development and quality assurance team to
identify any defects before the data can be
incorporated into any executable code.

2. Incorporate proven development methodologies
that embrace quality activities early in the
development process [7,12]. There are many
development methodologies, such as Agile, that
emphasize testing as an on-going, integral part of
the development process. As mentioned previously,
numerous studies have proven that defects found
early in the software application lifecycle are far less
expensive to fix than those found at later stages.
Though an older methodology, the V-model is
another example of a tried and true development
approach that infuses testing into the development
process. The V-model for software quality is a
straightforward and simple model that shows test
activities beginning in parallel with the
corresponding development activities.

Models such as Agile and V-model dictate that
organizations begin planning testing activities and
developing preliminary test cases in parallel with the
corresponding development phases. In the early
requirements and design phases, tests can’t be
executed against software yet, but conceptual
(implementation-independent) test cases can still be
developed based on the requirements/designs and
used to find errors, ambiguities and omissions in
development specifications.

3. Formalize test planning [5,7,12]. Writing
formal test plans and test case documentation
provides the basis for the most effectively focused
and repeatable testing activities. Without these
plans and test cases, testing becomes a haphazard,
ad hoc activity in which defects - when discovered -
may not be reproduced. Worse, their correction
usually cannot be verified. Good test plans reflect a
testing strategy that ensures efforts are focused on
the highest business priority and highest risk areas
first, while providing for adequate coverage of the
application requirements.

4. Build reusability into regression testing [5].
Regression testing is the practice of testing the code
of an application to make sure changes to the
application have not broken any existing
functionality or negatively impacted performance.
Regression test suites are most commonly built up
over time from test cases created for previous
product releases. Regression test frameworks
should be developed with an eye on ease-of-
maintenance and reuse. Reusability in the
regression testing area is a significant driver of ROI
obtained through test automation.

5. Make the investment in test automation
software [5,7,11,12]. Taking advantage of test
automation solutions reduces time-consuming,
effort-intensive manual testing, especially where
sets of tests need to be run repetitively many times
over or require a lot of resources. The former is
especially the case with regression testing, and in
the late stages of a development project when the
QA and development teams are trying to stabilize
builds in preparation for product release. In addition
to labor savings, deployment risk can be further
reduced by having a documented, repeatable process
that can verify test results.

6. Test for quality attributes [5,7,9-12]. Quality
attributes is the generic term for a range of software
requirements that describe the overall quality
behavior of the system, rather than the features and
functions it implements. The most common quality
attributes include accuracy, performance, stability,

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 39 Issue 1, Volume 8, January 2009

availability, scalability and usability. Testing for the
most important quality attributes avoids the nasty
surprises that too frequently occur when a
functionally correct application is deployed into
customer environments, but then fails to perform as
expected.

7. Take control of test and application
performance management [5,7,9-12]. The effective
management of testing activities and the monitoring
of key quality metrics can greatly aid the delivery of
applications that satisfy their quality objectives.
Test management as a best practice ensures
provision of enough test coverage of all functional
areas of the application based on their relative
priorities. Monitoring defect metrics can provide
enlightening information about the quality status of
the application under development. A concentration
of defects in particular code modules can highlight
poor architecture/design, while monitoring defect
resolution trends and defect densities can provide
valuable criteria for determining when an
application is ready for release.
Organizations with defect potentials higher than
seven per function point coupled with defect
removal efficiency levels of 75 percent or less can
be viewed as exhibiting professional malpractice. In
other words, their defect prevention and defect
removal methods are below acceptable levels for
professional software organizations. Most forms of
testing average only about 30 to 35 percent in defect
removal efficiency levels and seldom top 50 percent.
Formal design and code inspections, on the other
hand, often top 85 percent in defect removal
efficiency and average about 65 percent.
As can be seen from the short discussions here,
measuring defect potentials and defect removal
efficiency provide the most effective known ways of
evaluating various aspects of software quality
control. In general, improving software quality
requires two important kinds of process
improvement: 1) defect prevention and 2) defect
removal.
The phrase defect prevention refers to technologies
and methodologies that can lower defect potentials
or reduce the numbers of bugs that must be
eliminated. Examples of defect prevention methods
include joint application design, structured design,
and also participation in formal inspections.
The phrase defect removal refers to methods that can
either raise the efficiency levels of specific forms of
testing or raise the overall cumulative removal
efficiency by adding additional kinds of review or
test activity. Of course, both approaches are possible
at the same time.

In order to achieve a cumulative defect removal
efficiency of 95 percent, it is necessary to use the
sequence of optimum combination of software
defect detection techniques (DDT) choices for every
software development phase that maximize all over
Defect Detection Effectiveness [12].
There are large ranges in terms of both defect
potentials and defect removal efficiency levels. The
best in class organizations have defect potentials
that are below 2.50 defects per function point
coupled with defect removal efficiencies that top 95
percent across the board. Defect removal efficiency
levels peak at about 99.5 percent. In examining data
from about 13,000 software projects over a period of
40 years, only two projects had zero defect reports
in the first year after release. This is not to say that
achieving a defect removal efficiency level of 100
percent is impossible, but it is certainly very rare.

From an economic standpoint, combining formal
inspections and formal testing will be cheaper than
testing by itself. Inspections and testing in concert
will also yield shorter development schedules than
testing alone. This is because when testing starts
after inspections, almost 85 percent of the defects
will already be gone. Therefore, testing schedules
will be shortened by more than 45 percent.
Measuring the numbers of defects found during
reviews, inspections, and testing is also
straightforward. To complete the calculations for
defect removal efficiency, customer-reported defect
reports submitted during a fixed time period are
compared against the internal defects found by the
development team. The normal time period for
calculating defect removal efficiency is 90 days
after release.
As an example, if the development and testing teams
found 900 defects before release, and customers
reported 100 defects in the first three months of
usage, it is apparent that the defect removal
efficiency would be 90 percent.
Unfortunately, although measurements of defect
potentials and defect removal efficiency levels
should be carried out by 100 percent of software
organizations, the frequency of these measurements
circa 2008 is only about five percent of U.S.
companies. In fact, more than half of U.S.
companies do not have any useful quality metrics at
all. More than 80 percent of U.S. companies,
including the great majority of commercial software
vendors, have only marginal quality control and are
much lower than the optimal 95 percent defect
removal efficiency level. This fact is one of the
reasons why so many software projects fail
completely or experience massive cost and schedule

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 40 Issue 1, Volume 8, January 2009

overruns. Usually failing projects seem to be ahead
of schedule until testing starts, at which point huge
volumes of unanticipated defects stop progress
almost completely.
As it happens, projects that average about 95 percent
in cumulative defect removal efficiency tend to be
optimal in several respects. They have the shortest
development schedules, the lowest development
costs, the highest levels of customer satisfaction,
and the highest levels of team morale. This is why
measures of defect potentials and defect removal
efficiency levels are important to the industry as a
whole; these measures have the greatest impact on
software performance of any known metrics.
Additionally, as an organization progresses from the
U.S. average of 85 percent in defect removal
efficiency up to 95 percent, the saved money and
shortened development schedules result because
most schedule delays and cost overruns are due to
excessive defect volumes during testing. However,
to climb above 95 percent defect removal efficiency
up to 99 percent does require additional costs. It will
be necessary to perform 100 percent inspections of
every deliverable, and testing will require about 20
percent more test cases than normal [11]. Industry
data about defect potentials and for Defect Removal
Efficiency depends on SEI CMM level as shown on
Fig. 10 [11].

4.2 Techniques to analyze return on the
testing investment (ROI)

4.2.1 Financial ROI
From a developer’s perspective, there are two

types of benefits that can accrue from the
implementation of good software quality practices
and tools: money and time. A financial ROI looks at
cost savings and the schedule ROI looks at schedule
savings.
Direct financial ROI is expressed in terms of effort
since this is the largest cost on a software project.
There are a number of different models that can be
used to evaluate financial ROI for software quality.

The first is the most common ROI model. We
will show that this model is not appropriate because
it does not accurately account for the benefits of
investments in software projects. This does not
mean that that model is not useful (for instance,
accountants that we speak with do prefer the
traditional model of ROI), only that we will not
emphasize it in our calculations.

We subsequently present the second model which
we argue is much more appropriate. The models

here are presented at a rather conceptual level. We
also look at ROI at the project level rather than at
the enterprise level. ROI at the enterprise level (or
across multiple projects) requires a slightly different
approach which we will not address directly here.

Fig 10 Industry data - Engineering Rules for

Defect Removal Efficiency [11]

The most common ROI model, and that has been
used more often than not in software engineering, is
shown below:

InvestmentTest
InvestmentTestSavedCoQTotalROI

⋅
⋅−⋅⋅

=1 (1)

This ROI model gives how much the Total Cost of
Quality (CoQ) savings gained from the project were
compared to the initial investment. Let us look at a
couple of examples to show how this model works.

Let’s use a hypothetical case study to illustrate
the use of this cost of quality technique to analyze
return on the testing investment. Suppose we have a
software product in the field, with one new release
every quarter. On average, each release contains
1,000 “must-fix” bugs—unacceptable defects—
which we identify and repair over the life of the
release. Currently, developers find and fix 250 of
those bugs during development, while the customers

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 41 Issue 1, Volume 8, January 2009

find the rest.
Suppose that you have analyzed the costs of

internal and external failure. Bugs found by
programmers costs $10 to fix. Bugs found by
customers cost $1,000 to fix. We analize three cases
of software development and testing process which
provide Low Quality, Good Quality and High
Quality Results.

Case 1: Low Quality Results
Case 1 is assumed to be a fairly small systems

software project of 251 function points in size.
Defect potentials are derived by raising the function
point total of the application to the 1.25 power,
which results in a total of 1,000 defects or 4 defects
per function point [11]. Defect removal efficiency is
assumed to be 75% overall. The development team
is assumed to be below level 1 on the CMM scale in
Software Development Process (SDP) which is
unpredictable and poorly controlled ie. Ad hoc level.

As shown in the “Case 1 Testing” column in Fig.
5, our cost of quality is three-quarters of a million
dollars. It’s not like this $750,000 expenditure is
buying us anything, either. Given that 750 bugs
escape to the field, it’s a safe bet that customers are
mad!

Case 2: Good Quality Results
Case 2 is exactly the same size and the same class

of software as Case 1. The project management
desided to improve software testing process (STP)
and invested in testing staff $60,000 and test
infrastructure $10,000 as shown in the “Case 2
Testing” column in Fig. 11.

The development team is assumed to be level 1
on the CMM scale. Defect removal efficiency is
assumed to be 85% overall. Defect removal
operations consist of six test stages: 1) unit test, 2)
new function test, 3) regression test, 4) integration
test, 5) system test, and 6) external Beta test.

Case 3: High Quality Results
Case 3 is exactly the same size and the same class

of software as Case 1. The development team is
assumed to be higher than level 3 on the CMM
scale. By means of more effective defect prevention
such as Quality Function Deployment (QFD) and
Six-Sigma the defect potentials are lower. Defect
removal efficiency is assumed to be 95%. Defect
removal operations consist of nine stages: 1) design
inspections; 2) code inspections; 3) unit test, 4) new
function test, 5) regression test, 6) integration test,
7) performance test, 8) system test, 9) external Beta

test.
To clarify the differences between the three case
studies, note that both examples are exactly the
same size, but differ in these key elements:
• CMM levels
• Defect prevention
• Defect potentials
• Defect removal efficiency
• Development schedules
• Development effort
• Development costs

Fig. 11. Using Cost of Quality to Analyze two ways
of Return on Investment calculation

Suppose we calculate that bugs found by testers

would cost $100 to fix. This is one-tenth what a bug
costs if it escapes to our customers. So, we invest
$70,000 per quarterly release in a Case 2 testing
process. The “Case 2 Testing” column shows how
profitable this investment is. The testers find 600
bugs before the release, which cuts almost in 80%
the number of bugs found by customers. This
certainly will make the customers happier. This
process improvement will also make the Chief
Financial Officer happier, too: Our total cost of
quality has dropped to about half a million dollars
and we enjoy a nice fat 571% return on our $70,000
investment.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 42 Issue 1, Volume 8, January 2009

In some cases, we can do even better. For
example, suppose that we invest $12,500 in test
automation tools and Inspection activities. Let’s
assume we intend to recapture a return on that
investment across the next twelve quarterly releases.
Would we be happy if that investment in test
automation helped us find about 67% more bugs?

Finding 350 bugs in development phases and 600
bugs in the test process would lower the overall
customer bug find count for each release to 50.
Deployment of more formal and rigorous STP in
which 950 bugs out of 1000 were removed, ie. Total
DRE 95%. Certainly, customers would be much
happier to have the more-thoroughly tested system.
In addition, cost of quality would fall to a little
under $200,000, a 575% return on investment
(ROI).

4.2.2 Schedule Benefits

If software quality actions are taken to reduce
development cost, then this will also lead to a
reduction in development schedule. We can easily
calculate the reductions in the development schedule
as a consequence of reductions in overall effort. In
this section we will outline the schedule benefits of
quality improvements.

To do so we will use the schedule estimation model
from COCOMO [48].

It is instructive to understand the relationship
between project size and schedule as expressed in
the COCOMO II model. This is illustrated in Fig.
12. Here we see economies of scale for project
schedule. This means that as the project size
increases, the schedule does not increase as fast. The
three lines indicate the schedule for projects
employing different levels of practices. The lower
risk and good practice projects tend to have a lower
schedule.

Another way to formulate the ROI model in Eqn. 1
which will prove to be handy is:

CoQTotalOriginal
CoQTotalNewCoQTotalOriginalROI

⋅⋅
⋅⋅−⋅⋅

=2
 (2)

The New Total CoQ is defined as the total cost of
software quality the project delivered after
implementing the quality improvement practices or
tools as in our Case 2 and Case 3. This includes the
cost of the investment itself. Let us look at some
examples. For Case 2 we have:

%6262.0
500,752$

500,282$500,752$
2 ==

−
=ROI

Fig. 12. Relationship between project size and
schedule in COCOMO II.

This means that in Case 2 project, the investment
only saved 62% of overall project cost.

Now for Case 3 we have:

%7474.0
500,752$

000,196$500,752$
2 ==

−
=ROI , ie.

the same investment saved 74% of overall project
cost.
We can then formulate the New Cost as follows:

Now, we can formulate the schedule reduction
(SCEDRED) as a fraction (or percentage)
of the original schedule as follows:

ScheduleOriginal
ScheduleNewScheduleOriginalSCEDRED

⋅
⋅−⋅

= (3)

By substituting the COCOMO equation for
schedule, we now have:

∑

∑
−

∑

=

=

==

⋅×⋅+

⋅×⋅+⋅×⋅+

5

1

5

1

5

1

02.0(28.0

02.0(28.002.0(28.0

j
j

j
j

j
j

SF

Original

SF

New

SF

Original

PM

PMPM
SCEDRED (4)

where:

PMOriginal The original effort for the project in
person-months

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 43 Issue 1, Volume 8, January 2009

PMNew The new effort for the
project (after implementing quality practices) in
person-months

SFj A series of five Scale Factors that are
used to adjust the schedule
(precedentedness, development
flexibility, architecture / risk resolution,
team cohesion, and process maturity).

Now, by making appropriate substitutions, we have:

∑

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ∑
−×

∑
−

∑

=

=

===

×+

×+×+×+

5

1

5

1

5

1

5

1

02.0(28.0

02.0(28.0

2

02.0(28.002.0(28.0

)1(

j
j

j
j

j
j

j
j

SF

Original

SFSF

Original

SF

Original

PM

ROIPMPM

SCEDRED

Which simplifies to:

∑
−−= =

×+
5

1

02.0(28.0

2)1(1 j
jSF

ROISCEDRED (5)

The relationship between cost savings and
schedule reduction is shown in Fig. 13. As can be
seen, the schedule benefits tend to be at smaller
proportions than the cost benefits. Nevertheless,
shaving off 10% or even 5% of your schedule can
have nontrivial consequences on customer
relationships and market positioning.

Fig. 13. The relationship between cost savings and
schedule reduction for up to 50% cost savings. The
assumption made for plotting this graph was that all
Scale Factors were at their nominal values.

4.2.3 Interpreting the ROI Values
In this section we will explain how to interpret and
use the ROI values that are calculated. First, it must
be recognized that the ROI calculations, cost

savings, and project costs as presented in our models
are estimates. Inevitably, there is some uncertainty
in these estimates. The uncertainty stems from the
variables that are not accounted for in the models
(there are many other factors that influence project
costs, but it is not possible to account for all of these
since the model would then be unusable). Another
source of uncertainty is the input values themselves.
These values are typically averages calculated from
historical data; to the extent that the future differs
from the past these values will have some error.
Second, note that the calculated ROI values are for a
single project. A software organization will have
multiple on-going and new projects. The total
benefit of implementing software quality practices
to the organization can be calculated by generalizing
the results to the organization. For example, if the
ROI for a single project is say a 15% saving.
Assuming that the input values are the same for
other projects in the organization, then we can
generalize to the whole organization and estimate
that if software quality practices are implemented on
all projects in the organization, the overall savings
would be 15%. If the software budget for all the
projects is say 20 million, then that would translate
into an estimated saving of 3 million. Note that this
is not an annual saving, but a saving in total project
budgets hat may span multiple years (i.e., for the
duration of the projects). To annualize it then the
15% savings must be allocated across multiple
years. If you are implementing quality improvement
on a single project, then these costs would have to
be deducted from the single project savings. If you
are implementing quality practices in the whole
organization, then these costs will be spread across
multiple projects. In such a case, these costs would
be deducted from the organizational savings (the
calculation of which is described above).
Based on the survey findings and the literature
reviews, the study found the causes of difficulty that
companies might experience in implementing a
quality cost program. These causes can be divided
into four main issues: measurement, people, process
and information. Figure 14 presents the difficulty of
implementation quality costs program; the effect of
this diagram is an unsuccessful program.

This is a huge improvement over the initial
situation. We are realizing a quantifiable and
substantial return on our testing investment. We are
also making our customers happier.

Management support can help in making decisions,
creating a positive company environment, and
providing appropriate tools and resources. These

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 44 Issue 1, Volume 8, January 2009

factors interact with each other and can be explained
in greater details.

Fig. 14. Difficulty of Implementation Quality Costs
Program - Cause and Effect Diagram

• Management Support and Commitment. Upper
management and executives must drive for cost
saving and understand the impact of quality costs
implementation. The roles of top managers are to
establish an organizational culture that favors
prevention over correction, organize quality cost
steering committees, meet monthly or quarterly to
discuss the work progress of the quality costs
program, and provide opportunity for training and
learning the costs of quality for involved depart-
mental managers and supervisors.
• Effective Systems and Application. The tools used
in data collection and analysis are very important in
order to obtain accurate and complete information.
Each organization has a different structure; hence,
quality professionals must set up the quality cost
system and methodology that fit their own needs and
work well with the financial and accounting
systems. An effective system should be user friendly
and integrated with cost drivers and collect costs
related to incurred (hidden) costs. Commercial
software and training for quality cost programs from
the Juran Institute and the American Society for
Quality are available in today’s industry.
• Understanding Concepts of Cost of Quality. A
group of respondents indicated that lack of
knowledge of cost of quality caused unsuccessful
quality cost implementation. It is important for
everyone involved with the programs to understand
the concept and elements of quality costs. There are
a number of current quality cost techniques used in
today’s manufacturing industry, such as the quality
cost model (prevention, appraisal, and failure costs),
the Activity Based Costs (ABC) model, Taguchi
Loss Function, Total Cost Management (process
analysis and ABC), and others. These techniques

might have different methods, but they all focus on
the foundations of learning and training.
• Cooperation from other departments. Most
respondents discussed the importance of cooperation
from the financial and accounting departments to the
quality cost program. Department managers should
understand and accept the value of looking at
information and acting with positive steps toward
improvement. Moreover, employee involvement is
also a vital issue. If workers have high job
satisfaction and value preventive actions, the
products will meet customers’ demand as well as
decrease IFC and EFC.

5 Conclusion
This paper showed that as new domains evolve
and are understood there is a need to review our
interpretation of quality in those new domains
and where appropriate new domain-specific
quality factors identified as in a new, fast
growing area of Web design. CoQ is a proven
technique in manufacturing industries both for
communicating the value of quality initiatives and
for indicating quality initiative candidates. CoSQ
offers the same promise for the software industry,
but has seen little use to date. CoSQ is a technique
that is most useful in enabling our understanding of
the economic tradeoffs involved in delivering good
quality software. If software quality actions are
taken to reduce development cost, then this will also
lead to a reduction in development schedule. We can
easily calculate the reductions in the development
schedule as a consequence of reductions in overall
effort as we demonstrated in one hypothetical case
study.
We described Software Quality Optimization™
(SQO™) strategy as a forward-thinking approach to
software quality that integrates people, processes
and technologies toward one specific goal: it ensures
that software deployment is synchronized with
business goals to achieve competitive advantage.
SQO is a continuous, iterative process throughout
the application lifecycle resulting in zero-defect
software that delivers value from the moment it goes
live.
In this paper, we:
• Explored the true costs of software defects and
their impact on application performance
• Challenged the traditional philosophy that “testing
equals quality,” and demonstrated how quality
processes implemented throughout the application
lifecycle can result in measurable performance
improvements

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 45 Issue 1, Volume 8, January 2009

• Shared seven best practices for optimized
application quality and identified steps to implement
optimized software quality processes
• Provided a definition for a quality optimization
platform that drives quality efficiencies across the
enterprise, and show you how investing in such a
platform can help your organization minimize the
costs associated with application development and
realize the full potential from your application
investments [12].

When these measures were introduced into large
corporations such as IBM and ITT, in less than four
years the volumes of delivered defects had declined
by more than 50 percent, maintenance costs were
reduced by more than 40 percent, and development
schedules were shortened by more than 15 percent.
There are no other measurements that can yield such
positive benefits in such a short time span. Both
customer satisfaction and employee morale
improved, too, as a direct result of the reduction in
defect potentials and the increase in defect removal
efficiency levels.

References:
[1] Software Quality Matters,

http://www.utexas.edu/coe/sqi.
[2] O. Maryoly, M. Perez, T. Rojas, "Construction

of a Systemic Quality Model for Evaluating a
Software Product", Kluwer Academic
Publishers. Software Quality Journal, 11, 219–
242, 2003.

[3] Knox, Stephen T. “Modeling the Cost of
Software Quality,” Digital Technical Journal,
5:4, 9-16, 1993.

[4] D. Houston, and B. Keats, "Cost of Software
Quality: A Means of Promoting Software
Process Improvement", Quality Engineering,
10:3, pp. 563-573, March, 1998.

[5] R. Black, Managing the Testing Process,
Second Edition. Wiley, New York, 2002.

[6] J. Campanella, ed., Principles of Quality Costs.
ASQ Quality Press, Milwaukee, 1999.

[7] S. H. Kan. Metrics and Models in Software
Quality Engineering, Second Edition, Addison-
Wesley, 2003.

[8] Pressman, Roger, Software Engineering: A
Practitioner’s Approach 3rd ed., New York:
McGraw-Hill, 1992.

[9] Lj. Lazić, N. Mastorakis. “Cost Effective
Software Test Metrics”, WSEAS
TRANSACTIONS on COMPUTERS , Issue 6,
Volume 7, June 2008, p599-619.

[10] Lj. Lazić, “MANAGING SOFTWARE
QUALITY WITH DEFECTS”, 13.

Telekomunikacioni Forum TELFOR2005,
Beograd, 23-25 November, 2005.

[11] J. Capers. Estimating Software Costs. 2nd
edition. McGraw-Hill, New York: 2007.

[12] Lj. Lazić, N. Mastorakis. “Orthogonal Array
application for optimal combination of software
defect detection techniques choices”, WSEAS
TRANSACTIONS on COMPUTERS, Issue 8,
Volume 7, August 2008, p1319-1336.

[13] M. Azuma “SQuaRE: the next generation of the
ISO/IEC 9126 and 14598 international
standards series on software product quality”.
In ESCOM (European Software Control and
Metrics conference), April 2001.

[14] M. F. Bertoa and A. Vallecillo. “Quality
Attributes for COTS Components”. In Proc. of
the 6th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software
Engineering (QAOOSE 2002), Málaga, Spain,
June 2002.

[15] R. Simao and A. Belchior. “Quality
Characteristics for Software Components:
Hierarchy and Quality Guides”. In LNCS 2693,
pp. 188—211, Springer-Verlag, June 2003.

[16] J. Martín-Albo, M. F. Bertoa, C. Calero, A.
Vallecillo, A. Cechich, M.Piattini. “CQM: A
Software Component Metric Classification
Model”.In Proc. of the 7th ECOOP Workshop
on Quantitative Approaches inObject-Oriented
Software Engineering (QAOOSE 2003).
Darmstadt,Germany, June 2003.

[17] O. Preiss, A. Wegmann, and J. Wong. “On
Quality Attribute BasedSoftware Engineering”,
In Proc. of the 27th Euromicro Conference,
Warsaw, Poland, IEEE CS Press, Sep. 2001.

[18] N.E. Fenton, S.L.O. Pfleeger, “Software
Metrics: A Rigorous and Practical Approach”,
published by International Thomson Computer
Press, 1996.

[19] M. R. Barbacci, M. H. Klein, T. Longstaff, C.
Weinstock, “Quality Attributes”, Technical
Report CMU/SEI-95-TR-021, SEI CMU,
Pittsburgh, 1995.

[20] B.W. Boehm, J.R. Brown, H. Kaspar, M.
Lipow, G.J. MacLeod, M.J. Merritt,
“Characteristics of Software Quality”, North
Holland Publishing Company, 1978.

[21] J.A.McCall, P.K.Richards, G.F.Walters,
“Factors in Software Quality”, RADC TR-77-
369, Vols I, II, III, US Rome Air Development
Center Reports NTIS AD/A-049 014, 015, 055,
1977.

[22] ISO/IEC 9126-1:2001: “Software
Engineering—Product Quality—Part1: Quality
model”, June 2001.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 46 Issue 1, Volume 8, January 2009

[23] R.G. Dromey, “A Model for Software Product
Quality”, IEEE Transactions on Software
Engineering, 21:146-162, 1995.

[24] Robert B. Grady and Deborah L. Caswell,
“Software Metrics:Establishing a Company-
Wide Program”, Prentice-Hall, 1987.

[25] L.E. Hyatt, L.H.Rosenberg, “A Software
Quality Model and Metrics for Identifying
Project Risks and Assessing Software
Quality”,European Space Agency Software
Assurance Symposium and the 8th Annual
Software Technology Conference, 1996.

[26] .D. Arthur, R.E. Nance, “A Framework for
Assessing the Adequacy and Effectiveness of
Software Development Methodologies”,
Proceedings of the 15th Annual Software
Engineering Workshop, Greenbelt, Md, 1990.

[27] V.R. Basili, “Software modeling and
measurement. The Goal-Question-Metric
paradigm”, Computer Science Technical
Report Series NR: UMIACS-TR-92-96, 1992.

[28] IEEE Standard for Software Quality Metrics
Methodology, 1998.

[29] B.Kitchenham, S.Linkman, A.Pasquini, V.
Nanni, “The SQUID approach to defining a
quality model”, Software Quality Journal
6:211-233, 1997 .

[30] N.E.Fenton, P.Krause, M.Neil, “A Probabilistic
Model for Software Defect Prediction”,
accepted for publication IEEE Transactions
Software Eng., 2001.

[31] N.E. Fenton, M. Neil, “Making Decisions:
Using Bayesian Nets and MCDA”, Knowledge-
Based Systems 14:307-325, 2001.

[32] Briand, J.Wuest, “Empirical Studies of Quality
Models in Object-Oriented Systems”,
Advances in Computers, 56, 2002.

[33] N. Ohlsson, H. Alberg, “Predicting fault -prone
software modules in telephone switches”, IEEE
Transactions on Software Eng. 22 (12): 886–
894, 1996.

[34] T.M. Khoshgoftaar, E.B. Allen, “Logistic
regression modelling of software quality”,
International Journal of Reliability, Quality and
Safety Engineering 6 (4):303-317, 1999.

[35] T.M. Khoshgoftaar, E.B. Allen, “Predicting
fault -prone software modules in embedded
systems with classification trees”, In
Proceedings: 4th IEEE International
Symposium on High-Assurance Systems
Engineering, 1999.

[36] S. Bouktif, B. Kégl, H. Sahraoui, “Combin ing
and Adapting Software Quality Predictive
Models”, 6th ECOOP Workshop on

Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE 2002), 2002.

[37] M. Khoshgoftaar, E,B. Allen, “Neural networks
for software quality prediction”, In W. Pedrycz,
J.F. Peters, editors, Computational Intelligence
in Software Engineering, 16:33-63 of Advances
in Fuzzy Systems - Applications and Theory.
World Scientific, 1998.

[38] K. El Emam, S.Benlarbi, N. Goel, “Comparing
Case-based Reasoning Classifiers for
Predicting High Risk Software Components”,
Journal of Systems and Software, 2001

[39] T. M. Khoshgoftaar, E.B. Allen, W.D. Jones,
J.P. Hudepohl, “Data mining for predictors of
software quality”, International Journal of
Software Engineering and Knowledge
Engineering 9 (5): 547-563, 1999.

[40] Z. Xu, T.M. Khoshgoftaar, E.B. Allen,
“Application of fuzzy expert systems in
assessing operational risk of software”, Inform
ation and Software Technology, 2003.

[41] G. Horgan, S. Khaddaj, P. Forte, “An essential
views model for software quality assurance”,
from Project Control for Software Quality,
Editors, R. Kusters, A. Cowderoy, F. Heemstra,
E. van Veenendaal. Shaker Publishing, 1999.

[42] Campanella, J. (Ed.). Principles of quality
costs: Principles, imple¬mentation and use.
(3rd ed.). New Delhi, India: Prentice-Hall,
2003.

[43] Cartin, T. J. Principles and practices of
organizational perfor¬mance excellence. WI:
ASQ Quality Press, 1999.

[44] Gryna, F. M. Quality and Costs. In J. M. Juran
and A. B. Godfrey (Eds.), Juran’s Quality
Handbook (5th ed.). (pp. 8.1-8.26). McGraw-
Hill, 1999.

[45] G. Ben-Yaacov, P. Suratkar, M. Holliday & K.
Bartleson, “Advancing Quality of EDA
Software", Invited paper, IEEE ISQED 2002
Symposium on Quality Electronic Design, San
Jose, Ca., March 18-20, 2002.

[46] S. McConnell. Professional Software
Development, Addison Wesley, 2004, ISBN 0-
321-19367-9

[47] B. Boehm. Software Engineering Economics;
Prentice Hall, Englewood Cliffs, NJ; 1981.

[48] B. Boehm, C. Abts, A. Brown, S. Chulani, B.
Clark, E. Horowitz, R. Madachy, D. Reifer and
B. Steece Software Cost Estimation with
COCOMO II, Prentice Hall, 2000.

[49] National Institute of Standards & Technology,
US Dept of Commerce, “The Economic
Impacts of Inadequate Infrastructure for
Software Testing”, May 2002.

WSEAS TRANSACTIONS on COMPUTERS Ljubomir Lazic, Amel Kolasinac, Dzenan Avdic

ISSN: 1109-2750 47 Issue 1, Volume 8, January 2009

