
Clustering the Source Code

NADIM ASIF, FAISAL SHAHZAD, NAJIA SAHER, WASEEM NAZAR

Dept. of Computer Science

The Islamia University of Bahawalpur

Baghdad campus, Bahawalpur,

PAKISTAN

nasif@softresearch.org, faisalsd@gmail.com, najia_saher@hotmail.com, waseem@uol.edu.pk

Abstract:- The systems are required to understand and present at higher levels of abstractions to perform the

changes and meet the current requirements. When the changes are performed, the source code drifts away from

the existing available system documentation (specifications, design, manuals), which represent the functionality

of the software systems. The software systems are developed using the multi-languages with different dialects

and scripts. This paper presents a clustering approach using the available source code, documentation,

experience and knowledge about the domain and application to cluster the source code. The source code

clustering is used for the purpose of recovering the artifacts, understanding the system and identifying the

relationships among the source code to plan, design and execute the changes in the software systems.

Key Words:- Source Code Clustering, Source Code Analysis, Re-Engineering, Reverse Engineering, Design

Recovery, Program Understanding, Software Maintenance, Clustering.

1. Introduction
The software engineers perform the code analysis

and different maintenance activities by extracting the

different types of artifacts at different levels of

details using the clustering. The software artifacts

exist at implementation, structural, functional and

domain abstraction levels. The changes are

performed in the software systems and the existing

documents are drifted away form the implementation

and fail to represent the current implementation of

the system. The reverse engineering techniques help

to represent the software systems at higher levels of

abstraction than code to recover the desired artifacts,

understand and comprehend the source code and

elaborate the functionality of the software systems to

plan, design and execute the different types of

maintenance activities. The software engineers

cluster the source codes in different formats to

represent the systems at higher levels of abstraction

for understanding and representing software systems

for maintenance activities. The clusters represent the

higher level of abstraction of a source code. These

clusters help to explore, search the specific features

and relationships among the source code, understand

the code, functionality and behavior of software

systems for maintenance tasks at hand [1,3,4,5]. The

source code clustering is used for the following

purposes

• For understanding the programs

• For identification (physically and

conceptually) of codes (specific line of

codes), where changes can be performed

• Categories into physical or conceptual

components

• To model and perform changes.

• To plan, design and execute the changes in

the source code and also predicts the impacts

of these changes in the source code.

• Monitor the effects of changes

 The available source code exist in many forms;

may be written in multi-languages or have different

dialects and scripts, can not be compiled or have

errors and complete code is not available. The

software engineers debug the source code to find the

relationships and functionality among the source

code, associate them with relevant entities to

understand, which is a time consuming and laborious

task. This paper presents an approach of clustering

the source code using the available source code,

documents, experience and knowledge of application

and domain as required by the task at hand.

2. Background
A cluster is a collection of objects that are similar to

one other within the same cluster and are dissimilar

to objects in other clusters. The process of grouping

the physical or abstract objects into entities of similar

objects is called clustering. The set of techniques

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1835 Issue 12, Volume 8, December 2009

based on clustering to extract the design artifacts

from the system's artifacts (source code and available

documentation) are used for the purpose of

maintenance tasks. The clustering approaches helps

user to perform the clustering by adapting the top-

down, bottom-up and combination (hybride) of both

strategies required by the maintenance task at hand

The bottom up strategy start by placing each object

in its own cluster and then merge these cluster into

larger and larger cluster, until all of the objects are in

a single cluster or certain termination conditions are

satisfied. The top-down strategy divide the cluster

into smaller and smaller pieces, until each object

forms a cluster on its own or until satisfy termination

conditions, such as a desired numbers of clusters are

obtained.

 The hybride strategy allow the user to form the

clusters starting at any level of available sample data

to perform bottom-up and top-down clustering,

combination of both strategies to develop the

desired clusters to certain levels for the task at hand.

The major clustering techniques can be divided into

the following categories on the bases of the type of

method it adapt to cluster the data objects [2, 29, 30,

31].

 Hierarchical Methods : The hierarchical methods

can be divided into two major categories on the bases

of the strategy, (top down or bottom up), it adapt to

cluster the objects; Agglomerative and Divisive

Hierarchical Clustering . Agglomerative hierarchical

clustering place each objects in its own cluster and

then combines these clusters into larger and larger

cluster until certain termination is satisfied. The

Divisive hierarchical clustering use the top down

strategy and divide the cluster into smaller clusters,

until each object from a cluster on its own or satisfy

certain termination condition e.g. Agglomerative

(AGNES), DIvisive ANAlysis (DIANA), Balanced

Iterative Reducing and Clustering using Hierarchies

(BIRCH), Clustering Using REpresentative (CURE),

Chameleon.

 Partition Methods : The typical methods includes

k-means, k-mediods. The partition methods first

create set of k partitions, then use the relocation

technique to improve the partitions by moving

objects from one group to another group.

 Grid Methods : The grid methods first quantizes

the objects space into a finite number of cells that

form a grid structure, and then clustering is

performed on the grid structure e.g. STatistical

Information Grid (STING), WaveCluster, Clustering

In QUEst (CLIQUE).

 Density-Based Methods : The objects are clustered

based on the notion of density. The clusters grow on

the bases of the density of neighborhood objects or

according to some density function e.g. A Density-

Based Spatial Clustering of Application with Noise

(DBSCAN), Ordering Points To Identify the

Clustering Structure (OPTICS), DENsity-based

CLUstring (DENCLUE).

 Model Based Methods: The model based methods

hypothesizes a model for each of the cluster and then

find the best fit of the data objects to that model.

These type of clusting methods use the statistical or

neural network approach e.g. COBWEB, CLASSIT,

Auto-Class.

 Hybride Clustering Methods : The methods which

integrate the idea of many clustering methods and do

not belong uniquely to particular clustering method

category. The other types of methods are the fuzzy

clustering methods [2].

 The clustering approaches classification based on

the artifacts recovery can be divided into two

categories, automatic or semi-automatic clustering

techniques. The automatic techniques [10, 11, 12]

use the similarity metric (association coefficient,

correlation coefficient or probabilistic measure) to

partition the system into related group entities. The

semi-automatic techniques perform user-assisted

clustering process using domain knowledge and

visualization means [6, 13, 14, 15, 16, 17].

 Some popular clustering techniques use source

code component similarity (Hutchens and

Basili,[12]; Schwanke [23]; Choi and Scacchi [21];

Muller et al [26,27]). Another class of techniques

use the implementation information such as module,

directory, and/or package names to derive the

subsystems [22], and third type of techniques are

based on heuristic search techniques (Mancoridis et

al., [24, 25]; Mitchell et al, [11,24]).

 The Lakhotia [28] also presented twelve reverse

engineering techniques based on clustering. The Rigi

Tool [26, 27] operates semi-automatically, on a

generic set of source code model relation. Rigi user

extracts the structural information from the system

artifacts and represents that information as a set of

relation. The Rigi tool takes these relations as input

and displays them as collection of overlapping

graphs. The user than manipulate the graph(s) and

identifies the source code entities (nodes) that should

be clustered. The user identifies the set of entities to

cluster by applying graph-theoretic algorithms (i.e.

identify the strongly connected components), by

quality metrics such as coupling and cohesion or by

defining scripts such as searching for nodes (entities)

conforming to particular naming conventions. The

user produces the opaque model by using the Rigi

that does not show the details of the source model.

This model may be appropriate for some tasks, and

while for others, the details may be beneficial. In

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1836 Issue 12, Volume 8, December 2009

Rigi the nodes of graph are clustered based on source

model information such as the names of entities, the

clustering is performed by using the interface or by

using a procedural script.

 Murphy et. al Reflexion model technique cluster

source code entities through the use of declarative

map [32] to produce a high level model of a system.

The declarative map is easy for the user to specify.

The declarative map is shorter than procedural map,

and the map is likely simple in format, improving the

likelihood that the user specifies the desired

mapping. With Rigi, however, a user must express

the desired clustering of source entities, either

manually or programmatically or both based on the

entire source model. Even when sufficient clustering

is performed to derive a high-level model with Rigi,

the model that results is not necessarily a view of

interest to the engineer. The Rigi method is driven

from the bottom-up, and another way to improve the

desired view with Rigi is to apply the domain and

system-specific knowledge during the bottom-up

clustering process.

 Mancoridis et al. [25] describes using automatic

clustering to produce high-level system organizations

of source code. The approach explains a collection of

algorithms that were developed and implemented to

facilitate the automatic recovery of the modular

structure of a software system from its source code.

Automatic modularization is treated as an

optimization problem and the algorithms described

use traditional hill-climbing and genetic algorithms.

An automatic software modularization environment

is defined and a case study is shown to illustrate the

effectiveness of the modularization technique.

Clustering is considered as an optimization problem

where the goal is to maximize an objective function

based on a formal characterization of the trade-off

between inter and intra-connectivity. Kamran Sartipi

[15] presented another user assisted clustering

technique for architecture recovery based on

approximate measure, and compute on the shared

properties among of highly related system entities.

Maletic and Marcus applied the information retrieval

technique called Latent Semantic Indexing (LSI) for

software reverse engineering [17, 18]]. They used

LSI to analyze the semantic clusters of the files of

Mosaic. The user can interact and navigate the

visualizations of the semantical clusters, aided by

complementary lower level information about the

properties and interconnections between the

components of the clusters. Another approach to

software reverse engineering is the use of

visualization techniques to represent the software

entities and their relationships [19, 20] at higher

levels of abstraction. Tools that use structural

exploration are the Rigi [26], SHriMP [20] and

Bunch [24]. SHriMP supports a top-down approach

to software exploration while employing a nested-

graph visualization technique. Brunch first

determines the resources and relations in the source

code and store the resultant information in a

database. Available source code analysis tools of a

variety of programming languages is used for this

step. After the resources and relations have been

stored in a database, the database is queried and a

Module Dependency Graph (MDG) is created. MDG

is a directed graph that represents the software

modules (e.g., classes, files, packages) as nodes, and

the relations (e.g., function, invocation, variable

usage, class inheritance) between modules as

directed edges. Then the clustering algorithms are

used to create the partitioned MDG. The clusters in

the partitioned MDG represent subsystems that

contain one or more modules, relations, and possibly

other subsystems. The final result can be visualized

and browsed using a graph visualization tool such as

dotty.

3. Source Code Clustering Process
The first step of clustering process is to identify the

entities using the available documents, experience

and knowledge about the domain and the application.

An entity (Ei) define/comprehend a concept and is

used to represent higher abstraction level of

components/modules, data sources and processes in a

domain, which are used in the high level models to

represent the software systems [6,7,8,9]. The sub-

entities represent the lower levels of abstractions as

compared to an entity. For example account is an

entity in a banking domain and personal account,

corporate account are examples of sub-entities

represent the specific types of accounts. The user

specifies the entities and writes the abstract regular

expressions to cluster the source code physically or

conceptually.

 In the second step, the entities are used to cluster

the source codes which represent the conceptual or

physical (directories, files) association with the

entities. The process is repeated until the desired

clusters are formed.

 The source code clustering must satisfy the

following requirements.

1. Unit cluster contains minimum a single line of

code.

2. Let Cp represent a single cluster of source code

formed by using the physical relationships, the

files or type of files and directories association

with source code.

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1837 Issue 12, Volume 8, December 2009

3. Let Cc represent a single cluster of source code

developed using the conceptual relationships, the

components/sub-components, classes/sub-classes

and functions association with the source code.

4. The cluster Ci will be similar to the cluster Cj

physically, if they have the same line of code in the

same sequence then Ci = Cj. Clusters dissimilar

physically, if they have different line of code in

different sequence then Ci ≠ Cj .

5. The cluster Ci will be similar to the cluster Cj

conceptually, if they perform the same function but

may differ physically Ci = Cj. Clusters dissimilar

conceptually, if they perform different functions

then Ci ≠ Cj OR similar physically Ci = Cj.

6. The cluster formed using the entity Ei is

represented by .

The clusters (Cc) formed using the concepts

represented by entity (Ei), which abstract the

concepts. The components, modules, classes,

functions which represents the entity (concepts)

implemented in the source code. The source code

is organized physically in the files or types of files

(*.pp, *.jar , *.exe etc) and directories. The cluster

Cp is formed using the entity (Ei), which associate

the files (code of lines exists in different files and

directories) to the cluster.

7. Each entity (Ei) contribute in the cluster has

weight equal to 1 (WEi = 1). The Similarity and

dissimilarity of clusters are represented by So and

Do.

So = C(i,j) S(Ei,Ej)

Do = C(i,j) D(Ei,Ej) = To - So x 2

Where So is the number of similar objects in cluster

Ci and Cj and the entities Ei and Ej are used to

form the cluster C(i,j) S(Ei,Ej). TheTo represent the

total number of objects in clusters Ci and Cj.

 The C(i,j) D(Ei,Ej) represent the dissimilarity

between the clusters Ci and Cj and the centre points

of clusters are the entities Ei and Ej used to form the

cluster.

The C(i,j) S(Ei,Ej) = C(j,i) S(Ej,Ei) and

 C(i,j) D(Ei,Ej) = C(j,i) D(Ej,Ei)

 The mean and average similarity, and dissimilarity

of clusters are calculated by using the following

equations.

8. The cluster Ci and Cj will be merged if the

difference C(i,j) D(Ei,Ej) = 0 or both have equal

number of similar objects then

C(i,j)S(Ei,Ej) = C(i,j)D(Ei,Ej) .

 For example, clusters Ci and Cj are formed using

the entities Ei and Ej in figure 1. The cluster Ci

contains 6 objects (A,B,C,D,E,F) and cluster Cj

contains 4 Objects (A, C, K, M).

 n

 Cp = ∑ Ci

i = 1

 n

 Cc = ∑ Ci

i = 1

 n

 CnS = ∑ C(i,j) S(Ei,Ej)

i = 1 j = i+ 1

 n
 CnD = ∑ C(i,j) D(Ei,Ej)

i = 1 j = i+ 1

The Similarity and dissimilarity of entity

Ei with the other entities (E1 ,E2 ,….. En) is

represented by the following equations

 n
 CnS = ∑ C(i,j) S(Ei,Ej)

 j = 1

 n
 CnD = ∑ C(i,j) D(Ei,Ej)

 j = 1

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1838 Issue 12, Volume 8, December 2009

The Similarity and dissimilarity of clusters are

calculated below.

 So = C(i,j) S(Ei,Ej) = 2

 Do = C(i,j) D(Ei,Ej) = To - So x 2

 = 10 – 2 x 2 = 6

4. Case Study

The clusters are developed using the entities

CToken, Scanner and Parse, which are identified

from the existing available Mozilla HTML Parser

source code, documentation and knowledge about

the application and domain. The clusters depicted in

figures 2, 3, 4 & 5 represent the conceptual

relationship with classes and functions.

 Ci Cj

 Ei

 Ej

B

F

C

E D

A

C

A

M

K

 +AllClasses.txt 7 class CRTFControlWord : public CToken {

 ** 8 class CRTFGroup: public CToken {

 ** 9 class CRTFContent: public CToken {

 ** 12 class CTokenFinder: public

 nsDequeFunctor{

 ** 17 class CTokenDeallocator: public

 nsDequeFunctor{

 ** 18 class CTokenRecycler : public

 nsITokenRecycler {

 ** 30 class CHTMLToken : public CToken {

 ** 71 class CToken {

 ** 72 class CTokenHandler : public

 CITokenHandler {

Figure 2 Cluster the classes using the Entity CToken

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1839 Issue 12, Volume 8, December 2009

Figure 3. Clustering the CToken Class Functions

+nsHTMLTokens.cpp 30 CHTMLToken::CHTMLToken(const nsString&

aName,eHTMLTags aTag) : CToken(aName) {

 ** 35 CHTMLToken::CHTMLToken(eHTMLTags aTag) : CToken(aTag) {

 ** 40 void CHTMLToken::SetStringValue(const char* name){

 ** 589 CHTMLToken::Reinitialize(aTag,aString);

 Figure 4. Clustering the CHTMToken Class functions

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1840 Issue 12, Volume 8, December 2009

The approach has the following features required for

clustering the source code.

User-oriented: The approach involves the user and

also allows the user to cluster the source code using

the experience, domain and application knowledge.

Iterative: The process is iterative and the clusters

are formed to the desire level required by the task at

hand.

Partial: only the desired source code clusters are

formed for the task at hand.

5. Design Recovery Tool
The Design Recovery Tool (DRT) is used in the

clustering process [33,34,35,36]. The tool has the

following features.

Flexibility: Many issues related to source code

exists like language dialects, robustness of extraction

Figure 5. Clustering the nsParser Class Functions with Design Recovery Tool

(DRT)

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1841 Issue 12, Volume 8, December 2009

mechanism used, incorrect syntax, incomplete code

and mix-mode source code. Different tools have

limitations in handling all above issues. The DRT is

flexible enough to handle all of these issues. Its

pattern matching power can be extended by

designing new pattern specifications with the help of

existing pattern specifications.

Mappings : DRT maps the source code and

documents for extraction and abstraction purpose.

Through mapping we can increase the extraction

performance; specifying the required artifacts

constructs.

Extraction and Abstraction : Most reverse

engineering tools extract and abstract the artifacts in

different styles at different levels, which are not very

much relevant to maintenance task at hand. In DRT

the extraction and abstraction operations may be

refined by the user according to its need.

Presentation : In the case of large and complex

systems, the numbers of artifacts are large in number

and have different type of relationships make it

difficult to present the system artifacts. Using DRT

the extracted and abstracted artifacts can be

represented in different formats.

Scalable : The reverse engineering tool should be

applicable to large systems and different type of

source codes (Languages). Through innovative

pattern specifications of DRT, it can be used for

large systems and can support different languages.

Speed : Speed is also very important attribute

because the software under study may have million

lines of code and it may not be structured that whole

search operation can be performed on subset of code.

Robustness : The reverse engineering tools should

have the tolerance of errors, especially in unexpected

cases. It is tolerant in that there are few constraints

on the condition of the artifacts. For example, we can

extract from source that cannot necessarily be

compiled. In DRT, the robustness is the key concern

and work is in progress to achieve it.

Analysis : The matched patterns may be further

analyzed to extract further relationships between the

patterns and may be represented in different formats.

Different scripts can be used for the analysis of

extracted artifacts.

Precision : The tools should have the ability to

match the required patterns with accuracy and it

should ignore the false matches. We can get the

100% precision in DRT by refining the pattern

specifications.

 The DRT language for specifying the pattern

designs has three parts: Patterns, actions and

analysis. Patterns specifications are used to extract

the artifacts of user’s need, actions to execute after

pattern is matched to a portion of a system artifacts

and analysis operations that extract a source code

from an intermediate representation produced during

scanning. We designed our pattern specifications

keep in view the requirements of our source code

consisting of different programming languages. The

simple syntax of regular expression makes it easy for

the user to extend the vocabulary of the pattern

 (Class | Deriveclass)
 (a)

 ((class)\s*ClassName\s*\{) ((class)\s*ClassName\s*:\s*Type\s*ClassName\s*\{)

 (b)

 (\w)+ (\w)+ (public|private|protected) (\w)+

 (c)

Figure 6. Regular Expression Pattern used to cluster the Mozilla HTML Parser Classes

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1842 Issue 12, Volume 8, December 2009

specification language according to requirement to

cluster the source code.

 The user can design abstract pattern using the

existing patterns to cluster the source code. For

example, in Figure 6 the “Class” and "Deriveclass"

are the abstract reserve word, which represents the

regular expression pattern (b) for the classes and

derived classes. The regular expression pattern (b)

contains the abstract patterns "ClassName" and

"Type", which represent the sub regular expression

pattern (c) for the class name and class type in this

case.

6. Conclusion
The software source code exist in many forms; may

be written in multi-languages or have different

dialects and scripts, can not be compiled or have

errors and complete code is not available. The

software engineers debug the source code and find

the relationships and functionality and associate

them with relevant entities to understand and find the

relationships among the different pieces of source

code exist in different types of files and directories,

which is a time consuming and laborious task. The

approach clusters the source code using the available

documentation, experience, knowledge of

application and domain.

 The source code clusters are formed using the

entities which represent the concepts implemented in

the software source code. The approach clusters the

source code conceptually (using conceptual

relationships – components, classes, functions,

variables) and physically (directories, types of files

where the lines of source code exist). The clusters are

formed using the top-down, bottom-up and hybride

(combination of both) strategy as required by the

task at hand to the desired level of clustering.

References

[1] A.K Jain, M.N Murty and P.J Flynn, Data

Clustering: A survey. ACM Computing Survey.

31, 1999, pp. 264-323.

[2] L. Kaufman and P.J Rousseeuw , Finding

Groups in Data: An Introduction to Cluster

Analysis. New York: John Wiley & Sons,

1990.

[3] Nadim Asif, M. Dixon, J. Finlay and G.

Coxhead, Recover the Design Artifacts. In

proceedings of International Conference of

Information and Knowledge Engineering

(IKE02), 24
th
 –27

th
 June, 2002, Las Vegas,

Nevada, USA, CSREA Press, pp. 656-662.

[4] Nadim Asif, Reverse Engineering

Methodology to Recover the Design Artifacts:

A Case Study. In proceedings of International

Conference of Software Engineering Research

and Practice (SERP03), 23
rd

-26
th
 June, 2003,

Las Vegas, USA,CSREA Press, pp.932-938.

[5] Nadim Asif, Muthu Ramachandran, Recover

the Use Case Models. In proceedings of

International Conference of Software

Engineering Research and Practice (SERP05),

27
th
 -30

th
 June, Las Vegas USA, 2005, CSREA

Press.

[6] Nadim Asif, Developing High Level Models

for Artifacts Recovery and Understanding

Using Statistical Information. In proceedings

of 8
th
 Islamic Countries Conference on

Statistic. 19
th
- 23

rd
 Dec, 2005.

[7] Nadim Asif, Software Reverse Engineering,

SoftResearch Press, 2006. (ISBN : 969-9062-

00-2).

[8] Nadim Asif, Artifacts Recovery at Different

levels of Abstraction. Information Technology

Journal, 7(1), pp. 1-15, 2008.

[9] Nadim Asif, Artifacts Recovery Techniques,

International Journal of Software Engineering,

Vol.1, No 1, 2007, pp. 26-66

[10] Kunz, T, Black, JP, Using automatic clustering

process for design recovery and distributed

debugging. IEEE Transactions on Software

Engineering; 21(6), p515-527,1995.

[11] Mitchell, Brian S., Mancoridis, Spiros, On the

Automatic Modularization of Software

Systems Using the Bunch Tool. IEEE

Transactions on Software Engineering; Vol.

32 Issue 3, p193-208, March 2006.

[12] D. Hutchens and R. Basili. System Structure

Analysis: Clustering with Data Bindings. IEEE

Transactions on Software Engineering,

11:749-757, Aug. 1995.

[13] Finniga. P et. al. , The Software Bookshelf,

IBM Systems Journal, 4, 564-593, 1997.

[14] Muller, H.A et al , A reverse Engineering

Approach to subsystem structure identification.

Journal of Software Maintenance: Research

and Practice.5(4),181-204, 1993.

[15] Sartipi, K. ,Kontogiannis K. A User-assisted

approached to component Clustering. Journal

of Software Maintenance: Research and

Practice, 00:1-32, 2003.

[16] T. Wiggerts. Using clustering algorithms in

legacy systems remodularization. In Proc.

Working Conference on Reverse Engineering,

1997.

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1843 Issue 12, Volume 8, December 2009

[17] J. I. Maletic and A. Marcus. Supporting

program comprehension using semantic and

structural information. In Proceedings of the

International Conference on Software

Engineering (ICSE 2001), pages 103–112,

2001.

[18] A. Kuhn, S. Ducasse, and T. Gˆýrba. Enriching

reverse engineering with semantic clustering.

In Proceedings of Working Conference On

Reverse Engineering (WCRE 2005), Nov.

2005.

[19] M. Lanza and S. Ducasse. Polymetric views—

a lightweight visual approach to reverse

engineering. IEEE Transactions on Software

Engineering, 29(9):782–795, Sept. 2003.

[20] J. Michaud, M.-A. Storey, and H. Muller.

Integrating information sources for visualizing

Java programs. In Proceedings of IEEE

International Conference on Software

Maintenance (ICSM’01), pages 250–259.

IEEE, Nov. 2001.

[21] S.Choi and W. Scacchi. Extracting and

restructuring the design of large systems. In

IEEE Software, pages 66–71, 1999.

[22] N. Anquetil, C. Fourrier, and T. Lethbridge.

Experiments with hierarchical clustering

algorithms as software remodularization

methods. In Proc. Working Conf. on Reverse

Engineering, October 1999.

[23] R. Schwanke. An intelligent tool for re-

engineering software modularity. In Proc. 13th

Intl. Conf. Software Engineering, May 1991.

[24] Mancoridis, S., B.S. Mitchell, Y. Chen, and

E.R. Gansner. Bunch: A clustering tool for the

recovery and maintenance of software system

structures. In Proceedings of International

Conference of Software Maintenance, pages

50–59, August 1999.

[25] Mancoridis, S., Mitchell, B.S., Rorres, C.,

Chen, Y. and Gansner, E. R., Using Automatic

Clustering to Produce High-Level System

Organizations of Source Code. In:

Proceedings of the Sixth International

Workshop on Program Comprehension, 24th–

26th June, IEEE Computer Soc. Press. pp. 45-

52, 1998.

[26] Muller, H.A et al., 2007. Rigi. Available from:

< http://www.rigi.csc.uvic.ca>

[27] Wong, K., Tilly, S., Muller, H. and Storey, M.,

Structural Redocumentation: A Case Study.

IEEE Software, Vol. 12, No. 1: January, pp.

46-54, 1995.

[28] Lakhotia, A., A Unified Framework for

Expressing Software Subsystem Classification

Techniques. Journal of Systems and Software,

36, pp. 211-231, 1997.

[29] A.K Jain, M.N Murty and P.J Flynn, Data

Clustering: A survey. ACM Computing Survey.

31: pp. 264-323, 1999.

[30] Romero, C., Ventura, S. Educational Data

Mining: A survey from 1995 to 2005, Expert

Systems with Applications; Vol. 33 Issue 1, pp.

135-146, July 2007.

[31] N. Anquetil and T.C. Lethbridge, Comparative

study of clustering algorithms and abstract

representations for software remodularisation,

IEE Proc.-Software., Vol. 150, No. 3, June

2003.

[32] Murphy, G., Notkin, D., and Sullivan, K.,

Software Reflexion Models: Bridging the Gap

between Design and Implementation. IEEE

Transaction on Software Engineering. Vol. 27.

No 4: April, pp. 364-380, 2001.

[33] Nadim Asif, Recovery of Artifacts.

International Journal of Software Engineering,

Vol. 2, No. 1, pp. 11-16, 2008.

[34] Ghulam Rasool, Nadim Asif, Software

Architecture Recovery. International Journal

of Computer, Information, and Systems

Science, and Engineering. Vol.1, No. 3, 2007.

[35] Ghulam Rasool and Nadim Asif, Design

Recovery Tool. International Journal of

Software Engineering, Vol. 1, No. 1, pp 67-72,

2007.

[36] Nadim Asif, Faisal Shahzad, Najia Saher,

Rafaquet Kazami, Imran S. Bawaja,

Shahid Naveed, Munsib Ali Waseem

Nazar, Shahzad Mumtaz. High Level

Models for Artifacts Recovery and

Understanding. Computer and Simulation in

Modern Science, WSEAS Press USA. 2009.
ISSN: 1790-2769. ISBN: 978-960-474-117-5

WSEAS TRANSACTIONS on COMPUTERS Nadim Asif, Faisal Shahzad, Najia Saher, Waseem Nazar

ISSN: 1109-2750 1844 Issue 12, Volume 8, December 2009

