
Hierarchical Clustering of Distributed Object-Oriented Software

Systems: A Generic Solution for Software-Hardware Mismatch

Problem

AMAL ABD EL-RAOUF

Computer Science Department

Southern Connecticut State University

501 Crescent St., New Haven, CT 06515

USA

abdelraoufa1@southernct.edu

Abstract: During the software lifecycle, the software structure is subject to many changes in order to fulfill the

customer’s requirements. In Distributed Object Oriented systems, software engineers face many challenges to

solve the software-hardware mismatch problem in which the software structure does not match the customer’s

underlying hardware. A major design problem of Object Oriented software systems is the efficient distribution

of software classes among the different nodes in the system while maintaining two features: low-coupling and

high software quality. In this paper, we present a new methodology for efficiently restructuring Distributed

Object Oriented software systems to improve the overall system performance and to solve the software-

hardware mismatch problem. Our method has two main phases. In the first phase, we use the hierarchical

clustering method to restructure the target software application. As a result, all the possible clustering solutions

that could be applied to the target software application are generated. In the second phase, we decide on the

best-fit clustering solution according to the customer hardware organization.

Key-Words: - software restructuring, hierarchical clustering, distributed systems, object oriented software,

performance analysis, low coupling.

1 Introduction
One of the important advantages of software

restructuring techniques is providing solutions for

the software-hardware mismatch problem in which

the software structure does not match the available

hardware organization. In such class of problems,

the solution is possible through two approaches;

either to configure the hardware to match the

software components (hardware reconfiguration),

and/or to reconfigure the software structure to match

the available hardware by reorganizing its

components (software restructuring). The first

approach is impractical especially in complex

programs containing many interacting modules (or

subtasks). The second approach is more practical

especially in computing environments that contain a

large number of users. It provides an optimal way to

use the available system capabilities, reduce the

overall computational cost, and improve the overall

system performance.

 The basic idea of distributed software

restructuring techniques as introduced in [1] is to

select the best alternative structure(s) for a

constrained computing environment while reducing

the overall resources need. These structures can be

created through; granularity definition (merging of

modules), alternative modules ordering, loop

decomposition, or multiple servers support.

 In Distributed Object Oriented systems, classes are

the main units. Classes represent abstraction that

should make adapting software easier and thus lower

the cost of reuse, maintenance and enhancement [2].

These classes interact to form a functioning system.

This kind of interaction results in a communication

cost; a function call is a source of data

communication.

 On the other hand, the object oriented paradigm

as described in [3] is based on several concepts such

as inheritance, aggregation and association that

produce complex dependencies between classes.

That is why it is a challenge in the Distributed

Object Oriented systems to create subsystems with

low coupling and high cohesion as quality matrices

for good design [4].

 Clustering techniques aim to group the fine-

grained active objects into clusters with the goal

minimizing the interconnectivity between the

different clusters while maximizing the

interconnectivity inside the same cluster in order to

improve the software quality.

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1780 Issue 11, Volume 8, November 2009

 In this paper, we introduce a new methodology to

restructure distributed object oriented software

systems. Our methodology is more appropriate for

software companies that develop distributed object

oriented software applications while the customer

hardware platform is unknown. When the software is

purchased, the development engineer would

customize the system to fit the customer

requirements. S/he would be able to use our

technique to pick the level in the hierarchy that has

the number of clusters matches the number of nodes

in the customer hardware platform.

 The rest of this paper is organized as follows: the

second section presents related work and existing

approaches in the field of restructuring software

systems. Section three states the problem definition,

including assumptions and our goals. Section four

describes the analytical distributed object oriented

performance model that we utilized to generate the

communication matrix. Section five describes the

hierarchal clustering technique used with our

approach. In section six, we support our

methodology with a case study. Finally, the last

section draws our conclusions and potential future

work.

2 Related Work
Fergany in [1] defines software restructuring as

follows:

“Software restructuring is the process of

selecting an allowable order of subtasks

(modules) which meet user and system

performance requirements while

achieving minimum total resource cost”.

Fergany introduces restructuring techniques for

distributed software, in which the best alternative

structure(s) for a constrained computing

environment is selected while reducing the overall

resources need. Fergany created her different

structures through what she called granularity

definition. Granularity definition aims to merge

relatively small modules into larger ones. Other

structures are created using alternative modules

ordering, loop decomposition, or multiple servers’

support as shown in the work introduced in [5]. In

this work, it has been shown that performing

software restructuring ahead of allocation and

scheduling phases improved the results obtained

from these phases and reduced the overall resources

cost. However these techniques are not targeting

distributed object oriented systems.

 In the literature, the work in the software

restructuring field targeting distributed object

oriented systems can be categorized into three main

categories. The first category aims to re-define the

granularity of the system to provide better overall

performance. Different researchers used different

granularity levels (modules vs. classes, procedures,

fields), that is why it is difficult to compare the

different restructuring methods. The second

category computes a measure of

similarity/dissimilarity between software grains. In

this category, each measure used would lead to a

different structure of the target software application.

Finally the third category looks at the software

restructuring as an optimization problem. In order to

solve the optimization problem, some researchers

define an objective function and some use well-

known optimization techniques.

 In [6], Jain et al review different techniques for

data clustering. This paper presents an overview of

pattern clustering methods from a statistical pattern

recognition perspective, with a goal of providing

useful advice and references to fundamental

concepts accessible to the broad community of

clustering practitioners.

 In [7], Bellur et al present a method to group the

fine-grained active objects into clusters while

minimizing communications among them. Some of

the clustering approaches consider the cost of object

update as a part of the communication as in [8]. In

[9], the author introduce a parallel programming

environment, called distributed object-oriented

virtual computing environment (DOVE), for

clustered computers based on distributed object

model.

 Other work in clustering considers automatic

clustering approach. Early work is done by

Schwanke. In [10], Schwanke uses the shared

neighbors’ technique to solve the problem of

automatic clustering. In his method he uses heuristic

algorithm in order to capture patterns that commonly

appear in software systems. In [11], Schwanke

introduce a tool that applies reverse engineering to

the software system in order to obtain better

software modularity. The granularity is at the level

of “the procedure”. The outputs of his method are

modules that have procedures referencing same

names, or according to Schwanke “design coupled

Procedures”.

 Mancoridis et al. present in [12] a methodology

to facilitate the automatic recovery of the modular

structure of a software system from its source code.

In [13], Mancoridis et al introduce their clustering

tool “Bruch” that is implemented with the goal of

software recovery and allowing incremental

software structures maintenance. In [14], Mancoridis

et al use “genetic algorithms” as an optimization

technique to solve the automatic clustering problem

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1781 Issue 11, Volume 8, November 2009

and to avoid the local optima of the hill-climbing

algorithms. The objective was to maximize the

interconnectivity within each of the generated

clusters.

 Another restructuring approach can be found in

the literature is to re-define the granularity by

splitting modules in order to get finer size. This

approach is called Partitioning as the work

introduced in [15, 16, 17].

 In addition, the work presented in [16, 17, 18]

consider real-time application. The granularity is at

the level of “tasks”. Tasks may violate the deadlines;

in this case a factor is added to the objective

function. This factor is represented by a penalty of

missing the deadline and should be minimized.

 Other restructuring techniques consider clustering

granularity at the level of the “method”. As a result

methods could be moved from one cluster to another

according to specific criteria, examples are shown in

[19, 20]

 In [21], Welch et al introduce a very promising

technique using automatic partitioning within

concurrent programs. The partitioning process is

performed by constructing a call-rendezvous graph

(CRG) for an application program. The CRG is

augmented with edge weights depicting inter-

program-unit communication and concurrency

relationships. The partitioning algorithm has the goal

of producing a set of partitions among which there is

a small amount of communication and there is a

large degree of potential for concurrent execution.

 Work from the literature that falls into the second

category is introduced in [22]. Tzerpos et al address

the problem of software clustering, by defining

metric that can be used in evaluating the similarity

of two different decompositions of a software

system. His metric calculates a distance between two

partitions of the same set of software resources. To

calculate the distance, he used a heuristic algorithm

that computes the minimum number of operations

needed in order to transform one partition from one

cluster to another.

 Tzerpos and Holt present in [23] a software

clustering algorithm in order to discover clusters

based on subsystem patterns that are commonly

observed in decompositions of large software

systems. Moreover, the work introduced in [24] also

uses objective function in the restructuring method.

The objective function aims to minimize the amount

of communication among classes, the processing

power fragmentation in the processors on different

nodes and the penalty factor of missing the
deadline.
 Other work consider restructuring distributed

object oriented software targeting specific hardware

architecture, an example is the pipeline architecture

used in [25].

 In our previous work [26, 27], we present a two-

phase methodology for efficiently restructuring the

distributed object oriented software systems. The

first phase introduces a recursive graph clustering

technique to partition the OO system into

subsystems with low coupling. Then we faced the

problem of software-hardware mismatch as the

resultant number of clusters is not matching the

available number of the distributed nodes. Hence we

needed a second phase of clustering to map the

generated clusters to the set of available machines in

the target distributed architecture.

 In this paper, we propose a new restructuring

methodology that solves the software-hardware

mismatch problem. We use the hierarchal clustering

technique in which the data are not partitioned into a

particular number of clusters. Instead, the result is a

series of partitions, which may run from a single

cluster containing all objects to a number of clusters

each containing a single object. In the second phase,

we just need to find the level of the hierarchy that

has the number of clusters equal to the number of

available machines in the target distributed

architecture.

3 Problem Definitions
In this paper, we consider restructuring distributed

object oriented applications for mapping on a

distributed system. The restructuring process is the

process of mapping the distributed object oriented

application classes to the different network nodes in

order to attain better performance.

 To achieve this goal, we investigate the

possibilities of merging heavily related classes to

identify clusters of a dense community within the

distributed object oriented system.

 For any clustering methodology, challenges are to

decide about two important aspects: the clustering

granularity level and the measure of

similarity/dissimilarity between software grains.

 In our method we have the granularity at the level

of “classes”. In addition, we opt the communication

time to be the measure of similarity among the

different classes in the software application.

 The main objective is to propose a group of sub-

systems, each has maximum communication cost

among the inner-classes and the communication cost

among the sub-systems is minimized. This helps in

composing the system into clusters that have low

coupling and better overall system performance. In

order to achieve this objective, we used the MinMax

algorithm described as follows:

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1782 Issue 11, Volume 8, November 2009

• Given n data objects and the pairwise

similarity matrix D = (dij)

where dij is the similarity between class i;

and class j, in our case it represents the

communication matrix.

• We start to merge the two clusters C1, C2

with the maximum similarity using the min-

max clustering principle. The similarity

between C1,C2 is defined to be:

S(C1,C2) = ij

S(C1,C2) is also known as the overlap

between C1 and C2.

• The similarity within a cluster C1 is the sum

of pairwise similarities within C1:

S(C1,C1). Therefore, S(C1,C1) represents

the self-similarity of cluster C1.

• The clustering principle requires

minimizing S(C1,C2) while maximizing

S(C1,C1) and S(C2,C2) simultaneously.

• These requirements lead to the

minimization of the MinMax objective

function:

FMM= S(C1,C2)/S(C1,C1)+S(C1,C2)/S(C2,C2)

Figure 1: Restructuring Methodology Stages

The next challenge is to accurately compute our

clustering metric. In our method, we used the

distributed object oriented performance model

(DOOP) to calculate the communication time among

all classes in the application represented in the

communication matrix as described in the following

section.

 Then, the Hierarchical clustering technique

utilizes the generated communication matrix to build

a dendrogram or a tree. The dendrogram is a

hierarchal graph that consists of a number of levels.

Each level has a number of clusters. Moving from

one level to the next in the dendrogram, results in a

coarser clustering, with a smaller number of larger

clusters.

 When it is time to map to the target distributed

architecture, the solution is to find the appropriate

level in the dendrogram that has the same number of

clusters as the number of the available nodes in the

target architecture.

 The different stages of the methodology together

with the input and output of every stage are shown

in figure1.

4 Generating the Communication

Matrix Using the DOOP Model
In order to decide which classes should be

combined, a measure of similarity between classes is

required. In our Restructuring methodology, the

merging decision of two classes is based on the

communication time cost between these two classes.

Therefore, we need to generate a communication

matrix as shown in figure 2.

 Figure 2 shows the communication matrix of a

software application that includes five different

classes (5×5 matrix). Each element of the matrix

represents the communication cost between two

classes in the object oriented software application.

For example (d23) is the communication cost

between class 2 and class 3. The communication

cost between a class and itself (dii) is always equal

to zero.

Figure 2: the Communication Matrix

 In distributed object oriented systems, accurate

calculation of communication time cost is a

challenge due to the dependency among classes, the

frequent remote requests and the decentralization of

the functionality. Most approaches to evaluate

communication time in distributed object oriented

0 d12 d13 d14 d15

d21 0 d23 d24 d25

d31 d32 0 d34 d35

d41 d42 d43 0 d45

d51 d52 d53 d54 0

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1783 Issue 11, Volume 8, November 2009

systems are based on either the system

measurements after its development which is very

expensive approach or mapping to a conventional

performance model that would add an extra layer to

the analysis phase.

 In [28], the Distributed Object Oriented

Performance (DOOP) model was introduced. The

DOOP model analyzes and evaluates the overall

time cost considering the communication overheads

while preserving the features, properties and

relationships between objects. According to the

model, each node in the distributed object oriented

system will be represented as shown in figure 3. The

performance model consists of two main parts: the

execution server and the communication server. The

major components of the model are described in

the following subsections.

Figure 3: The DOOP Model Node Structure

4.1 Input Queues
Different arrivals enter to the input queues of the

execution server at different rates according to their

type. There are three categories of arrivals: first, the

external user request (EUR), which submits a

request to execute the entire software driver. Second

type of arrivals is Remote Request (RR), which is a

request from another node in the distributed system

to perform a computation activity within this target

node. The third type is response, which carries

information representing the results of a remote

procedure call (RPC) sent earlier by the target node

to others.

4.2 Execution Server
Requests arrived to the input queues activates

methods through the execution driver. It calculates

the execution time cost using all the information in

the upper layers of the model, and then forwards the

required communication activities to the

communication server.

 The model has three levels of abstraction to

emulate the natural way of handling the design of an

object oriented software application: first, the class

level to identify the classes in the system, each with

its own attributes and methods. The second is the

object level to create objects as instances of the

existing classes and hold their information. The

third level is the master level to execute all the

software modules.

 The model maintains the structure of the

application itself by using the Performance Image

(PI) structure. The PI will be automatically

generated for all classes and objects defined within

the system. The PI itself is a multi-layers

representation as shown in figure 3. Each layer

holds the performance cost that is partially added in

the performance evaluation process. The PI consists

of three layers. The first layer is the Object creation

Performance Layer (OPL), which is responsible for

the performance calculations of object creation. The

OPL layer will include the cost equations of all the

possible constructors.

 The second layer is the Related Classes/Objects

Performance Layer (RPL), which includes all the

information about related classes/objects by

composition, aggregation, inheritance or access

relationships. The third layer is the Service

Performance Layer (SPL), in which CSM

(Computation Structure Model) defined in [29] is

used to generate a cost equation for each method in

the system.

 All cost equations contribute in the overall

estimated execution time calculations. The detailed

evaluation process is illustrated in [28].

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1784 Issue 11, Volume 8, November 2009

4.3 Execution-to-Communication Buffer
The arrivals to the communication buffer or queue

are the data and/or information that need to be sent

to other nodes within the distributed systems. There

are two arrivals categories to the communication

queue. First is the portion of the external user

request (EUR) that needs to be processed on or

propagated to other nodes (i.e. remote procedure

call RPC). The second category represents the

communication activities due to remote request

(RR), which may create a message for another RPC

(i.e. nested RPCs), for updating, or sending back the

results of the RR.

4.4 Communication Server

The communication server handles all

communication activities among nodes in

distributed systems. A built-in communication class

is generated in the class level; the managing object

is an instance of the communication class, which is

constructed in the object level as shown in figure 3.

 The Communication Class is mainly concerned

with the internal and the external communication

activities that take place among objects in a

distributed object oriented system. It holds

information about all the cooperating objects, their

locations (node holding each object), number of

object copies, the size of data exchange between

objects methods, links between nodes, the message

size, message multiplier, communication arrival rate

and others. This information is used to calculate the

cost of communication processes and also the cost

of updating the objects. The communication driver

will cooperate with higher layers to retrieve the

information necessary to calculate the overall

communication cost as illustrated in [28].

4.5 Output Queues
The output queues represent the input queues to

other nodes in the distributed object oriented system

communicating with this node. Communication is

performed through a point-to-point connection. The

output of the communication server will go

through the physical communication link

connecting nodes, and then to the corresponding

input queue.

4.6 Communication time evaluation
In our restructuring scheme, we utilize the DOOP

model in the evaluation process of the

communication activities among classes as shown

below.

Assume that the overall arrival rate to the

communication queue λck is given by:

 cucncsck λλλλ ++=

where λcs, λcn and λcu represent the

communication arrival due to External User Request

(EUR), Remote Request (RR), and updating objects’

data on other nodes, respectively.

 sscs λβλ =
, nncn λβλ =

,

 ∑
=

=
N

i

CUicu

1

λλ

Where, βs and βn are the message multipliers for

EUR and RR. Let λcui be the arrival rate

corresponding to object i data updating.

 Since the updating process to an object i occurs

due to processing EUR or RR, Pi1 is defined to be

the probability that object i is updated due to EUR,

Pi2 is the probability that object i is modified due to

RR. λcui can be expressed as:

 nisicui PP λλλ 21 +=

Hence, the expected communication service time for

each class will be:

R

m
t s
cs =

R

m
t n
cn =

R

m
t ui
ui =

where tcs, tcn and tui are the expected communication

service time for EUR, RR and for update requests

from object i. While ms, mn and mui are the expected

message sizes of EUR, RR and of sending object i

updating data. R represents the communication

channel capacity.

 Furthermore, the average communication service

time for node (k) will be:

uiui

N

i

cncncscsck tPtPtPt ∑
=

++=
1

ck

cs
csp

λ

λ
=

 ck

cn
cnp

λ

λ
=

 ck

ui
uip

λ

λ
=

Where Pcs, and Pcn are the probabilities of activating

communication service by the external user requests

and by remote request respectively. Pui is the

probability of sending object i’s data update to other

nodes.

 In our restructuring method, each individual class

is allocated to a separate node and represented by the

DOOP model. The above equations are used to

compute the average communication cost dij

between a specific class i and other classes in the

system. The computed values represent the elements

of our Communication Matrix.

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1785 Issue 11, Volume 8, November 2009

5 Hierarchal Clustering Technique
In this section we present the agglomerative

hierarchal clustering technique that we use in our

restructuring methodology.

 Hierarchal clustering common methods are:

single-link, complete-link and average-link

clustering.

 In single-link (or nearest neighbor) hierarchical

clustering, we merge in each step the two clusters

whose two closest members have the smallest

distance (or the two clusters with the smallest

minimum pairwise distance). The distance between

clusters is given by:

 D(r,s) = Min { d(i,j) }

Where object i is in cluster r and object j is cluster s

 In complete-link (or farthest neighbor)

hierarchical clustering, we merge in each step the

two clusters with the maximum pairwise distance.

The distance between clusters is given by:

 D(r,s) = Max { d(i,j) }

Where object i is in cluster r and object j is cluster s

 In the average-link (or group average)

hierarchical clustering method, the distance between

two clusters is defined as the average of distances

between all pairs of objects.

 D(r,s) = Trs / (Nr * Ns)

Where Trs is the sum of all pairwise distances

between cluster r and cluster s. Nr and Ns are the

sizes of the clusters r and s respectively. At each

stage of hierarchical clustering, the clusters r and s,

for which D(r,s) is the minimum, are merged.

 Agglomerative clustering is uniquely determined

for a given linkage, independent of any objective

function.

 In the next sub-section we illustrate how to

generate the Dendrogram. Then, the following sub-

section shows how to use the generated Dendrogram

in order to identify the recommended clusters to be

mapped to the different nodes of the distributed

system.

5.1 Generating the Dendrogram
The input to the hierarchal clustering algorithm is

the communication matrix described in section 4 and

the output is a tree-like structure or a Dendrogram.

The Dendrogram is created through recursive

merging of the existing object oriented classes.

 Generating the Dendrogram is a bottom-up

approach; each class starts in its own cluster in the

first level. Then, in succeeding steps, during each

recursive procedure the two clusters that have the

largest pairwise linkage; communication time cost in

our case; are aggregated into a combined cluster. In

this way, the number of clusters in the distributed

object oriented system is reduced by one in each

step.

 At the top level, all classes in the software

application are combined into a single remaining

cluster. Since, for n classes there are (n – 1) merges,

there are 2^
(n-1)

possible orderings for the leaves in a

cluster tree, or a Dendrogram. At each step, the

communication costs between clusters are

recomputed by the Lance–Williams

similarity/dissimilarity update formula given in [30].

This update step could be done by a number of

different ways according to the clustering method.

Figure 4 shows a detailed step by step description of

the hierarchal clustering Algorithm.

ALGORITHM HierarchalCluster(W, CIndx)

INPUT: W = Communication Cost matrix

(weights matrix).

CIndx = the cluster index representing

the resultant merged cluster after each

merge process.

OUTPUT: Matrix G = a matrix in which each

row indicates the new cluster numbers

as a result of each merge process, to

which each node in the distributed

system belongs.

STEP 1 Let CurrW be the extracted

Communication matrix of the

distributed system indicated by

CIndex.

STEP 2 Merge the CurrW into larger cluster

CIndx = ClusterMerge(CurrW)

STEP 3 Create Matrix G so each row holds

the indices of the resultant merged

clusters.

STEP 4 Update CIndx with new merged

cluster created in the matrix G.

STEP 5 Update the Communication cost

STEP 6 Recursively Merge the recently

merged cluster(s) and add the

resultant merged clusters to a new

row of the Matrix G.

Figure 4: The Hierarchal Clustering Algorithm

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1786 Issue 11, Volume 8, November 2009

5.2 Mapping to the Hardware Architecture
The basic advantage of using the hierarchal

clustering that you don’t need to determine the

number of clusters in advance and this is the case of

any software company that develops the OO

software product while the customer system is

unknown.

 The mapping process starts when a customer

purchases the software and it should be customized

to fit his/her needs. The software engineer would

then use the generated dendrogram in a top-down

approach. The start is at the top level and if the

available number of nodes of the customer

distributed system is (m), s/he goes down (m-1)

levels. The level reached in this step is the key level.

This key level would have (m) clusters that are

directly mapped to the m nodes in the distributed

system.

6 Case Study
We consider applying our restructuring methodology

to an object oriented application that consists of 28

classes.

 In the first step we used the Distributed Object

Oriented Performance (DOOP) model to generate

the 27 × 27 communication matrix. This matrix is

the input of the hierarchal clustering algorithm.

 To conduct our experiment, we used the free open

source R that has several functions for hierarchical

clustering. Among hclust, Diana, and agnes, we

chose the hierarchal clustering method “agnes”.

 As described in [31], the agnes clustering methods

has the following features:

• It constructs a hierarchy of clusters.

• It yields the agglomerative coefficient which

measures the amount of clustering structure

found.

• In addition to the usual tree, it also provides

the banner, which is a novel graphical display.

The command used in R is:

plot(agnes(data, diss = FALSE, method =

"average"))

The arguments of the command are set as follows:

• data is the communication matrix generated in

the first step.

• Dissimilarity is set to false as we are trying to

merge classes with maximum communication

time in-between.

• Method used is the average-link method

explained in the previous section.

Figure 5: A Dendrogram for clustering 28-classes

OO software application

 The result of the agnes clustering method is

typically visualized as a Dendrogram as shown in

Figure 5.

 The horizontal coordinate shows the different

classes in terms of Vi where i is the class number.

Each merge process is represented by a horizontal

line.

 The resultant Dendrogram is used to map the

object oriented application to any customer

architecture according to the available number of

nodes.

 In our case, the customer has 7 nodes available in

his distributed system. Starting from the top level,

we go down six levels to reach the key level. A

horizontal line in this key level would intersect with

seven clusters. Table1 shows the OO classes’

assignment to the different clusters in the system

Cluster/Node Classes

1 V9

2 V17

3 V4

4 V6

5 V13

6 V21

7
All other

classes

Table 1: Classes assigned to 7-nodes distributed

system

7 Conclusion
In this paper, we introduced a new methodology for

restructuring distributed object oriented software

systems. This new methodology has two main

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1787 Issue 11, Volume 8, November 2009

objectives, first: grouping object oriented software

classes into clusters that have low coupling to

improve the software quality. Second: solving the

software-hardware mismatch problem by producing

a hierarchical clustering Dendrogram (or tree).

 The Dendrogram consists of different levels of

hierarchy each with different number of clusters.

Hence, the Dendrogram would be used to locate the

appropriate level (key level) that matches the

customer system requirements.

 Further work could be done in two directions.

First: to use different clustering techniques as in [32,

33] or different data modeling such as the model

described in [34]. Second: rather than using the

communication time cost as a metric to decide about

the merging clusters, we could use other metrics as

the metrics presented in [35]. Finally, a comparison

between future work results and our approach’s

results is needed.

References:

[1] T. Fergany, “Software Restructuring in

Performance-Critical Distributed Real-time

Systems,” Ph.D. Thesis, University of

Connecticut., USA, 1991.

[2] B. Meyer, “Object-Oriented Software

Construction,” Prentice-Hall International

(UK), Ltd, 1988.

[3] B. Ostereich, “Developing Software with UML:

OO Analysis and Design in Practice,” Addison

Wesley, June 2002.

[4] Ian Sommerville, “Software Engineering,” 8th

Edition, Addison-Wesley Publishers Ltd, New

York, 2007.

[5] H. Sholl and T. Fergany,“Performance-

Requirements - Based Loop Restructuring for

Real-Time Distributed Systems,” Proceedings

of the International Conference on Mini and

Microcomputers, from Micro to

Supercomputers, Florida, Dec. 1988.

[6] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data

clustering: a review,” ACM Computing

Surveys, vol. 31, no. 3, 1999, pp. 264–323.

[7] U. Bellur, G. Craig, and D. Lea, “Clustering:

Composition for Active Object Systems,”

Proceedings of the 27th Hawaii International

Conference on System Science, Jan. 1994.

[8] J. Cheng, and A. Hurson,“Effective Clustering

of Complex Objects in Object-Oriented

Databases,” Proceedings of the ACM SIGMOD

International Conference on Management of

Data, Denver, USA, May 1991.

[9] W. Chang, and C. Tseng,“Clustering Approach

to Grouping Objects in Message-Passing

Systems,” The Journal of Object-Oriented

Programming, Vol. 8, No. 6, Oct. 1995.

[10] R. W. Schwanke and M. A. Platoff, “Cross

references are features,” Proceedings of the 2
nd

International Workshop on Software

configuration management, New York, NY,

USA: ACM Press, 1989, pp. 86–95.

[11] R. W. Schwanke, “An intelligent tool for

reengineering software modularity,”

Proceedings of the 13th international

conference on Software engineering, Los

Alamitos, CA, USA: IEEE Computer Society

Press, 1991, pp. 83–92.

[12] C. Mancoridis, B. Mitchell, C. Rorres, Y.

Chen, and E. Ganser, “Using Automatic

Clustering to produce High-level System

Organizations of Source Code,” Proceedings of

the International Workshop on Program

Understanding, 1998.

[13] S. Mancoridis, B. S. Mitchell, Y. F. Chen, and

E. R. Gansner, “Bunch: A clustering tool for

the recovery and maintenance of software

system structures,” In the IEEE Proceedings of

the International Conference on Software

Maintenance (ICSM'99), Oxford, UK, August,

1999, pp 50-59..

[14] D. Doval, S. Mancoridis and B.S. Mitchell,

“Automatic Clustering of Software Systems

using a Genetic Algorithm,” IEEE Proceedings

of the International Conference on Software

Tools and Engineering Practice (STEP'99),

Pittsburgh, PA, Aug. 1999.

[15] K. Karlapalem, Q. Li, and S. Vieweg, “Method

Induced Partitioning Schemes in Object-

Oriented Databases,” Proceedings of the 16th

International Conference on Distributed

Computing Systems (ICDCS '96), 1996.

[16] T. Fergany, H. Sholl, and R. Ammar, “SRS: A

Tool for Software Restructuring in Real- Time

Distributed Environment,” In the Proceedings

of the 4th International Conference on Parallel

and Distributed Computing and Systems, Oct.

1991.

[17] S.Wathne, H. Sholl, and R. Ammar, “Task

Partitioning of Multichannel, Distributed, Real-

Time Systems,” ISCA 8th International

Conference on Computer Applications in

Industry, November 1995.

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1788 Issue 11, Volume 8, November 2009

[18] S. Shah and H. Sholl, “Task Partitioning of

Incompletely Specified Real-Time Distributed

Systems,” ICSA 9th International Conference

on Parallel and Distributed Systems, Dijon

France, September 1996.

[19] Istvan Gergely Czibula, Gabriela (Serban)

Czibula, “Hierarchical Clustering Based

Automatic Refactorings Detection”, In the

WSEAS TRANSACTIONS on ELECTRONICS,

Issue 7, Volume 5, July 2008,pp 291-302.

[20] X. Xu, C. H. Lung, M. Zaman, and A.

Srinivasan, “Program restructuring through

clustering techniques,” In the Proceedings of

the Source Code Analysis and Manipulation,

Fourth IEEE International Workshop on

(SCAM’04), Washington, DC, USA: IEEE

Computer Society, 2004, pp. 75–84.

[21] L.R. Welch, B. Ravindran, J. Henriques, and

D.K. Hammer, “Metrics and Techniques for

Automatic Partitioning and Assignment of

Object-based Concurrent Programs,” In the

Proceedings of the 7th IEEE Symposium on

Parallel and Distributed Processing, Oct.

1995.

[22] V. Tzerpos and R. C. Holt, “Mojo: A distance

metric for software clusterings,” Proceedings

of the sixth Working Conference on Reverse
Engineering, 1999, pp. 187–193.

[23] V. Tzerpos and R. C. Holt, “ACDC: An

algorithm for comprehension-driven

clustering,” In the Proceedings of the

Working Conference on Reverse

Engineering, 2000, pp. 258–267.

[24] A Abd El-Raouf, T. Fergany and R. Ammar,

“Restructuring Of Distributed Object Oriented

Software,” In the WSEAS Transactions on

Computers, Issue 5, Volume 3, ISSN: 1109-

2750 pp: 1179-1184, November 2004.

[25] A. Abd El-Raouf, R. Ammar, and T. Fergany

“Object Oriented Performance Modeling and

Restructuring on a Pipeline Architecture, ”

The Journal of Computational Methods in

Science and Engineering , JCMSE, Volume 6,

pp 59-71, IOS Press, 2006.

[26] S. Hamad, R. Ammar, A. Abd El-Raouf, and

Mohammed Khalifa “A Performance-driven

Clustering Approach To Minimize Coupling In

A DOO System,” The 20th International

Conference on Parallel and Distributed

Computing Systems, Las Vegas, Nevada, 24-26

Sept. 2007.

[27] S. Hamad, R. Ammar, T. Fergany and A

Raouf, “A Double K-Clustering Approach for

Restructuring Distributed Object-Oriented

Software,” the International Symposium on

Computers and Communication, ISCC, July 6-

9, Marrakech, Morocco, 2008.

[28] A. Abd El-Raouf, “Performance Modeling and

Analysis of Object Oriented Software Systems,”

PhD Dissertation, University of Connecticut

Department of Computer Science &

Engineering, 2005.

[29] H. Sholl and T. Booth “Software Performance

Modeling Using Computation Structures”,

IEEE transaction on Software Engineering,

VOL. SE-1, No.4, Dec 1975.

[30] Hastie, Trevor; Tibshirani, Robert; Friedman,

Jerome. “Hierarchical clustering: The

Elements of Statistical Learning,” New York:

Springer, 2001 pp. 272–280

[31] Kaufman, L., & Rousseeuw, P. J., “Finding

Groups in Data: An Introduction to Cluster

Analysis,” New York: John Wiley & Sons, Inc,

1990.

[32] I. G. Czibula and G. Serban, “Improving

Systems Design Using a Clustering Approach”,

International Journal of Computer Science and

Network Security (IJCSNS), vol. 6, no. 12,

2006, pp. 40–49.

[33] N. P. Lin, C.-I. Chang, H.E. Chueh, H. J. Chen,

and W. H. Hao, “A Deflected Grid-based

Algorithm for Clustering Analysis”, In the

WSEAS Transactions on Computers, Issue 3,

vol. 7, 2008, pp. 125–132.

[34] D. I. Hunyadi, M. A. Musan, “Data Modeling

at Conceptual Level Object-Role Modeling

(ORM),” In the Proceedings of the 9th WSEAS

International Conference on Evolutionary

Computing (EC’08), Sofia, Bulgaria, May 2-4,

2008.

[35] D. S. Kushwaha and A. K. Misra, “A Cognitive

Complexity Metric Suite for Object-Oriented

Software”, In the WSEAS TRANSACTIONS on

COMPUTERS, Issue 3, Volume 5, March

2006, pp 604-611

WSEAS TRANSACTIONS on COMPUTERS Amal Abd El-Raouf

ISSN: 1109-2750 1789 Issue 11, Volume 8, November 2009

