
Scoring Functions of Approximation of STRIPS Planning by Linear
Programming – Block World example

Adam Galuszka

Silesian University of Technology,

Akademicka 16, 44-100 Gliwice, Poland,

{Adam.Galuszka@polsl.pl}

Abstract :- STRIPS planning is a problem of finding of a set of actions that transform given initial state to

desired goal situation. It is hard computational problem. In this work an approximation of STRIPS block

world planning by linear programming is shown. The cost of such approach is that algorithm can results in

non-interpretable solutions for some initial states (what is followed by assumption P ≠ NP). This is because

the discrete domain (truth or false) is transformed to continuous domain (LP program). Additionally two

scoring functions have been introduced to estimate quality of the plan. Proposed approach is illustrated by

exemplary simulation.

Keywords :- STRIPS planning, Block world, computational efficiency, linear programming.

1 Introduction

Artificial Intelligence is a study of design of

intelligent agents. An intelligent agent is a system

that acts intelligently on its environment. There are

various problems which are being investigated by

Artificial Intelligence, like knowledge, reasoning,

learning and planning (Weld 1999, Chen et al.

2008). Planning is a task of coming up with a

sequence of actions that will achieve a goal.

Finding an optimal plan is generally a hard

computational problem and needs a lot of

resources.

 Planning should be distinguished from

scheduling – well-known and frequently used

technique of improving the cost of a plan. Planning

is understood as causal relations between actions,

while scheduling is concerned with metric

constraints on actions (Backstrom 1998). When all

states of a planning problem (including an initial

and a goal) are described by a given set of

conditions (also called predicates), then the

problem is called STRIPS planning problem

(Nilson 1980). There are many applications of the

planning problems in industrial processes,

production planning, logistics and robotics

(Backstrom 1998, Karadimas et al. 2008). The

STRIPS system has been successfully applied in

planning modules of Deep Space One Spacecraft

(Weld 1999) and for elevators control in

Rockefeler Center in New York (Koehler and

Schuster 2000).

In this case, the planning problem environment

is modeled as a Block World using the STRIPS

representation. This domain is often used to model

planning problems (Slaney and Thiebaux 2001,

Boutilier and Brafman 2001, Kraus et al 1998,

Smith and Weld 1998, Rintanen 1999, Galuszka

and Swierniak 2004, Sierocki 1997) because of

complex action definition and simple physical

interpretation. One can say that starting from

1970s, STRIPS formalism (Nilson 1980) seems to

be very popular for planning problems (Weld

1999). Today this domain can be a representation

for logistic problems, where moving blocks

corresponds to moving different objects like

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1770 Issue 11, Volume 8, November 2009

packages, trucks and planes (e.g. Slaney and

Thiebaux 2001). The case of Block World problem

where the table has a limited capacity corresponds

to a container-loading problem (Slavin 1996). In

real situation decision problems at container

terminals are more complex and divided into

several groups: arrival of a ship, unloading and

loading of a ship, transport of containers from and

on a ship, stacking of containers (see e.g.

www.ikj.nl/container/decisions.html). Since arrival

of a ship and containers transport are usually

treated as scheduling and allocation problems (e.g.

Imai et al. 2001, Bish et al. 2001), problems of

loading and unloading and container stacking can

be treated as planning problems (e.g. Wilson

2000). In natural way containers can be treated as

blocks and cranes as robots that are stacking and

unstacking blocks. In these cases it is shown that

planning algorithm in practice has to be efficient in

time and generate high quality plans (close to

optimal).

To increase computational efficiency of finding

a plan one can transform planning problem to

another (simpler) problem and search for the

solution of the transformed problem. To increase

computational efficiency of planning a

transformation to Linear Programming problem is

shown. The idea of representing STRIPS planning

problems by linear constraints and objective

function is not new in the literature (see e.g.

Nareyek et al. 2005). In these cases the planning

problem takes the form of binary integer linear

program. It implies that the only allowed values of

variables are ‘0’ and ‘1’ and they corresponds to

false/truth values of planning problem predicates

and actions. The computational efficiency of the

approach is low (because of complexity of integer

programming algorithms) and solution can be

found only for small size planning problems. That

is why it is proposed here to analyze the solution of

the linear relaxation of binary integer linear

program. The cost of such approach is that

algorithm can results in non-interpretable solutions

for some initial states (what is followed by

assumption P ≠ NP). This is because the discrete

domain (truth or false) is transformed to

continuous domain (LP program), so solution of

LP not always can be directly interpreted as a plan.

For such cases scoring functions to estimate

quality of the plan and the additional heuristic are

proposed in this paper.

The paper is organized as follow: STRIPS

system, LP problem, and the transformation of

Block World to LP program are introduced in

section 2. Scoring functions are presented in

section 3. Section 4 introduces an additional

heuristic. In section 5 simulation results are

presented. Finally, all is concluded.

2 STRIPS system, LP problem, and

the transformation of Block World to

LP program

In general, STRIPS language is represented by four

lists (C; O; I; G) (Bylander 1994, Nilson 1980):

- a finite set of ground atomic formulas (C), called

conditions;

- a finite set of operators (O);

- a finite set of predicates that denotes initial state

(I);

- a finite set of predicates that denotes goal state

(G).

 The initial state describes the physical

configuration of the blocks. This description

should be complete i.e. it should deal with every

true predicate corresponding to this state. The goal

situation describes what should be true. Each goal

consists of subgoals and has a form of conjunction

of predicates. This description does not need to be

complete, i.e. does not need to describe a state of

the problem.

 The algorithm results in an ordered set of

operators which transforms the initial state I into a

state with true predicates mentioned in the goal

situation G. Operators in STRIPS representation

consist of three sublists: a precondition list

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1771 Issue 11, Volume 8, November 2009

(pre(o)), a delete list (del(o)) and an add list

(add(o)). The precondition list is a set of predicates

that must be satisfied to apply this operator. The

delete list is a set of predicates that will be false

after applying the operator and the add list is a set

of predicates that are true after the operator is

applied. The two last lists show the effects of

applying the operator into a current problem state

(S ⊂ C).

 Let an operator o ∈ O takes the form pre(o) →

add(o), del(o). Following (Koehler and Hoffmann

2000), the set of operators <o1, o2,....., on> in a plan

is denoted by P
O
.

 If an operator Oo ∈ is applied to the current state

of the problem then the state is modified. This

modification is described by function Result:

Result(S, <o>) = (S ∪ add(o)) \ del(o) if pre(o) ⊆

S, S in the opposite case (1)

and

Result(S, <o1, o2,....., on>) = Result(Result(S,

<o1>), <o2,...., on>). (2)

Below four operators classical in Block World as

an example of STRIPS operators are presented

(Nilson 1980):

− pickup(x) - block x is picked up from the table;

precondition list & delete list: ontable(x), clear(x),

handempty

add list: holding(x)

− putdown(x) - block x is put down on the table;

precondition list & delete list: holding(x)

add list: ontable(x), clear(x), handempty

− stack(x,y) - block x is stacked on block y;

precondition list & delete list: holding(x), clear(y)

add list: handempty, on(x,y), clear(x)

− unstack(x,y)-block x is unstacked from block y

precondition list & delete list: handempty,

clear(x), on(x,y)

add list: holding(x), clear(y).

2.1 Transformation To Linear Programming

Following (Bylander 1997) the transformation

from planning to Linear Programming is based on

mapping of conditions and operators in each plan

step to variables. Truth values of conditions are

mapped to 0 and 1 for the planning without

incompleteness, and to any values between 0 and 1

for planning with incomplete information. The

objective function reaches the maximum if the goal

situation is true in the last step of planning.

 As an example let us consider the problem 1 of

planning in Block World environment with 4

blocks (called A, B, C, D) (Galuszka and

Swierniak 2004). The goal is to decompose the

initial state. It is assumed one STRIPS operator

that moves the block x from the other block to the

table, on(x) means that block x is on another block

(or on the table), clear(x) means that there is no

other block on block x :

move-to-table(x,y):

preconditions: on(x,y), clear(x)

del: on(x,y)

add: clear(y)

The goal is reached if the following conditions are

true:

clear(A), clear(B), clear(C), clear(D) (3)

Assume 2 steps of planning (states indexes are: 0,

1, 2). So (16+16+16) variables are needed for

conditions for i = 0, 1, 2. In addition (12+12)

variables are needed for operators (12 for

transformation from state 0 to 1 and 12 from 1 to

2) for i = 0, 1 (see table 1). Then the value of the

objective function to be maximised F(G) is:

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1772 Issue 11, Volume 8, November 2009

 F(G) = (clear(A)(2) + clear(B)(2) + clear(C)(2)

+ clear(D)(2)). (4)

If the goal is reached then the objective function is

equal to 4 (4 conditions are true in the goal state).

Constraints for Linear Programming problem are:

- at most 1 operator can be applied in each

planning step:

Σ move-to-table(x)(i) = 1 (5)

− operator can not be applied unless its

preconditions are true:

−

on(x,y)(i) ≥ move-to-table(x,y)(i) (6)

for all operators in each planning step,

clear(A)(i) ≥ move-to-table(A,B)(i)+ move-to-

table(A,C)(i)+ move-to-table(A,D)(i) (7)

clear(B)(i) ≥ move-to-table(B,A)(i)+ move-to-

table(B,C)(i)+ move-to-table(B,D)(i) (8)

clear(C)(i) ≥ move-to-table(C,A)(i)+ move-to-

table(C,B)(i)+ move-to-table(C,D)(i) (9)

 clear(D)(i) ≥ move-to-table(D,A)(i)+ move-to-

table(D,B)(i)+ move-to-table(D,C)(i) (10)

for all planning steps.

Table 1. Variables of LP problem in each step

conditions operators

1. on(A,B)(i)

2. on(A,C)(i)

3. on(A,D)(i)

4. on(B,A)(i)

5. on(B,C)(i)

6. on(B,D)(i)

7. on(C,A)(i)

8. on(C,B)(i)

9. on(C,D)(i)

10. on(D,A)(i)

11. on(D,B)(i)

12. on(D,C)(i)

13. clear(A)(i)

14. clear(B)(i)

15. clear(C)(i)

16. clear(D)(i)

1. move-to-table(A,B)(i)

2. move-to-table(A,C)(i)

3. move-to-table(A,D)(i)

4. move-to-table(B,A)(i)

5. move-to-table(B,C)(i)

6. move-to-table(B,D)(i)

7. move-to-table(C,A)(i)

8. move-to-table(C,B)(i)

9. move-to-table(C,D)(i)

10. move-to-table(D,A)(i)

11. move-to-table(D,B)(i)

12. move-to-table(D,C)(i)

 Next group of constraints describes changes of

the state after applying an operator. These are

equality constraints:

clear(A)(i+1) =

= clear(A)(i) + move-to-table(B,A)(i)+ move-to-

table(C,A)(i)+move-to-table(D,A)(i) (11)

and similar for blocks: B, C, D, and:

on(A,B)(i+1) = on(A,B)(i) – move-to-table(A,B)(i).

(12)

Finally constraints for variables are needed: these

should be mapped between 0 and 1 values what

corresponds to truth degree of the variables.

Transformation to Linear Programming results to

the problem with 72 variables, 34 inequality, 32

equality constraints. In each planning step there are

16 conditions and 12 possible operators.

 In general case the size of LP problem is as

follow (l denotes number of steps, n denotes

number of blocks):

- the number of variables of LP problem:

(l + 1) (2n
2
+ n),

(13)

- the number of inequality constraints:

l (n
2
 + n + 1),

(14)

- the number of equality constraints:

l (n
2
 + n),

(15)

so the transformation is polynomial.

 If the LP problem is defined as:

10

max

≤≤

=

≤←

x

bxA

bAxxf

eqeq

T

x

(16)

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1773 Issue 11, Volume 8, November 2009

then f defines the goal state of the planning

problem, and the initial state is enclosed in Aeq and

beq. The solution of LP problem is denoted by xopt.

2.1.1 Example 1

To illustrate the transformation example 1 is

shown. The problem (fig.1) is to decompose the

initial state defined by the set: on(A,B), on(D,C),

clear(A), clear(D). Matrices A and Aeq that

correspond to the planning problem are sparse and

their nonzero elements are illustrated in the fig.2.

Fig.1. The initial and goal states for example 1

Fig.2. Matrices for linear program of example 1

The solution of Linear Programming algorithm is

the set of variable values that gives optimal

(maximal) value of objective function: variables

from 69 to 72 are equal to 1. These corresponds to

truth values of operators (variables 28 and 45):

move-to-table(D,C)(0)=1 and move-to-table

(A,B)(1)=1 that solve planning problem in 2 steps

(Table 2).

Table 2. Solution of Example 1.

conditions

i = 0

actions

i = 0

 conditions

i = 1

Actions

i = 1

 conditions

i = 2

1. 1.0000

2. 0.0000

3. 0.0000

4. 0.0000

5. -0.0000

6. -0.0000

7. 0.0000

8. -0.0000

9. 0.0000

10. 0.0000

11. -0.0000

12. 1.0000

13. 1.0000

14. -0.0000

15. 0.0000

16. 1.0000

17. -0.0000

18. -0.0000

19. 0.0000

20. 0.0000

21. -0.0000

22. 0.0000

23. 0.0000

24. 0.0000

25. -0.0000

26. 0.0000

27. 0.0000

28. 1.0000

29. 1.0000

30. 0.0000

31. 0.0000

32. 0.0000

33. -0.0000

34. 0.0000

35. -0.0000

36. 0.0000

37. 0.0000

38. -0.0000

39. -0.0000

40. 0.0000

41. 1.0000

42. 0.0000

43. 1.0000

44. 1.0000

45. 1.0000

46. 0.0000

47. 0.0000

48. 0.0000

49. -0.0000

50. 0.0000

51. -0.0000

52. -0.0000

53. 0.0000

54. -0.0000

55. -0.0000

56. -0.0000

57. 0.0000

58. -0.0000

59. 0.0000

60. -0.0000

61. -0.0000

62. 0.0000

63. 0.0000

64. -0.0000

65. 0.0000

66. 0.0000

67. 0.0000

68. 0.0000

69. 1.0000

70. 1.0000

71. 1.0000

72. 1.0000

However, this result is very optimistic: all

variables (conditions) are 0’s or 1’s. In general case

as a result we can receive any value from 0 to1. So

the cost of the approach is that algorithm can

results in non-interpretable solutions for some

initial states (what is followed by assumption P ≠

NP). This is because the discrete domain (truth or

false) is transformed to continuous domain (LP

program), so solution of LP not always can be

directly interpreted as a plan. For such cases

scoring functions to estimate quality of the plan

has been introduced in section 3, and the additional

heuristic has been proposed in section 4.

A

C

D

sensor

Initial state Goal state

AB B C D

A

A
eq

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1774 Issue 11, Volume 8, November 2009

3 Scoring functions

The goal of introducing scoring functions is an

estimation if the LP solution is a ‘perfect’ solution

(i.e. if it can be directly treated as the planning

problem solution). The LP solution can be

‘imperfect’ for 2 reasons: 1) it is not binary vector

(i.e. does not correspond to true/false conditions

and actions), 2) the variable values that correspond

to state in last step of planning does not correspond

to conditions for the planning problem goal

situation (i.e. the LP solution does not lead to goal

of planning). Proposed scoring functions have

common property: they are equal to1 if the plan is

‘perfect’ due to scored property, and are lower than

1 in the opposite case. The first function, U(xopt),

called plan utility, estimates how close is the LP

solution to binary solution:

k

l
xoptU =)(, (17)

 where: l – number of the planning steps, k –

number of non-zeros variables of LP solution that

correspond to actions, xopt – LP solution. The

second function, Sat(xopt), called goal satisfaction

degree, compares the value of LP objective

function to the expected value, that is equal to the

number of true conditions in planning problem

goal situation:

m

xoptf
xoptSat

T

=)(, (18)

where: f
T
xopt - the value of LP objective function,

m - the number of true conditions in planning

problem goal situation. This definition is based on

observation that the value of the objective function

can be useful as the value of the utility function of

planning problem: if the value of the objective

function is divided by the number of truth

predicates in the goal state G it returns the 'degree'

of satisfaction of the problem goal state. Sat(xopt)

has the property that returns 1 if the plan satisfies

all predicates in the goal definition, and 0 in the

opposite case. For values between 0 and 1 the goal

is partly satisfied.

4 Additional heuristic

In the heuristic the variables values are treated as a

‘truth degrees’ and the algorithm scheme can be

summarized as follow:

i. Solve the Linear Programming problem

that corresponds to planning problem;

ii. From the group of variables that

correspond to operators in the 1
st
 step

choose the one with the biggest value of

truth degree;

iii. Assume the value of this variable equal to

1 (it means that this operator is choosed as

the best proposition) and add this equality

as an additional constraint to the LP

problem;

iv. Solve this more restricted problem;

v. Repeat steps b) to d) for the group of

variables that correspond to operators in

the next steps until result vector consists

from only 0’s and 1’s.

The number of repeats is limited by the number of

steps. Fortunately, most of planning problems has

the property that the number of steps is polynomial

limited by the size of the problem (Baral Ch., V.

Kreinovich, R.Trejo. 2000). It follows that the

linear transformation with additional heuristic

remains polynomial. An example of ‘pathologic’

planning problem is Towers of Hanoi (see e.g. A.

Beck, M.N. Bleicher, D. W. Crowe, Excursions

into Mathematics, A K Peters, 2000): in this case

the number of operators growths exponentially

with the problem size. This approach does not

support such group of problems.

 The result of the heuristic is a binary solution of

the linear program representing the planning

problem, so this solution is interpreted as a plan

that solves planning problem. It should be noted

that the solution is feasible: in the first step of the

heuristic an additional equality constraint that

correspond to one action in first planning step is

added (step c of the heuristic), so from constraints

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1775 Issue 11, Volume 8, November 2009

(5) variables for all other actions in this step are set

to 0, that corresponds to one action.

5 Simulation results

To analyze computational efficiency of

transformation of presented representations of

STRIPS planning the 10 block decomposition

problem has been implemented and solved using

MATLAB® software. The matrices of LP program

are sparse (i.e. the number of non-zero elements is

about 0,1% or less) and the large scale methods are

very efficient in time (Zhang 1995). The

transformed problem consists of 1620 variables.

LP problem has been solved using MATLAB®’s

Large Scale Algorithm with additional heuristic

(method I) and binary integer algorithm (method II

– in this case variable values are limited to 0’s and

1’s)).

 In table 3 value of Sat(xopt) for different number

of planning steps is presented. The value 1 is for 8

planning steps, so 8 steps are needed to solve this

problem. In table 4 value of U(xopt) is presented.

The value 1 is achieved in 8th iteration of heuristic,

so the proposed heuristic is 8 times repeated. In

table 5 the comparison of computational efficiency

is presented.

Table 3. Value of Sat(xopt) for different number of

planning steps

Planning

step

1 2 3 4 5 6 7 8

Sat(xopt) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 4. Value of U(xopt)

Ite

r

1 2 3 4 5 6 7 8

U 0.1

5

0.1

9

0.2

5

0.33 0.44 0.61 0.80 1.00

Table 5. Time of solving planning problem

- LP + heuristic Binary integer

Time about 10 seconds about 10 minutes

It should be mentioned that such heuristic can

not be applied as a general method for finding

solution of a linear binary integer problem, because

it refers to STRIPS planning problem. It implies

that one part of linear program variables

correspond to conditions and second part to

actions. In proposed heuristic changes (roundings)

are made only for action variables (see step ii of

the heuristic), but but because of constraints these

changes influence condition variable values.

 It is also easy to see that classical method based

on approximation of binary integer linear program

by rounding solution of LP relaxation can lead to

infeasible results. This property is shown in table

6, where part of solutions returned by different

methods are presented: variable values for Move-

to-table(x,y) action in first plan step for problem in

figure 1. LP relaxation returns values 0.5 (third

column) – it can be interpreted as an alternative:

move block A from B or F from G. LP relaxation

with heuristic (fourth column) returns 1 and 0,

binary-integer linear program (fifth column)

returns 0 and 1, and rounding method (last column)

returns 1 and 1 – constraint that one action can be

performed in one step is broken (constraint (5)).

Table 6. Solution for different methods

step action LP LP +

heur.

Bin.int

.LP

Roundi

ng

1 Move-to-

table(A,B)

0,5 1 0 1

1 Move-to-

table(F,G)

0,5 0 1 1

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1776 Issue 11, Volume 8, November 2009

5.1 Case of incomplete information about

initial state

The popular approach of modelling uncertainty

environment in STRIPS planning is to treat the

initial situation as a set of possible initial states.

The problem is that in the general case the number

of possible initial states can growth exponentially

with the number of uncertain predicates. Such

problem is called the problem of planning in the

presence of incompleteness (Weld et al. 1998) and

is usually much more difficult to solve than

‘complete’ problem: it belongs to the next level in

complexity hierarchy than corresponding problem

with complete information (Baralet al. 2000).

 It is also impossible to transform polynomially

such problem to linear program, because the

number of variables exponentially depends of the

size of planning problem. To reduce this number of

variables of linear program one could apply

Kleene's logic system in order to formulate

planning system with partly undecided initial state.

In this system the valuation space is the three-point

set: {0, 1/2, 1} under the usual arithmetic ordering

and, intuitively, T(a) = 1, T(a) = 0, and T(a) = 1/2

mean that ``a'' is true, false, and undecided,

respectively (Dougherty and Giardina 1988).

 Recall the case of 4 blocks Block World problem

and assume that the initial state now consists of

two possible initial situations (fig.3):

 (on(A,B), on(D,C), clear(A), clear(D))

or

 (on(A,C), on(D,B), clear(A), clear(D)).

A

B C

D

sensor

goal

A B C D

A

C B

D

sensor

initial 1 or initial 2

A

B C

D

sensor

goal

A B C D

A

C B

D

sensor

initial 1 or initial 2

Fig.3. Example 2: The problem with incomplete

information in the initial state

Example 2. Using Kleene's Three Valued Logic

System the truth values of variables on(A,B)(0),

on(D,C)(0), on(A,C)(0), on(D,B)(0) are set to 0.5

what represents the uncertainty whether block A is

on C or B and block D is on C or B.

 Now the solution corresponds to truth values of

actions:

MoveToTable(A,B)(0) = 0.5

MoveToTable(A,C)(0) = 0.5

MoveToTable(D,B)(1) = 0.5

MoveToTable(D,C)(1) = 0.5

that solve planning problem also in 2 steps (see

Table 7 – numbers correspond to condition and

action variables from table 1). The interpretation of

this solution is as follow: first move block A to the

table (from B or C) then move block D (from B or

C). Please note that in this case the U(G) = 1.

Table 7. Solution of Example 2.

conditions

i = 0

actions

i = 0

conditions

i = 1

actions

i = 1

conditions

i = 2

1. 0.5000

2. 0.5000

3. -0.0000

4. 0.0000

5. -0.0000

6. 0.0000

7. -0.0000

8. -0.0000

9. -0.0000

10. -0.0000

11. 0.5000

12. 0.5000

13. 1.0000

14. -0.0000

15. -0.0000

16. 1.0000

17. 0.5000

18. 0.5000

19. -0.0000

20. 0.0000

21. -0.0000

22. -0.0000

23. -0.0000

24. -0.0000

25. 0.0000

26. -0.0000

27. 0.0000

28. 0.0000

29. 0.0000

30. -0.0000

31. 0.0000

32. 0.0000

33. -0.0000

34. 0.0000

35. 0.0000

36. 0.0000

37. 0.0000

38. -0.0000

39. 0.5000

40. 0.5000

41. 1.0000

42. 0.5000

43. 0.5000

44. 1.0000

45. 0.0000

46. -0.0000

47. 0.0000

48. 0.0000

49. -0.0000

50. -0.0000

51. 0.0000

52. 0.0000

53. -0.0000

54. 0.0000

55. 0.5000

56. 0.5000

57. 0.0000

58. -0.0000

59. 0.0000

60. -0.0000

61. -0.0000

62. 0.0000

63. -0.0000

64. -0.0000

65. 0.0000

66. -0.0000

67. 0.0000

68. 0.0000

69. 1.0000

70. 1.0000

71. 1.0000

72. 1.0000

5.2 Case of uncertain outcomes of actions

The uncertain outcome of an action is modelled in

linear program by introducing weight for each

action:

]1,0[∈iw

i = 1,2...k

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1777 Issue 11, Volume 8, November 2009

where k is the number of actions O.

Under this notation the value of wi = 0.5 means

that the effect of the action i is unknown. It leads to

changes in equalities (11) and (12) that define

changes in the state after applying an action:

clear(A)(i+1) = clear(A)(i) + w1

MoveToTable(B,A)(i)+

w2 MoveToTable(C,A)(i)+ w3 MoveToTable(D,A)(i)

and similar for blocks: B, C, D, and:

on(A,B)(i+1) = on(A,B)(i) - w4

MoveToTable(A,B)(i).

Please note that inequalities are not changed

(please remember that they describe if an action

can be applied to the current state of the problem):

only the outcomes of actions are uncertain, not the

act of choosing of an action.

 In this case U(G) is lower than 1 if in the plan

actions with wi lower than 1 are used.

6 Conclusion

Translation to Linear Programming is a heuristic

that allows to reduce computational efficiency of

searching for the solution. The cost of this

approach is that algorithm result can be a non-

interpretable solution for some initial states (what

is followed by assumption P ≠ NP). This is

because the solution of LP problem is the vector of

possibly-continuous values from 0 to 1.

 The fastest way to solve transformed planning

problem is to use classic LP representation

(method I). But in this case the solution can be

directly noninterpretable as a plan. This is because

the solution of LP problem is the vector of

possibly-continuous values from 0 to 1. So

additional heuristic to receive the plan from the

vector is needed. Binary integer algorithm (method

II) returns the plan as a result, but the method is

limited to only small sizes of planning problems.

This is because the algorithm is exponentially

efficient in time (this property is not a conclusion

from the table but it is the property of the

algorithm).

 Scoring functions allow to estimate if the LP

solution is a ‘perfect’ solution (i.e. if it can be

directly treated as the planning problem solution).

The LP solution can be ‘imperfect’ for 2 reasons:

1) it is not binary vector (i.e. does not correspond

to true/false conditions and actions), 2) the variable

values that correspond to state in last step of

planning does not correspond to conditions for the

planning problem goal situation (i.e. the LP

solution does not lead to goal of planning).

Proposed scoring functions have common

property: they are equal to1 if the plan is ‘perfect’

due to scored property, and are lower than 1 in the

opposite case.

 Acknowledgement. This work has been funded

from the Polish Ministry of Science and Higher

Education funds in years 2008-2010 and is an

extended version of the paper presented on the 9
th

WSEAS Int. Conf. on Simulation, Modelling and

Optimization, Budapest 3-5 September 2009.

References

1. Baral Ch., V. Kreinovich, R.Trejo. 2000.

Computational complexity of planning and

approximate planning in the presence of

incompleteness. Artificial Intelligence, 122:

241-267

2. Bish, E.K., Leong, T.Y., Li, C.L., Ng, J.W.C.,

Simchi-Levi, D. 2001. Analysis of a new

vehicle scheduling and location problem,

Naval Research Logistics 48, 363-385

3. Bylander, T. 1994. The computational

complexity of propositional STRIPS planning.

Artificial Intelligence, 69:165-204.

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1778 Issue 11, Volume 8, November 2009

4. Bylander T. 1997. A Linear Programming

Heuristic for Optimal Planning. Int. Conf.

American Association for Artificial

Intelligence, 1997, www.aaai.org.

5. Galuszka A., A. Swierniak. 2004. Game

Theoretic Approach to Multi-Robot Planning.

WSEAS Transactions on Computers, ISSN

1109-2750, Issue 3, Volume 3, July 2004: 537-

542

6. Galuszka A. 2007. Linear and Integer

Programming Large Scale Heuristic for

STRIPS Planning. The 2007 European

Simulation and Modelling Conference, ESM,

October 22-24, 2007, Malta, 321-325.

7. Howe A.E. i E. Dahlman. 2002. A Critical

Assesment of Benchmark Comparison in

Planning. Journal of Artificial Intelligence

Research, 17: 1-33.

8. Chen Kuentai, Hung-Chun Chen, Z.H. Che.

2008. Simulation of Production and

Transportation Planning With Uncertainty And

Risk. WSEAS Transactions on Computers,

Issue 10, Volume 7: 1535-1544.

9. Imai, A., Nishimura, E., Papadimitriou, S.

2001. The dynamic berth allocation problem

for a container port, Transportation Research

B 35, 401-417.

10. Karadimas Nikolaos V. , Nikolaos Doukas,

Maria Kolokathi, Gerasimoula Defteraiou,

2008. Routing Optimization Heuristics

Algorithms for Urban Solid Waste

Transportation Management, WSEAS

Transactions on Computers, Issue 12, Volume

7: 2022-2031.

11. Nareyek A., E.C. Freuder , R.Fourer , E.

Giunchiglia , R.P. Goldman , H. Kautz , J.

Rintanen , A. Tate. 2005. Constraints and AI

Planning, IEEE Intelligent Systems, v.20 n.2,

p.62-72, March 2005

12. Nebel B. i J. Koehler. 1995. Plan reuse versus

plan generation: a theoretical and empirical

results. Artificial Intelligence, 76: 427-454.

13. Nilson N. J. 1980. Principles of Artificial

Intelligence. Toga Publishing Company, Palo

Alto, California.

14. Popovic, D. i V.P. Bhatkar. 1994. Methods

And Tools For Applied Artificial Intelligence.

Marcel Dekker, Inc., New York, NY.

15. Rintanen, J. 1999. Constructing Conditional

Plans by a Theorem-Prover. Journal of

Artificial Intelligence Research, 10: 323-352.

16. Sierocki I. 1997. A Serial Decomposition of

Planning Problems. Proc. Fourth International

Symposium on Methods and Models in

Automation and Robotics. Międzyzdroje,

Poland, 1179-1184.

17. Slaney J. i S. Thiebaux. 2001. Block World

revisited. Artificial Intelligence, 125: 119-153.

18. Vossen T., M. Ball, A. Lotem, D.Nau. 2000.

Applying Integer Programming to AI

Planning. Knowledge Engineering Review,

Volume 15, Issue 1, 85-100.

19. Weld, D.S. 1999. Recent Advantages in AI

Planning. AI Magazine.

20. Wilson, I.D., Roach, P.A. 2000. Container

stowage planning: a methodology for

generating computerised solutions, Journal of

the Operational Research Society 51, 1248-

1255

21. Yen, J., R. Langari, L.A. Zadeh. 1995.

Industrial Applications of Fuzzy Logic and

Intelligent Systems. IEEE Press. New York.

WSEAS TRANSACTIONS on COMPUTERS Adam Galuszka

ISSN: 1109-2750 1779 Issue 11, Volume 8, November 2009

