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Abstract :- STRIPS planning is a problem of finding of a set of actions that transform given initial state to

desired goal situation. It is hard computational problem. In this work an approximation of STRIPS block

world planning by linear programming is shown. The cost of such approach is that algorithm can results in

non-interpretable solutions for some initial states (what is followed by assumption P ≠ NP). This is because

the discrete domain (truth or false) is transformed to continuous domain (LP program). Additionally two

scoring functions have been introduced to estimate quality of the plan. Proposed approach is illustrated by

exemplary simulation. 
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1   Introduction

Artificial  Intelligence  is  a  study  of  design  of

intelligent agents. An intelligent agent is a system

that acts intelligently on its environment. There are

various problems which are being investigated by

Artificial  Intelligence, like knowledge, reasoning,

learning  and  planning  (Weld  1999,  Chen  et  al.

2008).  Planning  is  a  task  of  coming  up  with  a

sequence  of  actions  that  will  achieve  a  goal.

Finding  an  optimal  plan  is  generally  a  hard

computational  problem  and  needs  a  lot  of

resources.

  Planning  should  be  distinguished  from

scheduling –  well-known  and  frequently  used

technique of improving the cost of a plan. Planning

is understood as causal relations between actions,

while  scheduling  is  concerned  with  metric

constraints on actions (Backstrom 1998). When all

states of a planning problem (including an initial

and  a  goal)  are  described  by  a  given  set  of

conditions  (also  called  predicates),  then  the

problem  is  called  STRIPS  planning  problem

(Nilson 1980). There are many applications of the

planning  problems  in  industrial  processes,

production  planning,  logistics  and  robotics

(Backstrom  1998,  Karadimas  et  al.  2008).  The

STRIPS system has been successfully applied  in

planning modules of Deep Space One Spacecraft

(Weld  1999)  and  for  elevators  control  in

Rockefeler  Center  in  New  York  (Koehler  and

Schuster 2000).

In this case, the planning problem environment

is  modeled  as  a  Block World  using the STRIPS

representation. This domain is often used to model

planning  problems  (Slaney  and  Thiebaux  2001,

Boutilier  and  Brafman  2001,  Kraus  et  al  1998,

Smith  and  Weld  1998,  Rintanen  1999,  Galuszka

and Swierniak  2004,  Sierocki  1997) because of

complex  action  definition  and  simple  physical

interpretation.  One  can  say  that  starting  from

1970s, STRIPS formalism (Nilson 1980) seems to

be  very  popular  for  planning  problems  (Weld

1999). Today this domain can be a representation

for  logistic  problems,  where  moving  blocks

corresponds  to  moving  different  objects  like
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packages,  trucks  and  planes  (e.g.  Slaney  and

Thiebaux 2001). The case of Block World problem

where the table has a limited capacity corresponds

to a  container-loading problem (Slavin  1996).  In

real  situation  decision  problems  at  container

terminals  are  more  complex  and  divided  into

several  groups:  arrival  of  a  ship,  unloading  and

loading of a ship, transport of containers from and

on  a  ship,  stacking  of  containers  (see  e.g.

www.ikj.nl/container/decisions.html). Since arrival

of  a  ship  and  containers  transport  are  usually

treated as scheduling and allocation problems (e.g.

Imai  et  al.  2001,  Bish  et  al.  2001),  problems of

loading and unloading and container stacking can

be  treated  as  planning  problems  (e.g.  Wilson

2000). In natural way containers can be treated as

blocks and cranes as robots that are stacking and

unstacking blocks. In these cases it is shown that

planning algorithm in practice has to be efficient in

time  and  generate  high  quality  plans  (close  to

optimal).

To increase computational efficiency of finding

a  plan  one  can  transform  planning  problem  to

another  (simpler)  problem  and  search  for  the

solution of the transformed problem. To increase

computational  efficiency  of  planning  a

transformation to Linear Programming problem is

shown. The idea of representing STRIPS planning

problems  by  linear  constraints  and  objective

function  is  not  new  in  the  literature  (see  e.g.

Nareyek et al. 2005). In these cases the planning

problem takes  the  form  of  binary  integer  linear

program. It implies that the only allowed values of

variables are ‘0’ and ‘1’ and they corresponds to

false/truth values  of  planning problem predicates

and actions.  The computational efficiency of the

approach is low (because of complexity of integer

programming  algorithms)  and  solution  can  be

found only for small size planning problems. That

is why it is proposed here to analyze the solution of

the  linear  relaxation  of  binary  integer  linear

program.  The  cost  of  such  approach  is  that

algorithm can results in non-interpretable solutions

for  some  initial  states  (what  is  followed  by

assumption P  ≠ NP). This is because the discrete

domain  (truth  or  false)  is  transformed  to

continuous  domain  (LP program),  so  solution  of

LP not always can be directly interpreted as a plan.

For  such  cases  scoring  functions  to  estimate

quality of the plan and the additional heuristic are

proposed in this paper.

The  paper  is  organized  as  follow:  STRIPS

system,  LP  problem,  and  the  transformation  of

Block  World  to  LP  program  are  introduced  in

section  2.  Scoring  functions  are  presented  in

section  3.  Section  4  introduces  an  additional

heuristic.  In  section  5  simulation  results  are

presented. Finally, all is concluded.

2   STRIPS system, LP problem, and

the transformation of Block World to

LP program

In general, STRIPS language is represented by four

lists (C; O; I; G) (Bylander 1994, Nilson 1980):

- a finite set of ground atomic formulas (C), called

conditions;

- a finite set of operators (O);

- a finite set of predicates that denotes initial state

(I);

- a finite set of predicates that denotes goal state

(G).

 The  initial  state  describes  the  physical

configuration  of  the  blocks.  This  description

should be complete i.e. it  should deal with every

true predicate corresponding to this state. The goal

situation describes what should be true. Each goal

consists of subgoals and has a form of conjunction

of predicates. This description does not need to be

complete, i.e. does not need to describe a  state of

the problem. 

  The  algorithm  results  in  an  ordered  set  of

operators which transforms the initial state I into a

state  with  true  predicates  mentioned  in  the  goal

situation  G.  Operators  in  STRIPS  representation

consist  of  three  sublists:  a  precondition  list
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(pre(o)),  a  delete  list  (del(o))  and  an  add  list

(add(o)). The precondition list is a set of predicates

that must be satisfied to apply this operator.  The

delete list is a set of predicates that will be false

after applying the operator and the add list is a set

of  predicates  that  are  true  after  the  operator  is

applied.  The  two  last  lists  show  the  effects  of

applying the operator into a current problem state

(S ⊂ C). 

   Let an operator o ∈ O takes the form pre(o) →

add(o), del(o). Following (Koehler and Hoffmann

2000), the set of operators <o1, o2,....., on> in a plan

is denoted by P
O
.

    If an operator Oo ∈ is applied to the current state

of  the  problem then  the  state  is  modified.  This

modification is described by function Result:

Result( S, <o>) = (S ∪ add(o)) \ del(o) if  pre(o) ⊆

S, S  in the opposite case (1)

and

Result( S, <o1, o2,....., on>) =  Result( Result( S,

<o1>), <o2,...., on>). (2)

Below four operators classical in Block World as

an  example  of  STRIPS  operators  are  presented

(Nilson 1980): 

− pickup(x) - block x is picked up from the table;

precondition list & delete list: ontable(x), clear(x),

handempty

add list: holding(x)

− putdown(x) - block x is put down on the table;

precondition list & delete list: holding(x)

add list: ontable(x), clear(x), handempty

− stack(x,y) - block x is stacked on block y;

precondition list & delete list: holding(x), clear(y)

add list: handempty, on(x,y), clear(x)

− unstack(x,y)-block x is unstacked from block y

precondition list & delete list: handempty,

clear(x), on(x,y)

add list: holding(x), clear(y).

2.1 Transformation To Linear Programming

Following  (Bylander  1997)  the  transformation

from planning to Linear Programming is based on

mapping of conditions and operators in each plan

step  to  variables.  Truth  values  of  conditions  are

mapped  to  0  and  1  for  the  planning  without

incompleteness, and to any values between 0 and 1

for  planning  with  incomplete  information.  The

objective function reaches the maximum if the goal

situation is true in the last step of planning.

   As an example let us consider the problem 1 of

planning  in  Block  World  environment  with  4

blocks  (called  A,  B,  C,  D)  (Galuszka  and

Swierniak  2004).  The  goal  is  to  decompose  the

initial  state.  It  is  assumed  one  STRIPS  operator

that moves the block x from the other block to the

table, on(x) means that block x is on another block

(or on the table), clear(x)  means that  there is no

other block on block x :

move-to-table(x,y):

preconditions: on(x,y), clear(x)

del: on(x,y)

add: clear(y)

The goal is reached if the following conditions are

true:

clear(A), clear(B), clear(C), clear(D) (3)

Assume 2 steps of planning (states indexes are: 0,

1,  2).  So  (16+16+16)  variables  are  needed  for

conditions  for  i =  0,  1,  2.  In  addition  (12+12)

variables  are  needed  for  operators  (12  for

transformation from state 0 to 1 and 12 from 1 to

2) for i = 0, 1 (see table 1). Then the value of the

objective function to be maximised F(G) is:
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 F(G) = (clear(A)(2) + clear(B)(2) + clear(C)(2)

+  clear(D)(2)). (4)

If the goal is reached then the objective function is

equal to 4 (4 conditions are true in the goal state).

Constraints for Linear Programming problem are:

-  at  most  1  operator  can  be  applied  in  each

planning step:

Σ move-to-table(x)(i) = 1 (5)

− operator  can  not  be  applied  unless  its

preconditions are true:

−

on(x,y)(i) ≥ move-to-table(x,y)(i) (6)

for all operators in each planning step,

clear(A)(i) ≥ move-to-table(A,B)(i)+ move-to-

table(A,C)(i)+ move-to-table(A,D)(i) (7)

clear(B)(i) ≥ move-to-table(B,A)(i)+ move-to-

table(B,C)(i)+ move-to-table(B,D)(i) (8)

clear(C)(i) ≥ move-to-table(C,A)(i)+ move-to-

table(C,B)(i)+ move-to-table(C,D)(i) (9)

 clear(D)(i) ≥ move-to-table(D,A)(i)+ move-to-

table(D,B)(i)+ move-to-table(D,C)(i) (10)

for all planning steps.

Table 1. Variables of LP problem in each step

conditions operators

1. on(A,B)(i)

2. on(A,C)(i)

3. on(A,D)(i)

4. on(B,A)(i)

5. on(B,C)(i)

6. on(B,D)(i)

7. on(C,A)(i)

8. on(C,B)(i)

9. on(C,D)(i)

10. on(D,A)(i)

11. on(D,B)(i)

12. on(D,C)(i)

13. clear(A)(i)

14. clear(B)(i)

15. clear(C)(i)

16. clear(D)(i)

1. move-to-table(A,B)(i)

2. move-to-table(A,C)(i)

3. move-to-table(A,D)(i)

4. move-to-table(B,A)(i)

5. move-to-table(B,C)(i)

6. move-to-table(B,D)(i)

7. move-to-table(C,A)(i)

8. move-to-table(C,B)(i)

9. move-to-table(C,D)(i)

10. move-to-table(D,A)(i)

11. move-to-table(D,B)(i)

12. move-to-table(D,C)(i)

   Next group of constraints describes changes of

the  state  after  applying  an  operator.  These  are

equality constraints:

clear(A)(i+1) =    

= clear(A)(i) + move-to-table(B,A)(i)+ move-to-

table(C,A)(i)+move-to-table(D,A)(i) (11)

and similar for blocks: B, C, D, and:

on(A,B)(i+1) = on(A,B)(i) – move-to-table(A,B)(i).

(12)

Finally constraints for variables are needed: these

should be mapped between 0 and 1 values  what

corresponds  to  truth  degree  of  the  variables.

Transformation to Linear Programming results to

the problem with 72  variables,  34 inequality,  32

equality constraints. In each planning step there are

16 conditions and 12 possible operators.

   In  general  case  the size  of  LP problem is  as

follow  (l denotes  number  of  steps,  n denotes

number of blocks): 

- the number of variables of LP problem: 

(l + 1) (2n
2 
+ n),

(13)

- the number of inequality constraints: 

l (n
2
 + n + 1),

(14)

- the number of equality constraints: 

l (n
2
 + n),

(15)

so the transformation is polynomial.

   If the LP problem is defined as:

10

max

≤≤

=

≤←

x

bxA

bAxxf

eqeq

T

x

(16)
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then  f defines  the  goal  state  of  the  planning

problem, and the initial state is enclosed in Aeq and

beq. The solution of LP problem is denoted by xopt.

2.1.1 Example 1

To  illustrate  the  transformation  example  1  is

shown.  The problem (fig.1)  is  to decompose  the

initial state defined by the set:  on(A,B), on(D,C),

clear(A),  clear(D). Matrices  A and  Aeq that

correspond to the planning problem are sparse and

their nonzero elements are illustrated in the fig.2.

Fig.1. The initial and goal states for example 1

Fig.2. Matrices for linear program of example 1

The solution of Linear Programming algorithm is

the  set  of  variable  values  that  gives  optimal

(maximal)  value  of  objective  function:  variables

from 69 to 72 are equal to 1. These corresponds to

truth  values  of  operators  (variables  28  and  45):

move-to-table(D,C)(0)=1 and  move-to-table

(A,B)(1)=1 that solve planning problem in 2 steps

(Table 2).

Table 2. Solution of Example 1.

conditions

i = 0

actions

i = 0

   conditions

i = 1

Actions

i = 1

  conditions

i = 2

1.   1.0000

2.   0.0000

3.   0.0000

4.   0.0000

5.  -0.0000

6.  -0.0000

7.   0.0000

8.  -0.0000

9.   0.0000

10.  0.0000

11. -0.0000

12.  1.0000

13.  1.0000

14. -0.0000

15.  0.0000

16.  1.0000

17. -0.0000

18. -0.0000

19. 0.0000

20. 0.0000

21. -0.0000

22. 0.0000

23. 0.0000

24. 0.0000

25. -0.0000

26. 0.0000

27. 0.0000

28. 1.0000

29. 1.0000

30. 0.0000

31. 0.0000

32. 0.0000

33. -0.0000

34. 0.0000

35. -0.0000

36. 0.0000

37. 0.0000

38. -0.0000

39. -0.0000

40. 0.0000

41. 1.0000

42. 0.0000

43. 1.0000

44. 1.0000

45. 1.0000

46. 0.0000

47. 0.0000

48. 0.0000

49. -0.0000

50. 0.0000

51. -0.0000

52. -0.0000

53. 0.0000

54. -0.0000

55. -0.0000

56. -0.0000

57. 0.0000

58. -0.0000

59. 0.0000

60. -0.0000

61. -0.0000

62. 0.0000

63. 0.0000

64. -0.0000

65. 0.0000

66. 0.0000

67. 0.0000

68. 0.0000

69. 1.0000

70. 1.0000

71. 1.0000

72. 1.0000

However,  this  result  is  very  optimistic:  all

variables (conditions) are 0’s or 1’s. In general case

as a result we can receive any value from 0 to1. So

the  cost  of  the  approach  is  that  algorithm  can

results  in  non-interpretable  solutions  for  some

initial states (what is followed by assumption P ≠

NP). This is because the discrete domain (truth or

false)  is  transformed  to  continuous  domain  (LP

program),  so  solution  of  LP not  always  can  be

directly  interpreted  as  a  plan.  For  such  cases

scoring functions  to  estimate  quality  of  the  plan

has been introduced in section 3, and the additional

heuristic has been proposed in section 4.

A

C

D

sensor

Initial state Goal state

AB B C D

A

A
eq
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3   Scoring functions

The  goal  of  introducing  scoring  functions  is  an

estimation if the LP solution is a ‘perfect’ solution

(i.e.  if  it  can be  directly treated as  the  planning

problem  solution).  The  LP  solution  can  be

‘imperfect’ for 2 reasons: 1) it is not binary vector

(i.e.  does  not  correspond to  true/false  conditions

and actions), 2) the variable values that correspond

to state in last step of planning does not correspond

to  conditions  for  the  planning  problem  goal

situation (i.e. the LP solution does not lead to goal

of  planning).  Proposed  scoring  functions  have

common property: they are equal to1 if the plan is

‘perfect’ due to scored property, and are lower than

1 in the opposite case. The first function, U(xopt),

called  plan utility,  estimates how close is the LP

solution to binary solution:

k

l
xoptU =)( , (17)

   where:  l – number  of  the planning steps,  k –

number of non-zeros variables of LP solution that

correspond  to  actions,  xopt –  LP  solution.  The

second function, Sat(xopt), called goal satisfaction

degree,  compares  the  value  of  LP  objective

function to the expected value, that is equal to the

number  of  true  conditions  in  planning  problem

goal situation:

m

xoptf
xoptSat

T

=)( , (18)

where: f
T
xopt - the value of LP objective function,

m -  the  number  of  true  conditions  in  planning

problem goal situation. This definition is based on

observation that the value of the objective function

can be useful as the value of the utility function of

planning  problem:  if  the  value  of  the  objective

function  is  divided  by  the  number  of  truth

predicates in the goal state G it returns the 'degree'

of satisfaction of the problem goal state. Sat(xopt)

has the property that returns 1 if the plan satisfies

all predicates in the goal definition, and 0 in the

opposite case. For values between 0 and 1 the goal

is partly satisfied.

4   Additional heuristic

In the heuristic the variables values are treated as a

‘truth degrees’ and the algorithm scheme can be

summarized as follow:

i. Solve  the  Linear  Programming  problem

that corresponds to planning problem;

ii. From  the  group  of  variables  that

correspond  to  operators  in  the  1
st
 step

choose the one with the biggest  value of

truth degree;

iii. Assume the value of this variable equal to

1 (it means that this operator is choosed as

the best proposition) and add this equality

as  an  additional  constraint  to  the  LP

problem;

iv. Solve this more restricted problem;

v. Repeat  steps  b)  to  d)  for  the  group  of

variables  that  correspond  to  operators  in

the next  steps until  result  vector  consists

from only 0’s and 1’s.

The number of repeats is limited by the number of

steps. Fortunately, most of planning problems has

the property that the number of steps is polynomial

limited by the size of the problem (Baral Ch., V.

Kreinovich,  R.Trejo.  2000).  It  follows  that  the

linear  transformation  with  additional  heuristic

remains  polynomial.  An example  of  ‘pathologic’

planning problem is Towers of Hanoi (see e.g. A.

Beck,  M.N.  Bleicher,  D.  W.  Crowe,  Excursions

into Mathematics, A K Peters, 2000): in this case

the  number  of  operators  growths  exponentially

with  the  problem  size.  This  approach  does  not

support such group of problems.  

   The result of the heuristic is a binary solution of

the  linear  program  representing  the  planning

problem, so this solution is interpreted as a plan

that  solves  planning problem.  It  should be noted

that the solution is feasible: in the first step of the

heuristic  an  additional  equality  constraint  that

correspond to one action in first planning step is

added (step c of the heuristic), so from constraints
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(5) variables for all other actions in this step are set

to 0, that corresponds to one action.

5   Simulation results

To  analyze  computational  efficiency  of

transformation  of  presented  representations  of

STRIPS  planning  the  10  block  decomposition

problem has been implemented and solved using

MATLAB® software. The matrices of LP program

are sparse (i.e. the number of non-zero elements is

about 0,1% or less) and the large scale methods are

very  efficient  in  time  (Zhang  1995).  The

transformed  problem consists  of  1620  variables.

LP problem has been solved using MATLAB®’s

Large  Scale  Algorithm  with  additional  heuristic

(method I) and binary integer algorithm (method II

– in this case variable values are limited to 0’s and

1’s)). 

   In table 3 value of Sat(xopt) for different number

of planning steps is presented. The value 1 is for 8

planning steps, so 8 steps are needed to solve this

problem. In table 4 value of  U(xopt) is presented.

The value 1 is achieved in 8th iteration of heuristic,

so the proposed heuristic  is  8 times repeated. In

table 5 the comparison of computational efficiency

is presented. 

Table 3. Value of Sat(xopt) for different number of

planning steps

Planning

step 

1 2 3 4 5 6 7 8

Sat(xopt) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 4. Value of U(xopt) 

Ite

r

1 2 3 4 5 6 7 8

U 0.1

5

0.1

9

0.2

5

0.33 0.44 0.61 0.80 1.00

Table 5. Time of solving planning problem

- LP + heuristic Binary integer

Time about 10 seconds about 10 minutes

It  should be mentioned that  such heuristic can

not  be  applied  as  a  general  method  for  finding

solution of a linear binary integer problem, because

it  refers to STRIPS planning problem. It  implies

that  one  part  of  linear  program  variables

correspond  to  conditions  and  second  part  to

actions. In proposed heuristic changes (roundings)

are made only for action variables (see step ii of

the heuristic), but but because of constraints these

changes influence condition variable values.

    It is also easy to see that classical method based

on approximation of binary integer linear program

by rounding solution of LP relaxation can lead to

infeasible results. This property is shown in table

6,  where  part  of  solutions  returned  by  different

methods are presented: variable values for  Move-

to-table(x,y) action in first plan step for problem in

figure  1.  LP relaxation  returns  values  0.5  (third

column) – it can be interpreted as an alternative:

move block A from B or F from G. LP relaxation

with  heuristic  (fourth  column)  returns  1  and  0,

binary-integer  linear  program  (fifth  column)

returns 0 and 1, and rounding method (last column)

returns 1 and 1 – constraint that one action can be

performed in one step is broken (constraint (5)). 

Table 6. Solution for different methods

step action LP LP +

heur.

Bin.int

.LP

Roundi

ng

1 Move-to-

table(A,B)

0,5 1 0 1

1 Move-to-

table(F,G)

0,5 0 1 1
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5.1  Case  of  incomplete  information  about

initial state

The  popular  approach  of  modelling  uncertainty

environment  in  STRIPS  planning  is  to  treat  the

initial  situation as  a set  of  possible initial  states.

The problem is that in the general case the number

of possible initial states can growth exponentially

with  the  number  of  uncertain  predicates.  Such

problem is called the problem of planning in the

presence of incompleteness (Weld et al. 1998) and

is  usually  much  more  difficult  to  solve  than

‘complete’ problem: it belongs to the next level in

complexity hierarchy than corresponding problem

with complete information (Baralet al. 2000).

   It is also impossible to transform polynomially

such  problem  to  linear  program,  because  the

number of variables exponentially depends of the

size of planning problem. To reduce this number of

variables  of  linear  program  one  could  apply

Kleene's  logic  system  in  order  to  formulate

planning system with partly undecided initial state.

In this system the valuation space is the three-point

set: {0, 1/2, 1} under the usual arithmetic ordering

and, intuitively, T(a) = 1, T(a) = 0, and T(a) = 1/2

mean  that  ``a''  is  true,  false,  and  undecided,

respectively (Dougherty and Giardina 1988).

   Recall the case of 4 blocks Block World problem

and assume that  the initial  state  now consists  of

two possible initial situations (fig.3):

    (on(A,B), on(D,C), clear(A), clear(D))

or

    (on(A,C), on(D,B), clear(A), clear(D)).

A

B C

D

sensor

goal

A B C D

A

C B

D

sensor

initial 1       or initial 2

A

B C

D

sensor

goal

A B C D

A

C B

D

sensor

initial 1       or initial 2

Fig.3. Example 2: The problem with incomplete

information in the initial state

Example  2.  Using  Kleene's  Three  Valued  Logic

System the  truth  values  of  variables  on(A,B)(0),

on(D,C)(0), on(A,C)(0), on(D,B)(0) are set to 0.5

what represents the uncertainty whether block A is

on C or B and block D is on C or B.

   Now the solution corresponds to truth values of

actions:

MoveToTable(A,B)(0) = 0.5

MoveToTable(A,C)(0) = 0.5

MoveToTable(D,B)(1) = 0.5

MoveToTable(D,C)(1) = 0.5

that  solve planning problem also in  2 steps  (see

Table  7 – numbers  correspond to condition  and

action variables from table 1). The interpretation of

this solution is as follow: first move block A to the

table (from B or C) then move block D (from B or

C). Please note that in this case the U(G) = 1.

Table 7. Solution of Example 2.

conditions

i = 0

actions

i = 0

conditions

i = 1

actions

i = 1

conditions

i = 2

1. 0.5000

2. 0.5000

3. -0.0000

4. 0.0000

5. -0.0000

6. 0.0000

7. -0.0000

8. -0.0000

9. -0.0000

10. -0.0000

11. 0.5000

12. 0.5000

13. 1.0000

14. -0.0000

15. -0.0000

16. 1.0000

17. 0.5000

18. 0.5000

19. -0.0000

20. 0.0000

21. -0.0000

22. -0.0000

23. -0.0000

24. -0.0000

25. 0.0000

26. -0.0000

27. 0.0000

28. 0.0000

29. 0.0000

30. -0.0000

31. 0.0000

32. 0.0000

33. -0.0000

34. 0.0000

35. 0.0000

36. 0.0000

37. 0.0000

38. -0.0000

39. 0.5000

40. 0.5000

41. 1.0000

42. 0.5000

43. 0.5000

44. 1.0000

45. 0.0000

46. -0.0000

47. 0.0000

48. 0.0000

49. -0.0000

50. -0.0000

51. 0.0000

52. 0.0000

53. -0.0000

54. 0.0000

55. 0.5000

56. 0.5000

57. 0.0000

58. -0.0000

59. 0.0000

60. -0.0000

61. -0.0000

62. 0.0000

63. -0.0000

64. -0.0000

65. 0.0000

66. -0.0000

67. 0.0000

68. 0.0000

69. 1.0000

70. 1.0000

71. 1.0000

72. 1.0000

5.2 Case of uncertain outcomes of actions

The uncertain outcome of an action is modelled in

linear  program  by  introducing  weight  for  each

action:

]1,0[∈iw  

i = 1,2...k
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where k is the number of actions O.

Under  this  notation the value of  wi =  0.5 means

that the effect of the action i is unknown. It leads to

changes  in  equalities  (11)  and  (12)  that  define

changes in the state after applying an action:

clear(A)(i+1) = clear(A)(i) + w1

MoveToTable(B,A)(i)+

w2 MoveToTable(C,A)(i)+ w3 MoveToTable(D,A)(i)

and similar for blocks: B, C, D, and:

on(A,B)(i+1) = on(A,B)(i) - w4

MoveToTable(A,B)(i).

Please  note  that  inequalities  are  not  changed

(please remember  that  they describe if  an action

can be applied to the current state of the problem):

only the outcomes of actions are uncertain, not the

act of choosing of an action.

   In this case  U(G) is lower than 1 if in the plan

actions with wi  lower than 1 are used.

6   Conclusion

Translation to Linear  Programming is a  heuristic

that allows to reduce computational efficiency of

searching  for  the  solution.  The  cost  of  this

approach  is  that  algorithm result  can  be  a  non-

interpretable solution for some initial states (what

is  followed  by  assumption  P ≠ NP).  This  is

because the solution of LP problem is the vector of

possibly-continuous values from 0 to 1. 

   The fastest way to solve transformed planning

problem  is  to  use  classic  LP  representation

(method I).  But  in  this  case  the solution can be

directly noninterpretable as a plan. This is because

the  solution  of  LP  problem  is  the  vector  of

possibly-continuous  values  from  0  to  1.  So

additional  heuristic  to  receive  the  plan  from the

vector is needed. Binary integer algorithm (method

II)  returns the plan as a result, but the method is

limited to only small sizes of planning problems.

This  is  because  the  algorithm  is  exponentially

efficient in time (this property is not a conclusion

from  the  table  but  it  is  the  property  of  the

algorithm). 

   Scoring functions allow to estimate if  the LP

solution  is  a  ‘perfect’ solution  (i.e.  if  it  can  be

directly treated as the planning problem solution).

The LP solution can be ‘imperfect’ for 2 reasons:

1) it is not binary vector (i.e. does not correspond

to true/false conditions and actions), 2) the variable

values  that  correspond  to  state  in  last  step  of

planning does not correspond to conditions for the

planning  problem  goal  situation  (i.e.  the  LP

solution  does  not  lead  to  goal  of  planning).

Proposed  scoring  functions  have  common

property: they are equal to1 if the plan is ‘perfect’

due to scored property, and are lower than 1 in the

opposite case. 
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