
Improved Performance Model for Web-Based Software Systems

ÁGNES BOGÁRDI-MÉSZÖLY, TIHAMÉR LEVENDOVSZKY, HASSAN CHARAF
Budapest University of Technology and Economics
Department of Automation and Applied Informatics

Goldmann György tér 3. IV. em., 1111 Budapest
HUNGARY

agi@aut.bme.hu, tihamer@aut.bme.hu, hassan@aut.bme.hu

Abstract: The performance of web-based software systems is one of the most important and complicated conside-
ration. With the help of a proper performance model and an appropriate evaluation algorithm, performance metrics
can be predicted. The goal of our work is to introduce and verify an improved multi-tier queueing network model
for web-based software systems. In our work, an evaluation and prediction technique applying dominant factors in
point of response time and throughput performance metrics has been established and investigated. The Mean-Value
Analysis algorithm has been improved to model the behavior of the thread pool. The proposed algorithm can be
used for performance prediction. The convergence and limit of the algorithm have been analyzed. The validity
of the proposed algorithm and the correctness of the performance prediction have been proven with performance
measurements.

Key–Words: Web-based software systems, Queueing model, Mean-Value Analysis, Thread pool, Performance pre-
diction, Convergence

1 Introduction

The performance belongs to the most important fac-
tors of information systems, because they face a
large number of users, and they must provide high-
availability services with low response time, while
they guarantee a certain throughput level.

The performance metrics of a system can be pre-
dicted at early stages of the development process, with
the help of a properly designed performance model
and an appropriate evaluation algorithm [1], [2].

In the past few years several methods have been
proposed to address this goal. Several from them
is based on queueing networks or extended versions
of queueing networks [3], [4], [5], [6]. Another
group is using Petri-nets or generalized stochastic
Petri-nets [7], [8]. As third kind of the approaches
the stochastic extension of process algebras, like
TIPP (Time Processes and Performability Evalua-
tion) [9], EMPA (Extended Markovian Process Al-
gebra) [10], and PEPA (Performance Evaluation Pro-
cess Algebra) [11] can be mentioned.

The paper is organized as follows. Section 2 co-
vers backgrounds and related work. Section 3 intro-
duces our enhanced Mean-Value Analysis (MVA) al-
gorithm. Section 4 describes performance prediction
with the proposed algorithm. Section 5 determines
and proves the convergence and the limit of the origi-
nal and the enhanced algorithms. Section 6 describes

our performance measurements. Section 7 demon-
strates the validation of the enhanced algorithm in dif-
ferent versions of ASP.NET environment. Section 8
presents error analysis. Finally, Section 9 reports con-
clusions.

2 Backgrounds and Related Work
Queueing theory [3], [12], [13] is one of the key ana-
lytical modeling techniques used for information sys-
tem performance analysis. Queueing networks and
their extensions (such as queueing Petri nets [14])
are proposed to model web-based information sys-
tems [4], [5], [15].

Web-based software systems access some re-
sources while executing requests of the clients, typi-
cally several requests arrive at the same time, thus,
competitive situation is established for the resources.
In case of modelling such situation queueing model-
based approaches are widely recognized.

In [5], a queueing model is presented for multi-
tier information systems, which are modeled as a net-
work of M queues: Q1, ..., QM illustrated in Fig. 1.
Each queue represents an application tier.

A request can take multiple visits to each queue
during its overall execution, thus, there are transitions
from each queue to its successor and its predecessor as
well. Namely, a request from queue Qm either returns
to Qm−1 with a certain probability pm, or proceeds to

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1711 Issue 10, Volume 8, October 2009

Z

Z

Z

S1 S2 SM

QMQ 2Q 1

p1 p3 pM

1-p1 1-p2
1-pM-1

Q 0

p2

Figure 1: Modelling a multi-tier information system
using a queueing network

Qm+1 with the probability 1−pm. There are only two
exceptions: the last queue QM , where all the requests
return to the previous queue (pM = 1) and the first
queue Q1, where the transition to the preceding queue
denotes the completion of a request. Sm denotes the
service time of a request at Qm (1 ≤ m ≤ M).

Internet workloads are usually session-based.
The model can handle session-based workloads as an
infinite server queueing system Q0 that feeds the net-
work of queues and forms the closed queueing net-
work depicted in Fig. 1. Each active session is in ac-
cordance with occupying one server in Q0. The time
spent at Q0 corresponds to the user think time Z.

The model can be evaluated for a given number
of concurrent sessions N . A session in the model
corresponds to a customer in the evaluation algo-
rithm. The MVA algorithm for closed queueing net-
works [3], [16] iteratively computes the average res-
ponse time and the throughput performance metrics.

The algorithm uses visit numbers instead of tran-
sition probabilities, and visit numbers can be easily
derived from transition probabilities. Thus, the model
can handle multiple visits to a tier regardless of
whether they occur sequentially or in parallel, because
visit number is the mean number of visits made by a
request during its overall execution, and not when or
in what order these visits occur.

The input parameters of the algorithm are N the
number of customers, M the number of tiers, Z the
average user think time, Vm the visit number and Sm

the average service time for Qm (1 ≤ m ≤ M). The
output parameters are τ the throughput, R the res-
ponse time, Rm the response time for Qm and Lm

the average length of Qm.
The initialization is Lm = 0 (1 ≤ m ≤ M). The

algorithm introduces the customers into the queueing
network one by one (1 ≤ n ≤ N). The cycle termi-
nates when all the customers have been entered. The
steps of an iteration are the follows:

Rm = Vm · Sm · (1 + Lm), (1)

Client IIS Named Pipe
Application

Queue

Thead Pool
(Worker and I/O)

Web
Service

Pipeline

Application Domain

ASP.NET Worker Process

Figure 2: The architecture of ASP.NET environment

τ =
n

Z +
M∑

m=1
Rm

, (2)

Lm = τ ·Rm. (3)

Nowadays the Microsoft .NET became one of the
most prominent technologies of web-based software
systems. Consider that a client is requesting a service
from the server, the request goes through several sub-
systems before it is served (see Fig. 2). Through the
settings of the application server the performance can
be affected [17].

From the IIS (Internet Information Services),
the accepted HTTP connections are placed into a
named pipe. This is a global queue between IIS and
ASP.NET, where requests are posted from native code
to the managed thread pool. From the named pipe,
the requests are placed into an application queue, also
known as a virtual directory queue. There is one
queue for each virtual directory.

The number of requests in these queues increases
if the number of available worker and I/O threads falls
below the limit specified by minFreeThreads property.
When the limit is reached, the requests are rejected.

The thread pool configuration options are the fol-
lowing. According to the connections and limitations,
the partition of the .NET thread pool is shown in
Fig. 3.

The maxWorkerThreads attribute means the ma-
ximum number of worker threads, the maxIOThreads
parameter is the maximum number of I/O threads in
the .NET thread pool. These attributes are automati-
cally multiplied by the number of available CPUs.

The minFreeThreads attribute limits the number
of concurrent requests, because all incoming requests
will be queued if the number of available threads in
the thread pool falls below the value for this setting.
The minLocalRequestFreeThreads parameter is simi-
lar to minFreeThreads, but it is related to requests
from localhost (for example a local web service call).
These two attributes can be used to prevent deadlocks
by ensuring that a thread is available to handle call-
backs from pending asynchronous requests.

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1712 Issue 10, Volume 8, October 2009

.NET Thread Pool

Free

Local Request
Free

Worker I/O

Figure 3: Partitioning the threads in the .NET thread
pool

Performance metrics are influenced by many fac-
tors. Several papers have investigated various configu-
rable parameters, how they affect the performance of
web-based information systems. Statistical methods
and hypothesis tests are used to retrieve factors in-
fluencing the performance. An approach [18] app-
lies analysis of variance, another [19], [20], [21] per-
forms independence test. The thread pool attributes
are performance factors, these identified factors must
be modelled to improve performance models.

3 Evaluation Algorithm Enhance-
ment Based on Thread Pool

The MVA algorithm can be effectively enhanced by
taking into account the behavior of the thread pool, as
well.

Consider that the actual request contains CPU as
well as I/O (input/output) calls. In case of multiple
threads, I/O calls do not block the CPU, because the
execution can continue on other non-blocked threads.
This enables handling I/O requests and executing
CPU instructions simultaneously. Therefore, in the
MVA algorithm, to update the queue length a modi-
fied form of (3) must be used in the input, output and
I/O tiers. For the CPU tiers this equation preserves its
original form.

Proposition 1 The enhancement of the MVA algo-
rithm modelling the behavior of the thread pool is as
follows. In the input, output and input/output tiers (3)
is the following:

LI/O = τ ·RI/O −
SCPU

SI/O
· LCPU , (4)

where the CPU index means a CPU tier index and
the I/O index corresponds to an I/O tier index from
1 ≤ m ≤ M . Additionally, LCPU is from the previous
iteration step, namely, LCPU is updated only after this
step. After (4), one more checking step is necessary:

if LI/O< 0 then LI/O = 0. (5)

I/O
call

C
P

U
 a

ct
iv

it
y

I/
O

p
ro

ce
ss

in
g

C
P

U
 a

ct
iv

it
y

ti
m

e

Thread-1 Thread-2

Context
switching

Context
switching

Figure 4: Illustrating the behavior of multiple threads

Proof: Consider that the CPU queue and the I/O
queue contain some requests respectively. If a new
request arrives, it must wait until each previous re-
quest has been handled in the CPU queue. It takes
LCPU · SCPU time unit to handle each CPU request.
During this time the requests residing in the I/O queue
can be handled simultaneously, because the CPU and
the I/O devices can work in parallel. If an I/O call
occurs, the CPU has to wait until the I/O device hand-
les the request. In case of multiple threads the CPU
does not have to wait, because the execution can con-
tinue in another thread as depicted in Fig. 4. Namely,
during this time interval SCPU

/
SI/O · LCPU I/O re-

quests can be handled, which affects that the number
of requests waiting in the I/O queue decreases. This
difference should be subtracted from the number of
requests waiting in the I/O queue calculated by the
MVA.

After this equation one more checking step is ne-
cessary, because the average length of a queue cannot
be negative. Thus, if the obtained LI/O value is less
than 0, the LI/O must be equal to 0. ut

Our enhancement has a considerable effect on
the predicted response time and throughput if the
SCPU

/
SI/O coefficient is great (near to 1 or greater

than 1). If this coefficient is small (smaller than 1), the
output of the MVA and the proposed enhanced MVA
are closer (see Fig. 5).

In other parts, since in the difference (4) the

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1713 Issue 10, Volume 8, October 2009

Figure 5: The effect of the proposed coefficient

Figure 6: The effect of the VCPU in the proposed dif-
ference

LCPU depends on VCPU input as well, greater CPU
visit number cause considerable difference between
the outputs of the MVA and the enhanced MVA as
depicted in Fig. 6.

4 Performance Prediction with the
Proposed Algortihm

In this section, performance metrics are predicted with
our enhanced algorithm.

It is worth decomposing a web application to
multiple tiers (presentation, business logic, database
layers) as depicted in Fig. 7, and modeling it accord-
ing to Fig. 1, because the service time of each tier
can be very different. The presentation tier (UI) is an
output tier and the database tier (DB) corresponds to
an input/output tier. Thus, the proposed enhancement
must be applied in these tiers. The business logic layer
(BLL) corresponds to a CPU tier.

Firstly, the MVA and the proposed enhanced
MVA algorithm for closed queueing networks have
been implemented with the help of MATLAB.

Secondly, the input values of the algorithms have
been estimated in both environments from one-one

Presentation layer ASP.NET web forms

C# classes

ADO.NET

SQL rverse

Data access layer

Database layer

Business logic layer

Figure 7: Web application architecture

measurement. The inputs of the script are the num-
ber of tiers M , the maximum number of customers
(simultaneous browser connections), the average user
think time Z, the average service times Sm and the
visit numbers Vm for Qm (1 ≤ m ≤ M).

During the measurement the number of tiers was
constant (three). The maximum number of customers
means that the load was characterized as follows: we
started from one simultaneous browser connection,
then we continued with two, until the maximum num-
ber (arbitrary, in this case it is set to 60) had been
reached.

Finally, the model has been evaluated to predict
performance metrics. The script computes the res-
ponse time and the throughput up to a maximum num-
ber of customers.

Proposition 2 The proposed algorithm can be app-
lied for performance prediction. The response time
and throughput performance metrics can be predicted
with the improved algorithm.

Proof: Evaluating the queueing model (Fig. 1) with
the proposed algorithm, the predicted response time
and throughput performance metrics are as follows.
The predicted throughput is depicted in Figs. 8 and 9,
the predicted response time can be seen in Figs. 10
and 11. ut

In this case the proposed enhancement has a
considerable effect on the predicted response time
and throughput, because a SCPU

/
SI/O coefficient

is large, thus high curvatures can be observed in the
response time and in the throughput, as well (see
Figs. 9, 9, 10 and 11).

5 Convergence and Limit Analysis
In this section, the convergence and the limit of the
original and the enhanced algorithms are analyzed and
proved.

The first (finite many) elements of a sequence can
be eliminated, substituted, modified, etc., the conver-
gence, non-convergence, and the limit of the sequence
do not change.

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1714 Issue 10, Volume 8, October 2009

Figure 8: The predicted throughput with MVA and
with proposed MVA in the first environment

Figure 9: The predicted throughput with MVA and
with proposed MVA in the second environment

Figure 10: The predicted response time with MVA
and with improved MVA in the first environment

Figure 11: The predicted response time with MVA
and with improved MVA in the second environment

Let Dm denote the service demand for Qm,
namely Vm · Sm = Dm (1 ≤ m ≤ M), and Dmax

corresponds to the maximum value of service de-
mands.

If the steps (1), (2), and (3) of the recursive MVA
are substituted to each other, the following equation
can be derived for throughput:

τ(n) =
n

M∑
m=1

Dm + D2
mτ(n− 1)+

... + Dn
mτ(n− 1)τ(n− 2)...τ(1)

,

(6)
in other form:

τ(n) =
n

(D1 + D2 + ... + DM)+
n∑

i=2

{
(
Di

1 + Di
2 + ... + Di

M

) i−1∏
j=1

τ(n− j)

}
.

(7)

Proposition 3 The throughput sequence of the origi-
nal algorithm is convergent.

Proof: Every bounded and monotonic sequences are
convergent. Firstly, the bounded above property of
the throughput sequence, secondly, the monotonic in-
creasing property of the throughput sequence will be
proved. Finally, the limit of the convergent throughout
will be determined.

The bounded above property is proved by mathe-
matical induction. The above bound is 1/Dmax.

Step 1 τ(1) < 1/Dmax, because

τ(1) =
1

D1 + ...Dmax... + DM
<

1
Dmax

, (8)

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1715 Issue 10, Volume 8, October 2009

since every Di (service demands) are positive.
Step 2 Let assume that τ(2), τ(3), ..., τ(n− 1) <

1/Dmax, as well.
Step 3 Let prove that τ(n) < 1/Dmax using the

assumption. Proof by contradiction: τ(n) ≥ 1/Dmax.
τ(n) is determined as (7), thus

nDmax ≥
n∑

i=1
(Di

1 + ... + Di
M)

i−1∏
j=1

τ(n− j) (9)

must be proved. With the assumption, the left side of
the inequality can be estimated, which is greater than
n ·Dmax, hence this is paradox.

Our result has shown that the throughput se-
quence is bounded above by 1/Dmax.

The monotonic increasing property is proved di-
rect: τ(n − 1) < τ(n). Using (7) the following in-
equality can be derived:

(n− 1) · (
n∑

i=1
(Di

1 + ... + Di
M)

i−1∏
j=1

τ(n− j))

< n · (
n−1∑
i=1

(Di
1 + ... + Di

M)
i−1∏
j=1

τ(n− j))
.

(10)
Using the bound proved previously, the follow-

ing inequality is true, because each difference is po-
sitive except the difference with max, which is zero:
n∑

i=1

M∑
m=1

Di
mDn−i

max −Dn
m > 0.

Our result has shown that the throughput se-
quence is monotonic increasing. Thus, the throughput
is bounded above and monotonic increasing, hence the
throughput sequence is convergent. ut

Proposition 4 The throughput of the original algo-
rithm converges to 1/Dmax.

Proof: Let A denote the limit of the throughput (n →
∞), namely τ(n), τ(n−1), ... = A. Thus, the (7) can
be expressed as (divided both side of the equation by
A):

1 =
n

n∑
i=1

(Di
1 + ... + Di

M)Ai
. (11)

Let A equals to 1/Dmax, then the right side of the
equation is:

n
n∑

i=1

[(
D1

Dmax

)i
+ ...

(
Dmax
Dmax

)i
... +

(
DM

Dmax

)i
] . (12)

If Dk 6= Dmax, then
(

Dk
Dmax

)n → 0. If Dk = Dmax,

then
n∑

i=1

(
Dk

Dmax

)i
=

n∑
i=1

(
Dmax
Dmax

)i
=

n∑
i=1

1i = n. Thus

the denominator is n. Therefore the right side of the
(11) is 1, and the left side is 1, too.

In other words, the limit of the throughput in the
original algorithm is truly 1/Dmax. ut

Proposition 5 The throughput of the enhanced algo-
rithm converges to 1/Dmax.

Proof: If the steps (1), (2), (3) in CPU tiers, and
(4) in I/O tiers of the enhanced recursive MVA algo-
rithm are substituted to each other, in addition, let A
denote the limit of the throughput (n → ∞), namely
τ(n), τ(n−1), ... = A, the following equation can be
derived for the limit of throughput (divided both side
of the equation by A):

1 =
n

n∑
i=1

(Di
1 + ... + Di

M)Ai−
n∑

i=1;m6=CPU
(Di

1 + ... + Di
M)Aiϑ(n− i)

,

(13)
where 1, 2...M 6= CPU means, that only I/O tiers
are in the second sum in the denominator, furthermore
ϑ(n− i) corresponds to the enhancement in the queue
length, namely, ϑ(n− i) = SCPU

SI/O
·LCPU (n− i− 1).

If in (13) there are only CPU tiers, i.e. the en-
hancement must not be applied, the negative sum is 0,
hence the original form (11) can be derived.

Let A equals to 1/Dmax, then the right side of the
equation are analyzed. The first sum in the denomina-
tor is n (see the proof of Proposition 4).

The second sum in the denominator is 0. The
prove is the following. Two cases must be distin-
guished.

Firstly, if the Dmax is in a CPU tier, the product
of service demands and limit – (Di

1 + ... + Di
M)Ai,

where A = 1/Dmax – is 0, because only I/O ser-
vice demands are in the sum, and the maximum ser-
vice demand is in a CPU tier, thus in case of ∀k,(

Dk
Dmax

)n → 0. If each coefficient of the ϑ is 0, then
the entire second sum is 0.

Secondly, if the Dmax is in an I/O tier, the
ϑ is 0, because ϑ can be expressed similar as
n∑

i=1
(Di

1 + ... + Di
M)Ai, but only CPU tiers are in the

sum, since ϑ(n− i) = SCPU
SI/O

· LCPU (n− i− 1). In
addition the maximum service demand is in an I/O
tier, thus in case of ∀k,

(
Dk

Dmax

)n → 0. If each coef-
ficient of the product of service demands and limit –
(Di

1 + ... + Di
M)Ai – is 0, then the entire second sum

is 0.
Thus the denominator is n. Therefore the right

side of the (13) is 1, and the left side is 1, too.

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1716 Issue 10, Volume 8, October 2009

Figure 12: The convergence of the original and the
enhanced algorithms

In other words, the limit of the throughput in the
enhanced algorithm is truly 1/Dmax. ut

Our results have shown that the throughput se-
quence of the original algorithm is bounded above and
monotonic increasing, thus the throughput is conver-
gent, in addition the limit of the throughput in the ori-
ginal and enhanced algorithms is the inverse value of
the maximum service demand.

The speed of the converge can be seen in Fig. 12.
The original algorithm converge to 1/Dmax (from be-
low) very quickly (after a few customers). The en-
hanced algorithm converge to 1/Dmax (from above)
very slowly. If the proposed SCPU

/
SI/O coefficient

is small, then the enhanced algorithm is closer to the
original algorithm, because (4) converges to the (3)
depicted in Fig. 5, as well.

6 Performance Measurements
Three-tier ASP.NET web applications have been
implemented in different ASP.NET environments
(Fig. 7).

The web server of our web application was Inter-
net Information Services (IIS) 6.0. The server runs
on a 2.8 GHz Intel Pentium 4 processor with Hyper-
Threading technology enabled. It had 1GB of system
memory; the operating system was Windows Server
2003 with Service Pack 1.

There were two environments. In the first envi-
ronment the application server was ASP.NET 1.1 run-
time environment, the database management system
was Microsoft SQL Server 2000 with Service Pack 3.
In the second environment ASP.NET 2.0 and Micro-
soft SQL Server 2005 with Service Pack 1 were used.

Figure 13: The observed response time and through-
put in ASP.NET 1.1 and 2.0 environtments

The clients ran on another PC on a Windows XP
Professional computer with Service Pack 2. The sup-
porting hardware was a 3 GHz Intel Pentium 4 pro-
cessor with Hyper-Threading technology enabled, and
it also had 1GB system memory. The connection bet-
ween the computers was provided by a 100 Mb/s net-
work.

The emulation of the browsing clients and the
measuring the response time were performed by
JMeter, which is an open source load tester. Tests can
be created on a graphical interface. Virtual users send
a list of HTTP requests to the web server concurrently.
Each virtual user inserts an exponentially distributed
think time between its requests with a mean of 4 se-
conds. With the help of JMeter, the measurement pro-
cess can be easily automated.

7 Experimental Validation
Finally, the proposed algorithm are validated and the
correctness of the performance prediction with the
proposed algorithm are verified in different ASP.NET
environments.

A typical web application has been tested with
concurrent user sessions, comparing the observed and
predicted values in order to validate the proposed al-
gorithm.

While the number of simultaneous browser con-
nections varied, the average response time and
throughput were measured in the two environments.
As illustrated in Fig. 13, the new version of ASP.NET
runtime environment and SQL Server database mana-
gement system are slightly faster than the older ver-
sion, but the character of the curve shapes are very

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1717 Issue 10, Volume 8, October 2009

Figure 14: The observed, the predicted with MVA and
the predicted with enhanced MVA throughput in the
first environment

Figure 15: The observed, the predicted with MVA and
the predicted with enhanced MVA throughput in the
second environment

similar.
The results correspond to the common shape of

the response time and throughput performance met-
rics (see Fig. 13). Increasing the number of concur-
rent clients, the response time grows, since the queue
limits are enough large, thus, all of the requests can be
successfully served.

Proposition 6 With performance measurements, the
correctness of the proposed algorithm is validated,
the correctness of the performance prediction with the
proposed algorithm is verified.

Proof: Our proposed algorithm was experimentally
validated by comparing the observed, the predicted
values with MVA, and the predicted values with our
enhanced MVA.

Our results (depicted in Figs. 14, 15, 16 and 17)
have shown that the output of the proposed algorithm
approximates the measured values much better than

Figure 16: The observed, the predicted with MVA and
the predicted with enhanced MVA response time in
the first environment

Figure 17: The observed, the predicted with MVA and
the predicted with enhanced MVA response time in
the second environment

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1718 Issue 10, Volume 8, October 2009

the MVA considering the shape of the curve and the
values as well. Thus, the proposed algorithm predicts
the response time and throughput much more accurate
than the original MVA algorithm. ut

8 Error Analysis

Finally, error is analyzed to verify the correctness of
the performance prediction with the proposed algo-
rithms. Two methods are applied: the average abso-
lute error function and the error histogram.

The average absolute error function is defined as
follows:

errorMV A−obs =
n∑

i=1

|RTMV Ai −RTobsi |/n, (14)

errorEnhMV A−obs =
n∑

i=1

|RTEnhMV Ai −RTobsi |/n,

(15)
where RT means response time, MVA index corres-
ponds to the MVA evaluation algorithm, EnhMVA in-
dex is enhanced MVA algorithm, obs index corres-
ponds to the observed values, and n is the maximum
number of customers, namely, the number of mea-
surements.

Proposition 7 The average absolute error of the pro-
posed algorithm is less than the average absolute er-
ror of the original algorithm.

Proof: The results of the average absolute error func-
tion are presented in Table 1. It can be seen that the
error of the enhanced algorithm is substantially less
in both environments than the error of original MVA
algorithm. ut

Table 1: The results of the average absolute error
function

ASP.NET 1.1 ASP.NET 2.0
MVA 340.4833 309.4667

Enhanced MVA 62.8500 38.5333

The error histograms used 10 bins are depicted in
Figure 18 and 19. In case of the original MVA algo-
rithm, the histograms are Gaussian in shape. With the
enhanced algorithm, the most of the errors is in the
first bin, and it continuously decreases.

The error analysis has verified the correctness of
the performance prediction with the proposed algo-
rithm, namely, the enhanced algorithm predicts the
performance metrics much more accurately than the
original MVA algorithm.

Figure 18: Error histogram in ASP.NET 1.1 environ-
ment

Figure 19: Error histogram in ASP.NET 2.0 environ-
ment

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1719 Issue 10, Volume 8, October 2009

9 Conclusions
In this paper the Mean-Value Analysis algorithm has
been improved to model the behavior of the thread
pool. The proposed algorithm can be applied for per-
formance prediction. In addition, the convergence and
limit of the algorithms have been investigated.

The paper introduces and verifies a multi-tier
queueing network model to model web-based soft-
ware systems. The model can be used for performance
prediction in ASP.NET environments. The validity of
the model, the correctness of the proposed evaluation
algorithm, furthermore, the correctness of the perfor-
mance prediction have been proven with performance
measurements.

In order to illustrate the practical applications of
the results, the proposed method has been applied in
real systems. This method facilitates the efficient per-
formance prediction of web-based software systems.

References:

[1] C.U. Smith, Performance Engineering of Soft-
ware Systems, Addison-Wesley, 1990

[2] M.R. Moghal, N. Hussain, M.S. Mirza,
M.W. Mirza, M.S. Choudry, Performance Eva-
luation and Modeling of Web Server Systems
WSEAS Transactions on Information Science
and Applications 1(1), July 2004, pp. 658-663.

[3] R. Jain, The Art of Computer Systems Perfor-
mance Analysis, John Wiley and Sons, 1991

[4] D. A. Menascé and V. Almeida, Capacity Plan-
ning for Web Services: Metrics, Models, and
Methods, Prentice Hall PTR, 2001

[5] B. Urgaonkar, Dynamic Resource Management
in Internet Hosting Platforms, Dissertation,
Massachusetts, 2005

[6] C. Jittawiriyanukoon, Performance Evaluation
of Parallel Processing Systems Using Queueing
Network Model WSEAS Transactions on Com-
puters 3(5), March 2006, pp. 612-620.

[7] S. Bernardi, S. Donatelli and J. Merseguer,
From UML Sequence Diagrams and Statecharts
to Analysable Petri Net Models, ACM Inter-
national Workshop Software and Performance,
2002, pp. 35–45.

[8] P. King and R. Pooley, Derivation of Petri Net
Performance Models from UML Specifications
of Communication Software, 25th UK Perfor-
mance Eng. Workshop, 1999

[9] U. Herzog, U. Klehmet, V. Mertsiotakis and
M. Siegle, Compositional Performance Modell-
ing with the TIPPtool, Performance Evalua-
tion 39, 2000, pp. 5–35.

[10] M. Bernardo and R. Gorrieri, A Tutorial on
EMPA: A Theory of Concurrent Processes with
Nondeterminism, Priorities, Probabilities and
Time, Theoretical Computer Science 202, 1998,
pp. 11–54.

[11] S. Gilmore and J. Hillston, The PEPA Work-
bench: A Tool to Support a Process Algebra-
Based Approach to Performance Modelling, 7th
International Conference Modelling Techniques
and Tools for Performance Evaluation, 1994,
pp. 353–368.

[12] L. Kleinrock, Theory, Volume 1, Queueing Sys-
tems, John Wiley and Sons, 1975

[13] L. Kleinrock, Computer Applications, Volume 2,
Queueing Systems, John Wiley and Sons, 1976

[14] S. Kounev and A. Buchmann, Performance Mo-
delling of Distributed E-Business Applications
using Queuing Petri Nets, 2003, IEEE Interna-
tional Symposium on Performance Analysis of
Systems and Software.

[15] C. U. Smith and L. G. Williams, Build-
ing responsive and scalable web applications,
2000, Computer Measurement Group Confe-
rence, pp. 127–138.

[16] M. Reiser and S. S. Lavenberg, Mean-Value
Analysis of Closed Multichain Queuing Net-
works, Association for Computing Machi-
nery 27, 1980, pp. 313–322.

[17] J. D. Meier, S. Vasireddy, A. Babbar and
A. Mackman, Improving .NET Application Per-
formance and Scalability (Patters & Practices),
Microsoft Corporation, 2004

[18] M. Sopitkamol and D. A. Menascé, A Method
for Evaluating the Impact of Software Configu-
ration Parameters on E-commerce Sites, ACM
5th International Workshop on Software and
Performance, 2005, pp. 53–64.

[19] Á. Bogárdi-Mészöly, G. Imre and H. Charaf,
Investigating Factors Influencing the Response
Time in J2EE Web Applications, WSEAS Trans-
actions on Computers 4(2), February 2005,
pp. 179–183.

[20] Á. Bogárdi-Mészöly, Z. Szitás, T. Levendovszky
and H. Charaf, Investigating Factors Influencing
the Response Time in ASP.NET Web Applica-
tions, Lecture Notes in Computer Science 3746,
2005, pp. 223–233.

[21] Á. Bogárdi-Mészöly, T. Levendovszky and H.
Charaf, Performance Factors in ASP.NET Web
Applications with Limited Queue Models, 10th
IEEE International Conference on Intelligent
Engineering Systems, 2006, pp. 253–257.

WSEAS TRANSACTIONS on COMPUTERS Agnes Bogardi-Meszoly, Tihamer Levendovszky, Hassan Charaf

ISSN: 1109-2750 1720 Issue 10, Volume 8, October 2009

	29-668
	29-671
	29-674
	29-684
	29-698
	29-701
	29-714
	29-715
	29-719
	29-742

