
Traceability-based Incremental Model Synchronization

ISTVÁN MADARI, LÁSZLÓ ANGYAL and LÁSZLÓ LENGYEL
Budapest University of Technology and Economics
Department of Automation and Applied Informatics

1111 Budapest, Goldmann György tér 3., HUNGARY
{istvan.madari, angyal, lengyel}@aut.bme.hu

Abstract: Model transformation is a crucial aspect of Model-Driven Software Development. With the help of
model transformation, we can generate source code or other artifacts from software models. However, a recurring
problem in software development is the fact that source and target models coexist and they evolve independently.
In general, a modeled system is composed of several models that are often related to one another. Consequently, the
related models will not be consistent anymore if one of them is altered in the development process. For that reason,
a model synchronization method is necessiated to resolve inconsistency between the modified models. Performing
synchronization manually can be an error prone task due to the number and complexity of model elements. In
model-driven technologies, where processing is carried out as a series of model transformations, applying model
transformations can also be a reasonable option for the reconciliation. This paper presents an approach that uses
trace models and model transformations to facilitate incremental model synchronization.

Key–Words: Model transformation; Model synchronization; Traceability; Trace model

1 Introduction

In model-driven software development the synchro-
nization of the affected models is a central issue,
nonetheless, to the best of our knowledge, perfect
model synchronization is yet an unresolved problem.
Often the relationships between the different model
elements are very complex, due to the fact that models
to be synchronized belong to different domains. Be-
sides, the diversities of these domains can be very se-
rious: they can implement different abstraction levels
and may conforms to very dissimilar visual language.

In the model-related technologies we often use
model transformations as a generator function in or-
der to process the implemented models. It means that
the final products (source code, test cases, part of the
documentation) of the model-based development can
be generated by model transformations. Thus imple-
menting the synchronization process as model trans-
formations is an obvious demand, if the generator pro-
cess implemented in the same way.

Diversities of the domains follow that, the model
transformation leads to information loss, since a
model can hardly ever express all information from
another domain. Generally, a synchronization pro-
cess finds relationships between models, checks con-
sistency, propagates changes and resolves conflicts if
necessary. However, to discover the relationships au-

tomatically between model elements of different do-
mains is unimaginable, if the metamodels are not sim-
ilar. Moreover, the consistency checking and change
propagation are very difficult steps, due to the fact that
there are may complex relationships between model
elements of different domains.

Consequently, preserving information and tak-
ing relationships into account can facilitate successful
model synchronization.

Incremental model transformation is a very effec-
tive way of model synchronization [1]. The basic idea
behind incrementality is that the synchronization pro-
cess does not generate the whole artifacts from the
scratch, but the transformation only updates the mod-
els. The possibilities for incremental transformation
are discussed in [2]. With incremental model synchro-
nization the information can be preserved during the
transformation process. Thus, if the transformation
is applied between different metamodels, the origi-
nal models keep the information that cannot be trans-
formed.

The relationships between different model ele-
ments play a central role in the synchronization. In
practice, the relationship between different model el-
ements means that mappings are defined between the
target and the source model elements. Hence, we will
know exactly the details: which element caused the
changes in the target model during the transforma-

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1691 Issue 10, Volume 8, October 2009



tion. The idea of defining mappings between the el-
ements comes from the theory of Triple Graph Gram-
mars (TGG) [3], where a correspondence graph is de-
fined between the source and the target artifacts that
describes the relationship (the mappings) between the
two sides.

With relationship information, the transformation
rules can recognize the elements that should be newly
created, deleted or left untouched when the transfor-
mation is executed in the synchronization process.
This extra information can be automatically derived if
the model transformation preserves trace information
during its execution.

In our previous work [4, 5], we have defined a
data structure for tracing and developed an algorithm
that can be used to implement an incremental synchro-
nization method with unidirectional model transfor-
mations. In this paper we introduce our improved ap-
proach, where trace models are used instead of trace
data structures to facilitate model synchronization.

The feasibility of our approach is also illustrated
via a case study: synchronizing C# syntax tree model
and .NET Compact Framework user interface model.

2 Related Work and Background

Triple Graph Grammars (TGGs) were introduced in
1994 [3]. Triple graph grammar rules model the trans-
formations of three separate graphs: source, target and
correspondence graphs. The key idea of triple graph
grammars in synchronization is that during the trans-
formation the correspondence graph stores additional
information about the transformation process itself.
This information is needed to propagate incremental
updates of one data structure as incremental updates
into its related data structures.

QVT (Query/Views/Transformations) is the
OMG (Object Management Group) standard for
the transformation of MOF (Meta-Object Facility)
models. A closer review of QVT shows that parts
of the specification are structurally quite similar to
triple graph grammars. QVT defines a standard way
to transform source models into target models. Both
QVT and TGGs declaratively define the relation
between two models. With this definition of relation,
a transformation engine can execute a transformation
in both directions and based on the same definition,
can also propagate changes from one model to the
other.

Both QVT and TGG are lacking implementations.

QVT is too complicated, there is currently no transfor-
mation language implementation available being fully
QVT-compatible.

Visual Modeling and Transformation System
(VMTS) [6, 7] is a graph-based metamodeling sys-
tem. Metamodeling means that we can create models
not only for predefined modeling languages, but also
we can create new modeling languages as well. New
languages are defined by creating models of models,
called metamodels. VMTS uses n-layer, layer trans-
parent metamodeling. This means that we can also
create the metamodels of metamodels, since the base
functions are the same for all modeling layers. Models
and transformation rules are formalized as directed,
labeled graphs, which consist of individual attributed
nodes and edges. Also, VMTS is a model transforma-
tion system, which transforms models by executing
graph rewriting rules [8, 9], that follow the philoso-
phy of the double-pushout (DPO) [10, 11] approach,
in an order defined by a transformation control flow
model.

Source Code Modeling

In [12] we introduce a technique developed for VMTS
to facilitate the production of textual content from vi-
sual models. According to that technique we have
created a metamodel for the target programming lan-
guage in VMTS, which conforms to the most of the
grammars of these languages (referred to as Code-
DOMLight). The elements of the metamodel also con-
tain their specific textual representation to enable the
production of source code files from this kind of in-
stance models. The source code of the text generator
that conforms to the textual concrete syntax is auto-
matically derived from the metamodel. The code gen-
erator is a metamodel-specific text printer that emits
text fragments while traversing the elements of the in-
stance model of CodeDOMLight. A part of the meta-
model (CodeDOMLight) is depicted in Figure 1. The
attributes of the nodes, the statement and expression
definitions are omitted to save some space.

Consequently, the source code generation in
VMTS means just a syntax tree composition using
model transformations. The advantage of modeling
the source code files to be generated is that further
model processing tasks (e.g. refactoring, model-code
synchronization) can be performed.

There is a well-known file modeling and manipu-
lation approach in the practice: the Document Object

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1692 Issue 10, Volume 8, October 2009



Figure 1: Structural Elements of the CodeDOMLight
Metamodel

Model (DOM) [13] defines a standard way for access-
ing and manipulating XML documents. The DOM
represents an XML file as a tree-structure. This ap-
proach can be abstracted and generalized in order to
obtain a way for accessing and dynamic manipulating
hierarchical files.

Source code files are also considered as hierarchi-
cal structures when they are processed. An abstract
syntax tree (AST) is a tree data structure built during
the parsing of a textual content conforming to a gram-
mar. The parser reads the input character stream or the
stream of tokens and emits a structure accordingly to
the grammar. The tree is composed by nodes defined
by the building blocks of the language in a hierarchi-
cal order they have matched.

There are existing commercial technologies to
generate code through tree synthesis. CodeDOM is
an object technology provided by Microsoft for run-
time code generation in multiple programming lan-
guages. The CodeDOM library consists of a set of
classes that are sufficient to describe the tree struc-
ture of an object oriented source code independently
from the syntax of a specific programming language.
To represent source code, from CodeDOM elements
an object structure can be composed, which models
the structure of the code. There are numerous built-
in and third-party generators available for CodeDOM
to render a synthesized object tree in the textual syn-
tax of a supported language. The code providers of
CodeDOM are generators that pretty-print the object

structure.
Pretty-printing [14] performs unparsing an (ab-

stract syntax) tree and generates typically source code.
By traversing the AST and visiting every node, tokens
belonging to the nodes are printed in an adequate or-
der. The inserted white spaces and blank lines provide
that the output will be well-indented, consistent with
the built in predefined layouts of the pretty-printer.

The generator for CodeDOMLight supports the
merge of artifacts modeled using this metamodel.
A merge approach can be operation-based or state-
based [15]. The operation-based approach requires a
tool that records the committed edit operations, while
the state-based approach derives the changes by com-
parison after they occur. The sequence of these oper-
ations is referred to as the edit script. In our approach
the change propagation is based on executing the edit
scripts on other artifacts to obtain the same modified
state. Since source code files can be modified outside
the editor that records the edit scripts, we have cho-
sen to support the state-based merge approach. The
difference analysis and change propagation between
two artifacts requires that their contents are the com-
position of the same kind of atomic building blocks.
The content of textual and visual models can be repre-
sented by trees composed of AST nodes originated in
the metamodel. Consequently, all possible operations
that can be performed on the models can be described
by a list (edit script) of atomic AST node operations
like insert, update, move, or delete. Therefore, the
AST serves as an evident ground for a fine-grained
incremental update.

3 Synchronization and Tracing with
Unidirectional Model Transforma-
tions

A model transformation can be unidirectional or n-
directional [2, 16]. In contrast to unidirectional ap-
proaches, the n-directional transformations can be ex-
ecuted in multiple directions. Modeling tools of-
ten use n-directional techniques for synchronization;
however n-directional approaches have several imple-
mentation difficulties. Usually the reverse direction
cannot be specified in conjunction with the original
transformation, so that several transformation paths
may exist between the given artifacts. Moreover, in
many cases no reverse direction exists. Thus, there is
no clear way of defining the reverse direction.

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1693 Issue 10, Volume 8, October 2009



Figure 2: Model evolution during the development.

In model-driven development the outcome of a
model transformation process is rarely acceptable as
a perfect result, it is not the final product of a devel-
opment cycle. After the transformation, modifications
are required to the generated artifacts, and it follows
that the source and target models need to be synchro-
nized.

The source and target models to be synchronized
are related to one another via the generation process
(the first execution of the forward transformation).
Trace information is saved during the transformation
that contains the relations between the source and tar-
get model elements. Thus if the target models are al-
tered, then the backward transformation process will
know which elements should be updated or newly cre-
ated.

As depicted in Figure 2 the forward transforma-
tion may be not suited for processing each element
from the input model, because the target and the
source models conform to different metamodels. The
object from the source corresponding to the empty
square is not present in the target model, because the
forward transformation is unable to process it. Modi-
fication in the target model leads to inconsistent state
between the source and the target. The backward
transformation is able to update the source model with
the help of the saved trace information. The backward
transformation also saves trace information, thus the
forward transformation can recognize which elements
in the target model should be left unaltered.

Figure 3: Trace metamodel.

As previously mentioned, during the forward
transformation a loss of information has occurred. If
we did not save trace information, the whole source
model would be regenerated during the backward
transformation, and consequently information would
be irrecoverably lost.

The problem with the non-incremental update ap-
proaches is that they do not take into consideration
important information from the model: the layout that
is previously defined by human effort disappears. The
layout in a visual model means the size of the ele-
ments and their positions, in the textual files the lay-
out is the combination of the white spaces between
the elements and the comments. The layout in both
representations contains valuable extra information,
which is developed into the model. Using incremen-
tal approaches the developers can work with their own
models updated only in the affected parts, instead of
obtaining totally new models and files after the syn-
chronization.

4 Model-based Tracing

In [4, 5] we used a particular data structure to save
auxiliary information. The rewriting rules contained
additional hand-written native C# code, which per-
sisted the given information. The saving method used
file-based storage that was provided for persistency,
however this approach cannot be considered as a re-
ally model-related solution.

As an improvement, we developed a metamodel,
which is able to represent the auxiliary information.
In Figure 3 this trace metamodel is depicted. Each
model element inherits from the TraceRoot model ele-
ment, because the inheritance helps us in the transfor-
mation development. Elements with TraceNode type
will refer to model elements, which can be contained
by other models (such as a TraceNode element can
refer to arbitrary model element from the source or
target models, irrespective of the current node type).

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1694 Issue 10, Volume 8, October 2009



In details, the TraceNode contains a reference attribute
type, which implements this relation. TracePoint node
holds together the TraceNodes, and it defines a saving
point that separates the trace information from each
other. The TraceContainer element only holds to-
gether the trace elements.

The trace models can be used in addition to the
source and target models, and they have to be created
by the model transformation. In particular the rewrit-
ing rules have to be prepared for the additional model
generation.

5 General Steps of Transformation
Extension

The presented synchronization approach can be im-
plemented as an extension of the original model trans-
formation. The goal of the extension process is to
add model synchronization capabilities to the existing
model transformations, in such a way that the outputs
of the original model transformations have to be the
same.

In Figure 4 T and Tsync are model transforma-
tions; Tsync is derived from T by an extension process
that add tracing capabilities to T ; MT , M ′

T are out-
put models while MS , M ′

S are input models; MT =
T (MS) and M ′

T = Tsync(M ′
S). Consider, that the ex-

tension process does not add transformation steps to
T that modifies the original output. It follows that if
MS = M ′

S , then MT = M ′
T .

Figure 4: Extending the original model transforma-
tion

However, before the extension of the model trans-
formation, the original control flow and rewriting
rules must be analyzed to create the correct extension.
In detail, the model transformation contains sequence
of rewriting rules in order to (i) search (ii) create
(iii) modify (iv) delete elements from the models to
be processed. Each foregoing operation implemented
in different way in model transformations. Accord-

Figure 5: General creator rule

ingly, the extension process can cause very different
tracing control flow. The presented synchronization
algorithm does not handle node deletion and attribute
modification at the moment, thus the general exten-
sion process to be presented applies to the rest of the
operations.

Extension of Creator Rules

Basically, creator rules search elements in the input
model, and add new elements in the output model.
Figure 5 depicts a general creator rule, that searches
elements a and b in the input model with relationship
e1, and creates element c in the output model. If syn-
chronization is needed, the creator rule must be split
into 3 different rules in order to implement synchro-
nization: (i) Checker rule (ii) Tracer rule (iii) Syn-
chronizer rule. (In the following Figures, the elements
with dashed border are newly created, since the solid
border shows elements to be matched.)

The checker rule verifies the input model, and an-
alyzes that the original creator rule can be applied or
not. The result of a checker rule is a {true|false}
value that means if the rule application was succesful
or not. In detail, the checker rule contains the original
creator rule elements without the elements to be gen-
erated. Actually, the checker rule is converted from
the original creator rule that only search elements in
the input model. Figure 6 depicts the checker rule
conversion from the original creator rule.

If the checker rule found a match in the input
model, it passes the matched model elements to a
tracer rule. The tracer rule checks that the founded
match has a corresponding trace node in the trace
model or not. If the trace model contains nodes that
belong to the current match, than the founded match
has already been processed, thus the transformation
engine does not have to transform them again. The
trace rule can be derived from the original creator

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1695 Issue 10, Volume 8, October 2009



Figure 6: Checker rule generation

rule if we add the trace nodes to the original rewriting
rule. Furthermore, the nodes to be created in the origi-
nal creator rule have to be changed to be matched. As
shown in Figure 7 the original creator rule is extended
with TraceContainer (Tc), TracePoint (Tp), TraceN-
ode (Tn) elements and TraceLink (T lx) edges. More-
over, the operation of element c is changed to “to be
matched” instead of “to be created”.

Figure 7: Tracer rule generation

The output of the tracer rule is also {true|false}
value that means: “the nodes to be created have al-
ready been exist in the trace model” (thus they do not
have to be created again).

The aim of the synchronizer rule is to create nodes
in the output model, and create the appropriate trace
elements in the trace model. Actually, it is very sim-
ilar to the tracer rule, although the nodes in the trace
and output model are to be created. Figure 8 depicts
the synchronizer rule of the original creator rule (in
Figure 5).

The execution order of the created rules is depic-
tied in Figure 9. In Figure 9, the original rule name is
creator rule and three rules are generated from it. The
dashed arrows mean, that if the previous rule applica-

Figure 8: Synchronizer rule generation

tion was not succesful the execution order will follow
this edge. Since the solid arrows indicate the execu-
tion order, if the previous rule applied successfully.

Figure 9: Execution order of checker, tracer and syn-
chronizer rules

First, the checker rule is applied. In details, it
means that the original creator rule can also be ap-
plied in the given input model, thus we can synchro-
nize this transformation step. If the checker rule ap-
plied successfully then the execution order follows to
the tracer rule otherwise the next rule in the control
flow (through the dashed edge). Tracer rule checks
the trace model, it searches corresponding trace nodes
to the matched elements of the checker rule. If the
tracer rule cannot be applied successfully, then the
next rule is the synchronizer rule, otherwise the next
rule in the control flow through the solid arrow. The
synchronizer rule creates model elements in the input
and trace models, moreover it creates traceability links
between the created nodes.

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1696 Issue 10, Volume 8, October 2009



6 Synchronizing Syntax Tree and
User Interface Models

Currently, the development of user interfaces for three
different mobile platforms is supported in VMTS [17].
To provide development environment for mobile user
interfaces in VMTS, we have built metamodels for (i)
the Java Micro Edition (J2ME), (ii) the .NET Compact
Framework and (iii) the Symbian Series 60 software
platforms. Based on these metamodels we can cre-
ate user interface models in VMTS: Figure 10 depicts
a .NET Compact Framework user interface model in
our environment.

Figure 10: .NET Compact Framework user interface
model in VMTS.

The created user interface models can be pro-
cessed by model transformations as well. (In [5]
we have presented model transformations that convert
user interface models into different mobile platforms.)

After developing the user interface model, gener-
ating source code from the related models is an obvi-
ous demand. We have briefly described in Section 2
how the code generation can be performed in our ap-
proach from a CodeDOMLight model. From a user
interface model, the code generation process can be
completed through the following steps: (i) first, the
created user interface model must be transformed into
the corresponding CodeDOMLight model, (ii) after-
wards a generated text generator (pretty-printer) will
produce the source code. Figure 11 depicts an outline
of the code generation and synchronization process.
Actually, model transformations play a part between

Figure 11: Code generation process.

the user interface and the CodeDOMLight models.
The connection between the CodeDOMLight model
and the source code is realized by a generator process
that is not implemented as a model transformation.

The model transformation saves trace informa-
tion, and a trace model is generated during the exe-
cution. Actually, the trace model is an additional out-
come of the first execution, and it can facilitate the
model synchronization. The trace information con-
sists of pairs of matched node sets vs. created node
sets in the applied rule. Let C denote the set of cre-
ated nodes, and M the set of matched nodes. The set of
matched nodes and the set of created nodes are saved
as a pair of sets, which we denote with (C, M). In fact,
it means that the transformation saves the matched
nodes and created nodes for each rewriting rule into
a trace model.

In the reverse direction the (C, M) pairs facili-
tate identification of nodes that have been created by
the transformation. In practice, this means that we
can create rewriting rules that check the current match
against the saved nodes in the trace model. If the ac-
tual match is found in the trace model, then the cur-
rent match contains nodes that were created by the
forward transformation, thus the rewriting rule can in-
dicate that the current match should be left untouched.

If the trace model does not contain elements for
the current match, the transformation has to apply a
rewriting rule that creates the corresponding elements
and updates the original model.

Let us detail the forward transformation. The top-
most element in our .NET metamodel is the DNAppli-
cation element. The user interface models are hierar-
chical models, and the transformation steps are accor-
dant to this structure. The DNApplication element is
processed by the CreateForm rewriting rule depicted
in Figure 12. The CreateForm rule searches a DNAp-
plication and a DNForm model elements in the input
model (Model 0 in Figure 12), then creates the appro-
priate CodeDOMLight model (Model 1 in Figure 12).

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1697 Issue 10, Volume 8, October 2009



Figure 12: Create the form class, constructor, and init method with trace elements.

The created CodeDOMLight contains numerous ele-
ments in this rule, because C# namespace, class, con-
structor and an initialize method are also produced.

Figure 13: Generated C# code.

Moreover, as illustrated in Figure 12, the trace
model is created as well (Model 2 contains the gener-
ated trace elements). Each created and matched node
is related to one TraceNode element. In a rewriting
rule the connection between the trace nodes and other
model elements are represented with reference edges
(dashed edges in Figure 12).

Reference edges are not real edges, the meta-
model contains only a reference attribute, which be-
haves as an edge in the rewriting rules. Moreover,
the reference edges can be also matched, created or
deleted in rewriting rules. The result of the Create-
Form rule is depicted in Figure 13.

If the source code is altered, the modifications
has to be propagated back to the original user inter-
face model. To execute the backward transformation,
first of all, the CodeDOMLight model has to be up-
dated. The connection between the CodeDOMLight
and the source model is implemented as a parser ap-
plication, which updates the CodeDOMLight model
with the newly created, modified or deleted elements.

The rewriting rules of the backward transforma-
tion have to process the trace models as well. This
means that the transformation has to contain rewrit-
ing rules that checks if the matched elements has a
corresponding trace element or not. A backward rule
depicted in Figure 14, where the rewriting rule checks
whether the matched CSFile element is a newly cre-
ated element or not.

If the rule application fails, then the matched

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1698 Issue 10, Volume 8, October 2009



Figure 14: Rewriting rule checks the matched C# file
in the trace model.

CSFile element does not have a corresponding trace
node, thus it has to be processed, and a DNApplica-
tion element has to be created in model 1.

The backward transformation has to create trace
elements in Model 2, hereby the forward transforma-
tion can also recognize which elements should be left
untouched or created.

7 Conclusions

We have briefly described the feasibility of source
code modeling and incremental model synchroniza-
tion. This paper has introduced a model-based ap-
proach that can facilitate model transformation-based
synchronization. Besides, an own source code mod-
eling approach (CodeDOMLight) is presented that al-
lows us to generate source code from a CodeDOM-
Light model, moreover it is capable of synchronizing
syntax tree model with source files.

The implemented model synchronization algo-
rithm is based on traceability of the model transfor-
mations. We have introduced a general tracing method
(and modeling language) that can be implemented in
existing model transformations. General steps to im-
plement our tracing approach are also presented. Ac-
tually, the implementation of trace model handling
leads us to a synchronizer transformation.

As a result, the user interface model is trans-
formed into a syntax tree model and also a trace model
is produced during the transformation. The generated
syntax tree is processed by a code generator, which
produces the final outcome.

Trace models help us discover which model el-
ements should be left unaltered in the synchroniza-
tion. Based on the trace model, both the forward and
backward rules are able to propagate the changes. Al-
though, the synchronizer model transformations con-

tain extra rules, because the transformation has to
check the related trace model as well.

However, the presented solution cannot solve yet
all problems of the synchronization. Currently, the
deleted nodes cannot be propagated, and the element
attribute modifications cannot be tracked. We used
unidirectional transformations instead of n-directional
ones, thus the complete cycle needs extra work during
the implementation.

Acknowledgments

The fund of ”Mobile Innovation Center” has partly
supported the activities described in this paper. This
paper was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

References
[1] Holger Giese and Robert Wagner. Incremental model

synchronization with triple graph grammars. In Os-
car Nierstrasz, John Whittle, David Harel, and Gi-
anna Reggio, editors, Proc. of the 9th International
Conference on Model Driven Engineering Languages
and Systems (MoDELS), Genova, Italy, volume 4199
of Lecture Notes in Computer Science (LNCS), pages
543–557. Springer Verlag, 10 2006.

[2] Krzysztof Czarnecki and Simon Helsen. Feature-
based survey of model transformation approaches.
IBM Systems Journal, 45(3):621–645, 2006.

[3] Andy Schürr. Specification of graph translators with
triple graph grammars. In WG ’94: Proceedings of
the 20th International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 151–163, Lon-
don, UK, 1995. Springer-Verlag.

[4] István Madari, László Lengyel, and Gergely
Mezei. Incremental Model Synchronization by Bi-
Directional Model Transformations. In International
Conference on Computational Cybernetics, Stara
Lesná, Slovakia, November 2008.

[5] István Madari and László Lengyel. Synchronizing
user interfaces of different mobile platforms. In
International IEEE conference devoted to the 150-
anniversary of Alexander S. Popov, Saint-Petersburg,
Russia, May 2009.

[6] László Angyal, Márk Asztalos, László Lengyel, Ti-
hamér Levendovszky, István Madari, Gergely Mezei,
Tamás Mészáros, László Siroki, and Tamás Vajk.
Towards a fast, efficient and customizable domain-
specific modeling framework. In Proceedings of the
IASTED International Conference, number 31, pages
11–16, Innsbruck, Austria, February 2009.

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1699 Issue 10, Volume 8, October 2009



[7] Márk Asztalos and István Madari. Vtl: An improved
model transformation language. In Proceedings of
Automation and Applied Computer Science Workshop
(AACS), Budapest, Hungary, 2009.

[8] László Lengyel, Tihamér Levendovszky, Gergely
Mezei, and Hassan Charaf. A Strict Control Flow
Specification for Model Transformation. WSEAS
Transactions on Computers, 5:390–397, February
2006.

[9] Tihamér Levendovszky, László Lengyel, and Hassan
Charaf. A UML Class Diagram-Based Pattern Lan-
guage for Model Transformation Systems. WSEAS
Transactions on Computers, 4:190–195, February
2005.

[10] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An
EATCS Series). Springer, March 2006.

[11] Tihamér Levendovszky, László Lengyel, and Hassan
Charaf. Extending the DPO Approach for Topologi-
cal Validation of Metamodel-Level Graph Rewriting
Rules. WSEAS Transactions on Information Science
and Applications, 2:226–231, February 2005.

[12] László Angyal and László Lengyel. Synchronization
of Textual and Visual Representations of Evolving In-
formation in the Context of Model-Based Develop-
ment. In Proc. of the IEEE Eurocon 2009 Conference,
pages 438–443, St Petersburg, Russia, May 2009.

[13] Joe Marini. Document Object Model. McGraw-Hill,
Inc., New York, NY, USA, 2002.

[14] Dereck C. Oppen. Prettyprinting. ACM Transactions
on Programming Languages and Systems (TOPLAS),
2(4):465–483, 1980.

[15] Tom Mens. A state-of-the-art survey on software
merging. IEEE Transactions on Software Engineer-
ing, 28(5):449–462, 2002.

[16] Krzysztof Czarnecki and Simon Helsen. Classifica-
tion of model transformation approaches. In OOP-
SLA 03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

[17] László Lengyel, Tihamér Levendovszky, and Has-
san Charaf. Applying Multi-Paradigm Modeling to
Multi-Platform Mobile Development. Technical re-
port, October 2007.

WSEAS TRANSACTIONS on COMPUTERS Istvan Madari, Laszlo Angyal, Laszlo Lengyel

ISSN: 1109-2750 1700 Issue 10, Volume 8, October 2009




