
Improving the ETL process and maintenance of
Higher Education Information System Data Warehouse

Igor Mekterović, Ljiljana Brkić, Mirta Baranović

Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, HR-10000 Zagreb

CROATIA
{Igor.Mekterovic, Ljiljana.Brkic, Mirta.Baranovic}@fer.hr

Abstract: HEIS (Higher Education Information System) is a project funded by the Croatian Ministry of
Science, Education and Sports started in the year 2001. HEIS is a comprehensive information system that
provides support for education related processes taking place within a higher education institution. As a part of
the project, a data warehouse was developed to provide reporting and analytical features. This paper presents
the HEIS data warehouse architecture, comments on the data model and addresses issues (and our solutions)
that arose during the seven-year development and maintenance period. Foremost, we address improvements in
the ETL process and maintenance process.

Key-Words: Data warehouse, Higher education information system, ETL, Maintenance, Dimensional model.

1 Introduction
A data warehouse is a repository of integrated
information, available for querying and analysis [1].
The basic idea is to extract relevant information
(usually from relational databases), transform it, and
load into the data warehouse where it is structured
in a way that facilitates querying and analysis.
While the business world recognized benefits of
data warehousing for decision making, it is not used
extensively in higher education neither in Croatia
nor in the rest of the higher education community.
Higher education has a lower level of acceptance
and a lower rate of adoption of data warehousing for
decision making. Although some efforts in
implementing data warehouse and data mining in
higher education institutions have been noted
[10][11], in many institutions it is still in the
emerging or developing stage [4][6].
Guan, Nunez, and Welsh [5] stated that only a
fraction of colleges' and universities' data are
captured, processed and stored in their information
system. Therefore academic deans and rectors often
complain about the lack of valid and reliable
information about their finances, personnel and
students.
Very little research has been reported dealing with
the data warehousing in higher education especially
about successfully implementing data warehousing
in this environment and about the benefits that they
bring to such institutions.

Although the development of the data warehouse
system for Croatian higher education institutions [2]
has started 7 years ago (within the Higher Education
Information System project), it is still used for
operational activities rather than for strategic
purposes.
In the last few years, with the advent of the Bologna
Process which aims to create the European Higher
Education Area [8], series of reforms have been in
progress in Croatian higher education. Legislation
harmonization in the higher education area in
Croatia should have preceded these rapid changes,
but that didn't happen. Even when the new
legislation came into effect it was inconsistently
interpreted i.e. according to foregoing practice. This
often resulted in different practices in higher
education institutions and caused difficulties in
supporting such inconsistencies in HEIS.
Furthermore, HEIS is a highly complex system with
numerous business processes and business rules.
The fact that HEIS DW is used for operational
purposes on a daily basis and provides a means for
attaining various influential reports (e.g. students’
scholarships, study fees, etc) speak to its
importance.
Even though there is only one data source (i.e. the
relational database of the Higher Education
Information System) with fairly clean data [2] data
quality problem is not eliminated. Data quality is
one of the biggest issues within ETL (Extract,
transform and load) process which is the core

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1681 Issue 10, Volume 8, October 2009

process [7] in data warehousing. It is a process that
extracts data from given sources, transforms it, and
loads transformed data into destination data
structures.
Seemingly processes taking place at the HE
institutions (enrolment of freshmen and
sophomores, scholarship payment, examinations,
graduation, …) that cause changes in the source
data are few and are occurring only several times a
year (thus simplifying ETL process) but that is
hardly true. For instance, Fig 1 shows the number of
records in the fExam fact table from 26.3.2009 until
29.7.2009. On average, 5295.93 records are added
every day. Having in mind that these records
provide a foundation for determining, for instance -
who will be granted a scholarship or not, it is
understandable why it is of the great importance for
the data in the HEIS DW to be up-to-date.

Fig. 1 Number of records in the fExam fact table from
26.3.2009 until 29.7.2009.

In this paper we emphasize on the ETL process. We
propose and formally define ETL methodology that
was developed and implemented under the HEIS
DW project. Further on, we describe the HEIS
architecture and comment on the data model. Due to
financial constraints we weren’t in position to use
existing commercial BI data analysis and
presentational tools but were forced to develop our
own. Within our developed framework (web
application) we’ve applied data warehousing
methodology to track users' behavior and thus
facilitate maintenance and increase the quality of
service. Chapter 5 comments on that and brings few
maintenance use cases.

2 HEIS architecture
Fig. 2 depicts the simplified architecture of the
HEIS.

Fig. 2 Simplified HEIS architecture

Users access relational database via fat client
application (e.g. registrar's office, teachers) and web
application (e.g. students, teachers). Apart from
regular users, the ones with access rights to the
transactional system, HEIS provides data warehouse
access to a small group of external users (intended
for university rectors, minister of science and his
staff).
The system is governed by a single active directory
server (accessed using LDAP protocol by the non-
windows servers). Every night, data is copied from
the relational system to the staging area where it is
transformed and propagated to the data warehouse
and OLAP server. Users access the data warehouse
only through the data warehouse web application.
This was the obvious solution due to the physical
and administrative dislocation of our clients (the
user can be any lecturer or administrative employee
of a higher education institution anywhere in
Croatia using arbitrary operating system). Using
their web browser users can query data via graphical
interface. Data is interfaced through three categories
of queries:
• predefined queries
• detailed ad hoc queries
• summary ad hoc queries

Predefined query is a set of hard-coded queries
(SQL or MDX) stored in the database that cover a
certain topic. For instance, one such query (set of
queries) covers enrollment process. Of course, every
user is able to retrieve only the subset of data that
corresponds to his or hers permissions. This option
is particularly useful for standard reports requested
by the ministry of science or the university.

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1682 Issue 10, Volume 8, October 2009

Detailed ad hoc queries are parameterized SQL
queries that yield detailed listings. For instance,
these are used to get the list of students ordered by
some excellence criteria to be used when granting
scholarships. A user can choose from various
different areas of interest (usually corresponding to
the underlying fact tables) and then parameterize
and execute queries. These queries have proven very
useful, especially for the administrative staff that
seeks to find various lists of students, courses etc.
Finally, summary ad hoc queries are queries against
OLAP system, that allow for custom, user-generated
queries. Using a graphical drag and drop interface,
users are able to tailor their own queries and analyze
data using standard OLAP functionalities like drill-
up, drill-down, cross joins, etc.

3 Data model
The dimensional model is a logical design technique
that seeks to make data available to the user in an
intuitive framework that is intended to facilitate
querying [3]. The dimensional model is composed
of fact and dimensional tables where fact tables are
normalized tables that represent the very process
being tracked. Dimension tables represent parties
involved in that process. In business areas like
banking or retail the tracked processes are those
with easily established measures (e.g. units ordered
or sold, money spent, etc.) and typical dimensions
are Customer, Product, etc. In educational
institutions, apart from the measurable processes,
there is a fair share of factless processes, i.e. event
tracking processes (e.g. a courses being attended,
exams being applied for, etc.).
HEIS DW employs dimensional model and consists
of 15 fact tables and 61 dimension tables (Table 1).
430 users use HEIS actively while 5613 users have
accounts, but have not yet used DW. HEIS
dimension and fact table statistics is shown in
Tables 2 and 3.

Table 1 HEIS table and users statistics

Object count
Fact tables 15
Dimension tables 61
Users 430-5613*

*5613 users have accounts, but have
 not yet used DW application

Table 2 HEIS dimension table statistics

Dimension table
Row
count

Col.
count

dStudent 338,881 61
mdDemogrStudent 119,590 31
dCourseComponent 45,070 20
dCourse 40,806 15
dExamAppliedAfter 32,768 3
mdStudentParent 28,953 19
dResultCount 20,001 2
dStaff 15,968 22
dTime 12,694 12
dWebAppUser 5,613 6
dAdmtExamInterval 3,002 7
mdStaffAcademic 2,061 15
dOrgUnit 2,003 10
dCourseOfStudy 1,931 28
dTimeByDay 1,443 6

(…) 46 more

Fact tables cover many of the processes taking place
in a higher education institution, from the
admittance exams, yearly (course, course of study)
enrollments, exam attempts and graduation process.
However, these fact tables cover only a portion of
relational system and new fact tables and
dimensions are being developed continuously, as the
demand for them emerges.

Table 3 HEIS fact table statistics

Fact table
Row
count
(*1M)

Dim.
count

Measure
count

fCourseEnrollment 4,573 18 14
fExamCourseOfStudy 3,489 27 11
fSatisfiedCourses 3,448 12 10
fExam 3,432 24 9
fExamApplication 2,104 23 8
fYearEnrollment 0,417 23 19
fExamPassedInAcdmYear 0,311 7 5
fSumStudentCourseOfStudy 0,200 35 3
fScholarship 0,155 24 11
fStudentCourseOfStudy 0,136 16 3
fAdmittanceExam 0,075 20 14
fQueryLog (last month data) 0,034 8 5
fCourseOfStudyCompletion 0,012 21 6
fHEITransfer 0,007 8 5
fSpecialStatus 0,005 4 4

4 ETL process
ETL process is the most time-consuming part of
building a data warehouse. Data has to be collected,
usually from various sources, integrated and
transformed prior to loading it into the data
warehouse. In our case, the situation is somewhat
simplified, since there is only one, high-quality data

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1683 Issue 10, Volume 8, October 2009

source (HEIS relational database). On the other
hand, HEIS is also a very complex data source in
terms of business rules and data relationships. One
has to keep in mind that HEIS encompasses roughly
one hundred different higher education institutions
having different (to some extent) curriculums,
business rules and so forth. For instance, some
higher education institutions follow a "hard-coded"
curriculum, while others employ a prerequisite
model where students have much more freedom in
crafting their own study, as they pick courses from a
wider set of courses, as long as they've passed
courses defined as prerequisites. Even though data
integrity is checked in both application and data
layer, inconsistent data still gets into the database.
With a large number of users (several hundred
active users, not counting more than 100k active
students) erroneous data is entered on the daily basis
(e.g. exam dates in the distant future). Sometimes
the ever-changing business rules are initially
partially implemented and thus can allow insertion
of bad data. HEIS is also an ever expanding system.
Not only do the business rules evolve (i.e.
introduction of Bologna process), but also new
institutions join in. Sometimes, though rarely,
institutions that are joining HEIS load data from
their legacy information systems, bypassing
application layer. Such actions facilitate errors and
inconsistencies in the data.
On the other hand, it is required that HEIS DW
contains complete and accurate data. In other
applications it is unlikely that one erroneous row
(e.g. phone call in a telecom DW) will make a
difference, but in HEIS DW one row sometimes can
make a difference. HEIS DW is used for operational
purposes on a daily basis. For example, HEIS DW is
used to generate scholarship listings and one
missing row can make a difference between paying
for education and free education. Thus, it is required
that every fact table has an error threshold (e.g. 0).
This enables every institution to define how many
erroneous records per fact table they are willing to
tolerate. If the threshold is exceeded, users are
provided with the last valid data snapshot.
Furthermore, fact tables contain data for various
institutions and one institution's data must not
influence the other. Otherwise, erroneous data from
one institution could prevent other institutions' users
from having an up-to-date version of the data, since
all records are stored within a single fact table.
Therefore, fact table data has to be additionally
horizontally segmented. This way, different
institutions (can) have different data versions: one
can have an up-to-date view of the data, while other
can have an older version of the data, both residing

in the same fact table. With these problems in mind,
we have set to develop a robust ETL procedure that
will handle the aforementioned challenges.
In this chapter we present a formal definition of our
data warehouse objects and define the ETL process.

Definition
The set of fact tables is denoted F, |F | = n, F = {F1,
..., Fn} where each Fi is defined as follows:
Fi = <Fidi, Fnamei , FPKi , FFKi , FJi, FSi , FRi,
Floadi> ; these elements being respectively unique
identifier, fact table name, primary key constraint, a
set of foreign key constraints, a set of indexes, set of
attributes (from table schema), a rowset (set of
tuples) and an ETL function that loads data into this
fact table.
The set of dimension tables is denoted D, |D| = m,
D = {D1, ..., Dm} where each Di is defined as
follows:
Di = <Didi, Dnamei, DPKi , DFKi , DJi, DSi , DRi,
Dloadi > these attributes being respectively unique
identifier, dimension table name, primary key
constraint, a set of foreign key constraints, a set of
indexes, set of attributes, a rowset (set of tuples) and
an ETL function that loads data into this dimension.
Further on we introduce concept of prime tables
(dimensional and fact ones). Prime tables are
introduced to provide a behind the scene loading
and testing platform that, after the constraints are
checked, can be quickly batch copied into the
production tables.
Based on that, an analogous set (denoted with
prime) of fact and dimension tables is defined:
F ', F ' = {F'1, ..., F'n} where each F'i is defined as
follows:
F'i = <Fid'i, Fname'i , FPK'i , FFK'i , F J 'i, FS'i ,

FR'i, Fload'i >. Elements are analogous to previous
definition but with following constraints:
• F'name i = '_' + Fname i
• FPK'i is analogous to FPKi (composed of the

same attributes)
• FFK'i is analogous to FFKi (same number of

keys, composed of the same attributes)
• FJ 'i is analogous to FJi (same number of

indexes, composed of the same attributes)
• FS'i = FSi
• Fload'i is analogous to Floadi
Also: D' , D' = {D'1, ..., D'm} where each D'i is
defined as follows:

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1684 Issue 10, Volume 8, October 2009

Di' = <Did' i, Dname' i, DPK'i , DFK'i , DJ 'i, DS'i ,
DR'i, Dload'i > with elements analogous to the
previous definitions and following constraints:
• Dname' i = '_' + Dname i
• DPK'i is analogous to DPKi (composed of the

same attributes)
• DFK'i is analogous to DFKi (same number of

keys, composed of the same attributes)
• DJ 'i is analogous to DJi (same number of

indexes, composed of the same attributes)
• DS 'i = DSi
• Dload'i is analogous to Dloadi
In summary, these prime tables form a parallel set of
tables to the production tables having the same
structure and analogous constraints; e.g. if a fact
table F(a, b, c) references dimension table D(b, d, e)
via attribute b, then F'(a, b, c) references D'(b, d, e)
via attribute b.
Based on the set F, we define a set of error tables E,
E = {E1, ..., En} where each Ei is defined as follows:
Ei = <Eid i, Ename i , ESi , ERi, ETi> ; these elements
being respectively unique identifier, error table
name, set of attributes (from table schema), rowset
(set of tuples) and a set of constraints that define
horizontal segmentation of the fact tables: ETi = {
ET1 , …, ETk } where each ETi is defined as follows
ETi = <EFi, Eti> with elements being filter statement
and error threshold respectively. These are used to
assess whether a horizontal segment is valid or not.
i.e. whether it will be used to update the production
segment.
Also, following rules apply:
• Ename i = 'err' + Fname i
• ESi = FSi U {timeStamp, comment}
Excluding all columns from corresponding fact
tables, error tables contain timestamp column and
description column indicating which constraints
were not satisfied.
Analogously, a set of dimension error tables is
defined: ED = {ED1, ..., EDm} where each EDi is
defined as
EDi = <EDid i, EDname i , EDSi , EDRi, EDTi >
with:
• EDname i = 'err' + Dname i
• EDSi = DSi U {timeStamp, comment}
For instance, if an institution has two erroneous
records having e.g. date of exam set ten years in the
future, these two rows will be detected and moved
from the prime table into the according error table.

Finally, we define three agents :

Changer (M) whose argument is domain or
working set.
Changer is able to drop or create keys or indexes for
a given domain. His role is only to speed up data
loading - before loading data into (any kind of)
tables, foreign keys, indexes and primary keys are
dropped. Afterwards, keys and indexes are created
again. It is considerably easier to develop and
maintain ETL process when this process is
performed programmatically than manually.

������� 	M) {
 if (M �� D) {

 J := DJ�
��� �

;

 FK:= DFK�
��� �

;

 PK:= DPK�
��� �

;}

 else if (M �� D�) {

 J := DJ�
��� ��;

 FK:= DFK
��

��� �
;

 PK:= DPK��
��� �

;}

 else if (M �� F) {

 J := FJ�
��� �

;

 FK:= FFK�
��� �

;

 PK:= FPK�
��� �

;}

 else if (M �� F �) {

 J := FJ�
��� �� ;

 FK:= FFK��
��� �

;

 PK:= FPK��
��� �

;}

 �� !"## 	$ {
 % &�'� (J �� ! &�'� ;
 %)*� (FK �� !)*�;
 % !*� (PK �� ! !*� ; +
}

 ��&+�"## 	$ {
 % &�'� (J ��&+� &�'� ;
 %)*� (FK ��&+�)*�;
 % !*� (PK ��&+� !*� ;
}

}

Cleaner (PK, FK, J, R, ER) with arguments
being respectively: set of primary key constraints,
set of foreign key constraints, set of indexes, rowset
and error rowset. Using given arguments Cleaner
moves tuples from R that do not satisfy given
constraints to ER and attaches timestamp and
comment to each invalid tuple.

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1685 Issue 10, Volume 8, October 2009

�#�����. -#���	 PK, FK, J, R, ER) {
 % !*� (PK�
 ���/ 01�2 3� 24!#�1�2 5 R | % 24!#�
(24!#�1�2: 24!#� � �+��2 +�2&+)7 !*�
 R8 R 9 ���/ 01�2

 ER 8 ER : ���/ 01�2
% &�'� (;J | &�'� &+ 4�&<4�}}

 ���/ 01�2 3� 24!#�1�2 5 R | % 24!#�
(24!#�1�2: 24!#� � �+��2 +�2&+)7 &�'�
 R8 R 9 ���/ 01�2

 ER 8 ER : ���/ 01�2
 %)*� (FK
 ���/ 01�2 3� 24!#�1�2 5 R | % 24!#�
(24!#�1�2: 24!#� � �+��2 +�2&+)7)*�
 R8 R 9 ���/ 01�2

 ER 8 ER : ���/ 01�2
 }

Loader prepares the tuples from source rowset so
that they satisfy given threshold for each tuple set
that is defined via filter statements. Once source
data is prepared to adhere to the given constraints it
can be loaded quickly into the production tables.

= ���� 	$;
!��!���"##>&?��+& �+	$;
% & (;1. . m}

!��!���	DR�
� , DR� , DER� , DET�);

}
!��!���"##B�-2C�D#�+	$;

% & (;1. . n}
!��!���	FR�

� , FR� , ER� , ET�);
}

!��!���	 R�, R, ER, ET) {
% ET� (ET
&) 	 |EF� 	ER$| H I2�$;
R

� 8 R� 9 EF� 	R�$;
}

}
��"##) {

% & (;1. . m} ?����	 DR, DR�$;
% & (;1. . n} ?����	FR, FR�$;

}
}

When implemented, agents rely on a set of metadata
tables describing the aforementioned structures.
Metadata tables are mostly programmatically
populated using information extracted from the
system tables, but some parts are manually
populated (e.g. which tables are dimensions and
which are fact tables). That way, we could make an
easy upgrade from the existing system by
programmatically populating metadata tables. When
developing a new fact table, the required number of
changes in the ETL process is significantly reduced.
Instead of writing a number of alter table

statements, it is only required to populate metadata
tables using existing procedures.
Finally, we propose (and implement) the subsequent
ETL process:

��&+IC=	$;

������� CD� � ��0 �������	D�$

CD�. �� !"##	$

% & (;1. . m} DR�� � K
% & (;1. . m} �'�-42� Dload��
% & (;1. . m} �#�����. -#���
 	DPK�

�
,DFK�

� ,DJ �� , DR�
� , EDR�$

CD�. ��&+�"##	$

������� �B� � ��0 �������	F �$

�B�. �� !"##	$
% & (;1. . n} FR�� � K
% & (;1. . n} �'�-42� Fload��
% & (;1. . n} �#�����. -#���

 	FPK�
�
,FFK�

� ,FJ �� , FR�
� , ER�)

�B�. ��&+�"##	$
= ����. !��!���"##>&?��+& �+	$
= ����. !��!���"##B�-2C�D#�+	$
������� CD � ��0 �������	D$
������� CF � ��0 �������	F$

CF. �� !"##	$

CD. �� !"##	$

 = ����. # ��"##)
CD. ��&+�"##	$
CF. ��&+�"##	$

OLAP. processCubes	$

}

The last six statements are the critical ones and
should pass uninterrupted. Before they're executed
the website is closed and when they're finished, the
website is opened again. Our ETL process was
designed with this in mind and the main purpose of
the prime tables is to minimize that downtime [9].
It should be noted that, in the end of the ETL
process, error tables contain valuable information
about the erroneous data. They are used to rectify
the data. When analyzing data, every user is
presented with version (date) of the fact table and
the number of erroneous rows. This way, users are
much more eager to rectify their data. Although the
data warehouse should not be the cleansing tool for
the relational database, it often is, and
inconsistencies in the data often become obvious
only when one begins to analyze the data.

Fig. 3 shows simplified scheme of the implemented
ETL process ("empty records" are indicated with
white background, last good data snapshot is
indicated with dotted background, latest version
(new records) is indicated with shaded background).

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1686 Issue 10, Volume 8, October 2009

Fig. 3 Simplified scheme of Cleaner and Loader actions

5 Query log
HEIS DW is interfaced using the web application
and all user activity on the website is logged. To
increase the quality of service, we've decided to
apply the business intelligence methodology to our
log data. Queries, in particular, are logged in three
steps: before execution, when executed and when
displayed. Based on the gathered data we have
defined fQueryLog fact table and included it in the
ETL process along with other fact tables in HEIS
DW (Fig. 4).

Fig. 4 fQuerlyLog fact table star schema

Integrated query logging options supported by some
RDMBS manufacturers would not suffice in our
case because we're tracking queries executed both
on RDBMS and OLAP server, and are matching
those queries with our predefined queries and
categories. For instance, one non-parameterized

query consist of a number of MDX and SQL queries
– we are able to track the execution time of every
query and the overall execution time of the non-
parameterized query, and we're able to distinguish
when a single query is being executed within a non-
parameterized query or by itself. We've defined 9
dimensions and 9 measures. Measures
queryExecuted and queryDisplayed (can be either 0
or 1) are used both as measures and dimension keys.
queryLogAutonumberRun and
queryLogAutonumberExec are degenerate
dimensions, used for debugging purposes and to
maintain direct reference to log entries. Dimension
dQuery provides a catalog of predefined queries.
This catalog is derived from MDX or SQL queries
stored in the database. As for custom queries (ad
hoc queries generated by a user), since they're not
available in the catalog (database), they are
represented as generic "custom query" entry in the
dimension dQuery.
This fact table allows for all kinds of analysis that
allow for a proactive approach to maintenance.
Fig. 5 shows total time distribution for the past 15
working days. The x-axis shows query execution
time intervals (in seconds) grouped by query type
(MDX or SQL). The y-axis shows the number of
queries (for instance, approximately 2000 MDX
queries were executed in 0-1 second interval). It is
apparent that most of the queries execute in less
than a second, but there is a small fraction of queries
that took longer to execute, some even more than 5
minutes. We've examined the data and found that
the query optimizer didn't work well with certain
users (related to the way user access policy has been
implemented) on a detailed query that was
referencing the fCourseEnrollment table. Using the
query optimizer hints we've reduced that time to
below 30 seconds in the worst case and to below 10
seconds on average. This problem was fixed even
before helpdesk received a complaints from users.

Fig. 5 Total time distribution by query type for past 15
working days

_f1 _f2

_f3

meta
data

_f3

Cleaner

errf1

errf2

errf3 _f2

_f1

 Loader

f3 f1

f2

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1687 Issue 10, Volume 8, October 2009

Fig. 6 Result count distribution by query type for past 15
working days

Fig. 6 shows result count distribution for the past 15
days by query type – we've noticed a number of
queries with more than 5k rows (every detailed
query is limited to the top N rows, usually 5k or
10k). It turned out that certain users were (mis)using
DW to unload data from the HEIS.

Fig. 7 Number of queries by application type in the past
15 days. Query names in Croatian are not meant to be
readable

Fig 7 shows the number of queries by application
type for the past 15 days. It is apparent that all types
are used. From there, one can drill down (except for
the summary queries) to see which of the queries
within categories are used more often or not used at
all, etc.
In conclusion, this fact table, along with other logs
we're maintaining, allows one to have a clear picture
of users' behavior and to detect bad query
performance as soon as possible.

6 HEIS DW portal
Ultimately, enhancements to our ETL process affect
user's experience. Users are notified in a simplified
way of the current state of their data. Fig. 8 shows
the initial page of the HEIS DW portal – user is
informed that one fact table has two erroneous rows
and, since that institution has a 0 threshold policy,
last valid snapshot is used. Three frames below
show a shortened list of detailed ad hoc queries,
summary ad hoc queries and predefined queries
(from left to right).

Fig. 8 DW portal – a user's perspective

The HEIS DW portal also has a restricted-access
administrator's pages. Those pages are used by the
help desk to facilitate daily maintenance and support
operations. For instance, help desk personnel can
inspect various logs (cleaner log, loader log,

A list of cubes:
One cube has 2 invalid rows.
Others are up to date.

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1688 Issue 10, Volume 8, October 2009

changer log, overall etl log, etc.), see a list of
currently active users and their permissions, analyze
various reports on queries being executed by users,
etc.
Fig. 9 shows the administrator's perspective on
problems with the ETL process. There are 4
erroneous rows in total, equally distributed over two
higher education institutions.
Administrator can easily see what institution has
problem with which fact table and, notably – why.
With this information at hand, administrator can
take appropriate actions.

Fig. 9 DW portal – an administrator's perspective

7 Conclusion
In this paper Data Warehouse for the Higher
Education Information System in Croatia is
presented. The system enables fast and easy-to-use,
web based way of querying and analyzing data in
order to facilitate operational work and provide
support for decision making in Croatian higher
education institutions. It is explained that HEIS DW
has to be accurate and up-to-date as it is being used
on daily basis for operational purposes. For
instance, it is used to generate all kinds of
scholarship grants on various higher educational
institutions, often using different criteria of
excellence. Since a possibility of erroneous data
entering relational database always exists, it is very

important to prevent one higher education
institution's errors from affecting another. Naturally,
only one fact table per certain topic (e.g. course
enrollment process) is used to store all higher
education institutions data. We explain the necessity
for horizontal data segmentation (in our case by
higher education institutions) and versioning, thus
isolating one institution data (and errors) from
another.
As a solution to this problem, robust and efficient
ETL process that allows for horizontal segmentation
is proposed and formally described.
It is often stated that data warehousing is a process,
not a project. Principal, if not the most important
aspect of that process is maintenance and tending to
the user's experiences and requirements. Proposed
ETL process enhancements affect user experience in
a positive way. Users are more informed and in a
position to rectify erroneous data in collaboration
with the help desk. Further on, it is described how
data warehousing methodology has been used to
facilitate maintenance and allow for a proactive
approach to maintenance that increases the quality
of service.
In the future, we would like to see HEIS DW used
more as a strategic tool, as it provides that
functionality. To facilitate that process, our plans
involve new ways of data visualization and data
mining.

References:
[1] Inmon WH. Building the Data Bridge: The

Ten Critical Success Factors of Building a
Data Warehouse. Database Programming &
Design (1992)

[2] Baranović, M., Madunić M., Mekterović I.: Data
Warehouse as a Part of the High Education
Information System in Croatia, Proceedings of
the 25th International Conference on
Information Technology Interfaces, 121-126,
(2003)

[3] Kimball R. The Data Warehouse Toolkit. New
York: John Wiley And Sons; (1996)

[4] Heise, D. L.: Data Warehousing and Decision
Making in Higher Education in the United States,
Doctoral thesis (2006)

[5] Guan, J., Nunez, W., Welsh, J.F.: Institutional
strategy and information support: the role of data
warehousing in higher education, Capus-Wide
Information Systems, 19(5), 168-174, (2002)

[6] Macfarlane, B.: Business and management
studies in higher education: the challenge of
academic legitimacy; International Journal of
Educational Management, Vol. 9 No. 5, 1995,

Erroneous rows categorized by:
• fact tables
• higher education institutions

(there are 4 erroneous rows in total
in this example)

Cause:
These rows failed to satisfy primary
key constraint "PK_cIspitSmjer2" of
the cIspitSmjer2 fact table.

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1689 Issue 10, Volume 8, October 2009

pp. 4-9 © MCB University Press Limited, 0951-
354X (1995)

[7] Sherman, R.: Beyond ETL and Data
Warehousing; InfoManagement Direct, February
19, 2009

[8] European Commission Education & Training,
http://ec.europa.eu/education/policies/educ/bolog
na/bologna_en.html

[9] M. Mili čević, M. Baranović, V. Batoš: A
Dynamic QoS Control Approach Based on
Query Response Time Prediction. WSEAS
transactions on Computers. Issue 8, Volume 4,
(August 2005), p. 882-889

[10] C. dell’Aquila, F. Di Tria, E. Lefons, F.
Tangorra: Business Intelligence Applications for
University Decision Makers, WSEAS
Transactions on Computers, Issue 7, Volume 7,
(July 2008), p. 1010-1019.

[11] G. Kulvietis, J. Mamcenko, I. Sileikiene: Data
Mining Application for Distance education
Information System. WSEAS Transactions on
Information Science and Applications, Issue 8,
Volume 3, (August 2006), p.1482-1488,.

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1690 Issue 10, Volume 8, October 2009

