
Improving the ETL process and maintenance of  
Higher Education Information System Data Warehouse 

 
Igor Mekterović, Ljiljana Brkić, Mirta Baranović 

 
Faculty of Electrical Engineering and Computing 

University of Zagreb 
Unska 3, HR-10000 Zagreb 

CROATIA 
{Igor.Mekterovic, Ljiljana.Brkic, Mirta.Baranovic}@fer.hr 

 
 
Abstract: HEIS (Higher Education Information System) is a project funded by the Croatian Ministry of 
Science, Education and Sports started in the year 2001. HEIS is a comprehensive information system that 
provides support for education related processes taking place within a higher education institution.  As a part of 
the project, a data warehouse was developed to provide reporting and analytical features. This paper presents 
the HEIS data warehouse architecture, comments on the data model and addresses issues (and our solutions) 
that arose during the seven-year development and maintenance period. Foremost, we address improvements in 
the ETL process and maintenance process. 
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1 Introduction 
A data warehouse is a repository of integrated 
information, available for querying and analysis [1]. 
The basic idea is to extract relevant information 
(usually from relational databases), transform it, and 
load into the data warehouse where it is structured 
in a way that facilitates querying and analysis.  
While the business world recognized benefits of 
data warehousing for decision making, it is not used 
extensively in higher education neither in Croatia 
nor in the rest of the higher education community.  
Higher education has a lower level of acceptance 
and a lower rate of adoption of data warehousing for 
decision making. Although some efforts in 
implementing data warehouse and data mining in 
higher education institutions have been noted 
[10][11], in many institutions it is still in the 
emerging or developing stage [4][6]. 
Guan, Nunez, and Welsh [5] stated that only a 
fraction of colleges' and universities' data are 
captured, processed and stored in their information 
system. Therefore academic deans and rectors often 
complain about the lack of valid and reliable 
information about their finances, personnel and 
students.  
Very little research has been reported dealing with 
the data warehousing in higher education especially 
about successfully implementing data warehousing 
in this environment and about the benefits that they 
bring to such institutions. 

Although the development of the data warehouse 
system for Croatian higher education institutions [2] 
has started 7 years ago (within the Higher Education 
Information System project), it is still used for 
operational activities rather than for strategic 
purposes. 
In the last few years, with the advent of the Bologna 
Process which aims to create the European Higher 
Education Area [8], series of reforms have been in 
progress in Croatian higher education. Legislation 
harmonization in the higher education area in 
Croatia should have preceded these rapid changes, 
but that didn't happen. Even when the new 
legislation came into effect it was inconsistently 
interpreted i.e. according to foregoing practice. This 
often resulted in different practices in higher 
education institutions and caused difficulties in 
supporting such inconsistencies in HEIS. 
Furthermore, HEIS is a highly complex system with 
numerous business processes and business rules. 
The fact that HEIS DW is used for operational 
purposes on a daily basis and provides a means for 
attaining various influential reports (e.g. students’ 
scholarships, study fees, etc) speak to its 
importance.  
Even though there is only one data source (i.e. the 
relational database of the Higher Education 
Information System) with fairly clean data [2] data 
quality problem is not eliminated. Data quality is 
one of the biggest issues within ETL (Extract, 
transform and load) process which is the core 

WSEAS TRANSACTIONS on COMPUTERS Igor Mekterovic, Ljiljana Brkic, Mirta Baranovic

ISSN: 1109-2750 1681 Issue 10, Volume 8, October 2009



 

process [7] in data warehousing. It is a process that 
extracts data from given sources, transforms it, and 
loads transformed data into destination data 
structures. 
Seemingly processes taking place at the HE 
institutions (enrolment of freshmen and 
sophomores, scholarship payment, examinations, 
graduation, …) that cause  changes in the source 
data are few and are occurring only several times a 
year (thus simplifying ETL process) but that is 
hardly true. For instance, Fig 1 shows the number of 
records in the fExam fact table from 26.3.2009 until 
29.7.2009. On average, 5295.93 records are added 
every day. Having in mind that these records 
provide a foundation for determining, for instance - 
who will be granted a scholarship or not, it is 
understandable why it is of the great importance for 
the data in the HEIS DW to be up-to-date. 

 

 
 
Fig. 1 Number of records in the fExam fact table from 
26.3.2009 until 29.7.2009. 
 
In this paper we emphasize on the ETL process. We 
propose and formally define ETL methodology that 
was developed and implemented under the HEIS 
DW project. Further on, we describe the HEIS 
architecture and comment on the data model. Due to 
financial constraints we weren’t in position to use 
existing commercial BI data analysis and 
presentational tools but were forced to develop our 
own. Within our developed framework (web 
application) we’ve applied data warehousing 
methodology to track users' behavior and thus 
facilitate maintenance and increase the quality of 
service. Chapter 5 comments on that and brings few 
maintenance use cases. 

2 HEIS architecture 
Fig. 2 depicts the simplified architecture of the 
HEIS.  

 

 
Fig. 2 Simplified HEIS architecture 
 
Users access relational database via fat client 
application (e.g. registrar's office, teachers) and web 
application (e.g. students, teachers). Apart from 
regular users, the ones with access rights to the 
transactional system, HEIS provides data warehouse 
access to a small group of external users (intended 
for university rectors, minister of science and his 
staff). 
The system is governed by a single active directory 
server (accessed using LDAP protocol by the non-
windows servers). Every night, data is copied from 
the relational system to the staging area where it is 
transformed and propagated to the data warehouse 
and OLAP server. Users access the data warehouse 
only through the data warehouse web application. 
This was the obvious solution due to the physical 
and administrative dislocation of our clients (the 
user can be any lecturer or administrative employee 
of a higher education institution anywhere in 
Croatia using arbitrary operating system). Using 
their web browser users can query data via graphical 
interface. Data is interfaced through three categories 
of queries:  
• predefined queries 
• detailed ad hoc queries 
• summary ad hoc queries 
 
Predefined query is a set of hard-coded queries 
(SQL or MDX) stored in the database that cover a 
certain topic. For instance, one such query (set of 
queries) covers enrollment process. Of course, every 
user is able to retrieve only the subset of data that 
corresponds to his or hers permissions. This option 
is particularly useful for standard reports requested 
by the ministry of science or the university.  
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Detailed ad hoc queries are parameterized SQL 
queries that yield detailed listings. For instance, 
these are used to get the list of students ordered by 
some excellence criteria to be used when granting 
scholarships.  A user can choose from various 
different areas of interest (usually corresponding to 
the underlying fact tables) and then parameterize 
and execute queries. These queries have proven very 
useful, especially for the administrative staff that 
seeks to find various lists of students, courses etc. 
Finally, summary ad hoc queries are queries against 
OLAP system, that allow for custom, user-generated 
queries. Using a graphical drag and drop interface, 
users are able to tailor their own queries and analyze 
data using standard OLAP functionalities like drill-
up, drill-down, cross joins, etc. 
 
 
3 Data model 
The dimensional model is a logical design technique 
that seeks to make data available to the user in an 
intuitive framework that is intended to facilitate 
querying [3]. The dimensional model is composed 
of fact and dimensional tables where fact tables are 
normalized tables that represent the very process 
being tracked. Dimension tables represent parties 
involved in that process. In business areas like 
banking or retail the tracked processes are those 
with easily established measures (e.g. units ordered 
or sold, money spent, etc.) and typical dimensions 
are Customer, Product, etc.  In educational 
institutions, apart from the measurable processes, 
there is a fair share of factless processes, i.e. event 
tracking processes (e.g. a courses being attended, 
exams being applied for, etc.).  
HEIS DW employs dimensional model and consists 
of 15 fact tables and 61 dimension tables (Table 1). 
430 users use HEIS actively while 5613 users have 
accounts, but have not yet used DW. HEIS 
dimension and fact table statistics is shown in 
Tables 2 and 3. 
 

Table 1 HEIS table and users statistics 

Object count 
Fact tables 15 
Dimension tables 61 
Users 430-5613* 

*5613 users have accounts, but have 
 not yet used DW application 

 
Table 2 HEIS dimension table statistics 

Dimension table 
Row 
count  

Col. 
count 

dStudent  338,881 61 
mdDemogrStudent 119,590 31 
dCourseComponent 45,070 20 
dCourse 40,806 15 
dExamAppliedAfter 32,768 3 
mdStudentParent 28,953 19 
dResultCount  20,001 2 
dStaff 15,968 22 
dTime 12,694 12 
dWebAppUser 5,613 6 
dAdmtExamInterval 3,002 7 
mdStaffAcademic 2,061 15 
dOrgUnit   2,003 10 
dCourseOfStudy 1,931 28 
dTimeByDay 1,443 6 

(…) 46 more 
 
Fact tables cover many of the processes taking place 
in a higher education institution, from the 
admittance exams, yearly (course, course of study) 
enrollments, exam attempts and graduation process. 
However, these fact tables cover only a portion of 
relational system and new fact tables and 
dimensions are being developed continuously, as the 
demand for them emerges. 

 
Table 3 HEIS fact table statistics 

Fact table 
Row 
count 
(*1M) 

Dim. 
count 

Measure 
count 

fCourseEnrollment 4,573 18 14 
fExamCourseOfStudy 3,489 27 11 
fSatisfiedCourses 3,448 12 10 
fExam 3,432 24   9 
fExamApplication 2,104 23   8 
fYearEnrollment 0,417 23 19 
fExamPassedInAcdmYear 0,311 7   5 
fSumStudentCourseOfStudy 0,200 35   3 
fScholarship 0,155 24 11 
fStudentCourseOfStudy 0,136 16   3 
fAdmittanceExam  0,075 20 14 
fQueryLog (last month data) 0,034 8  5 
fCourseOfStudyCompletion 0,012 21  6 
fHEITransfer 0,007 8  5 
fSpecialStatus 0,005 4  4 
 
 
4 ETL process 
ETL process is the most time-consuming part of 
building a data warehouse. Data has to be collected, 
usually from various sources, integrated and 
transformed prior to loading it into the data 
warehouse. In our case, the situation is somewhat 
simplified, since there is only one, high-quality data 
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source (HEIS relational database). On the other 
hand, HEIS is also a very complex data source in 
terms of business rules and data relationships. One 
has to keep in mind that HEIS encompasses roughly 
one hundred different higher education institutions 
having different (to some extent) curriculums, 
business rules and so forth.  For instance, some 
higher education institutions follow a "hard-coded" 
curriculum, while others employ a prerequisite 
model where students have much more freedom in 
crafting their own study, as they pick courses from a 
wider set of courses, as long as they've passed 
courses defined as prerequisites. Even though data 
integrity is checked in both application and data 
layer, inconsistent data still gets into the database. 
With a large number of users (several hundred 
active users, not counting more than 100k active 
students) erroneous data is entered on the daily basis 
(e.g. exam dates in the distant future). Sometimes 
the ever-changing business rules are initially 
partially implemented and thus can allow insertion 
of bad data. HEIS is also an ever expanding system. 
Not only do the business rules evolve (i.e. 
introduction of Bologna process), but also new 
institutions join in. Sometimes, though rarely, 
institutions that are joining HEIS load data from 
their legacy information systems, bypassing 
application layer. Such actions facilitate errors and 
inconsistencies in the data. 
On the other hand, it is required that HEIS DW 
contains complete and accurate data. In other 
applications it is unlikely that one erroneous row 
(e.g. phone call in a telecom DW) will make a 
difference, but in HEIS DW one row sometimes can 
make a difference. HEIS DW is used for operational 
purposes on a daily basis. For example, HEIS DW is 
used to generate scholarship listings and one 
missing row can make a difference between paying 
for education and free education. Thus, it is required 
that every fact table has an error threshold (e.g. 0). 
This enables every institution to define how many 
erroneous records per fact table they are willing to 
tolerate. If the threshold is exceeded, users are 
provided with the last valid data snapshot. 
Furthermore, fact tables contain data for various 
institutions and one institution's data must not 
influence the other. Otherwise, erroneous data from 
one institution could prevent other institutions' users 
from having an up-to-date version of the data, since 
all records are stored within a single fact table. 
Therefore, fact table data has to be additionally 
horizontally segmented. This way, different 
institutions (can) have different data versions: one 
can have an up-to-date view of the data, while other 
can have an older version of the data, both residing 

in the same fact table. With these problems in mind, 
we have set to develop a robust ETL procedure that 
will handle the aforementioned challenges. 
In this chapter we present a formal definition of our 
data warehouse objects and define the ETL process. 
 
Definition 
The set of fact tables is denoted F, |F | = n, F = {F1, 
..., Fn} where each Fi is defined as follows:  
Fi = <Fidi, Fnamei , FPKi , FFKi , FJi, FSi , FRi, 
Floadi> ; these elements being respectively unique 
identifier, fact table name, primary key constraint, a 
set of foreign key constraints, a set of indexes, set of 
attributes (from table schema), a rowset (set of 
tuples) and an ETL function that loads data into this 
fact table. 
The set of dimension tables is denoted D, |D| = m, 
D = {D1, ..., Dm}  where each Di is defined as 
follows:  
Di = <Didi, Dnamei, DPKi , DFKi , DJi,  DSi , DRi, 
Dloadi >  these attributes being respectively unique 
identifier, dimension table name, primary key 
constraint, a set of foreign key constraints, a set of 
indexes, set of attributes, a rowset (set of tuples) and 
an ETL function that loads data into this dimension. 
Further on we introduce concept of prime tables 
(dimensional and fact ones). Prime tables are 
introduced to provide a behind the scene loading 
and testing platform that, after the constraints are 
checked, can be quickly batch copied into the 
production tables. 
Based on that, an analogous set (denoted with 
prime) of fact and dimension tables is defined: 
F ', F ' = {F'1, ..., F'n}  where each F'i is defined as 
follows:  
F'i = <Fid'i, Fname'i , FPK'i , FFK'i , F J 'i,  FS'i , 

FR'i, Fload'i >. Elements are analogous to previous 
definition but with following constraints: 
• F'name i = '_' +  Fname i 
• FPK'i is analogous to FPKi (composed of the 

same attributes) 
• FFK'i is analogous to FFKi (same number of 

keys, composed of the same attributes) 
• FJ 'i is analogous to FJi (same number of 

indexes, composed of the same attributes) 
• FS'i = FSi 
• Fload'i is analogous to Floadi 
Also: D' , D'  = {D'1, ..., D'm} where each D'i is 
defined as follows:  
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Di' = <Did' i, Dname' i, DPK'i , DFK'i , DJ 'i,  DS'i , 
DR'i, Dload'i > with elements analogous to the 
previous definitions and following  constraints: 
• Dname' i = '_' +  Dname i 
• DPK'i is analogous to DPKi (composed of the 

same attributes) 
• DFK'i is analogous to DFKi (same number of 

keys, composed of the same attributes) 
• DJ 'i is analogous to DJi (same number of 

indexes, composed of the same attributes) 
• DS 'i = DSi 
• Dload'i is analogous to Dloadi 
In summary, these prime tables form a parallel set of 
tables to the production tables having the same 
structure and analogous constraints; e.g. if a fact 
table F(a, b, c) references dimension table D(b, d, e) 
via attribute b, then F'(a, b, c) references D'(b, d, e) 
via attribute b.  
Based on the set F, we define a set of error tables E, 
E = {E1, ..., En}  where each Ei is defined as follows: 
Ei = <Eid i, Ename i , ESi , ERi, ETi> ; these elements 
being respectively unique identifier, error table 
name, set of attributes (from table schema), rowset 
(set of tuples) and a set of constraints that define 
horizontal segmentation of the fact tables: ETi = { 
ET1 , …, ETk } where each ETi is defined as follows 
ETi = <EFi, Eti> with elements being filter statement 
and error threshold respectively. These are used to 
assess whether a horizontal segment is valid or not. 
i.e. whether it will be used to update the production 
segment. 
Also, following rules apply: 
• Ename i = 'err' + Fname i 
• ESi  = FSi U {timeStamp, comment}  
Excluding all columns from corresponding fact 
tables, error tables contain timestamp column and 
description column indicating which constraints 
were not satisfied. 
Analogously, a set of dimension error tables is 
defined: ED  = {ED1, ..., EDm}  where each EDi is 
defined as  
EDi = <EDid i, EDname i , EDSi , EDRi, EDTi > 
with: 
• EDname i = 'err' + Dname i 
• EDSi  = DSi U {timeStamp, comment}  
For instance, if an institution has two erroneous 
records having e.g. date of exam set ten years in the 
future, these two rows will be detected and moved 
from the prime table into the according error table.  

Finally, we define three agents : 
 
Changer (M) whose argument is domain or 
working set.  
Changer is able to drop or create keys or indexes for 
a given domain. His role is only to speed up data 
loading - before loading data into (any kind of) 
tables, foreign keys, indexes and primary keys are 
dropped. Afterwards, keys and indexes are created 
again. It is considerably easier to develop and 
maintain ETL process when this process is 
performed programmatically than manually. 
 
������� 	M ) { 
  if          (M �� D) { 

  J := DJ�
��� �

; 

   FK:= DFK�
��� �

; 

  PK:= DPK�
��� �

;} 

  else if (M �� D�) { 

  J := DJ�
��� ��;  

   FK:= DFK
��

��� �
; 

  PK:= DPK��
��� �

;} 

  else if (M �� F ) { 

  J := FJ�
��� �

;   

  FK:= FFK�
��� �

;                         

  PK:= FPK�
��� �

;} 

  else if (M �� F �) {  

  J := FJ�
��� �� ;  

   FK:= FFK��
��� �

;  

   PK:= FPK��
��� �

;} 

  �� !"## 	$  { 
 % &�'� ( J     �� ! &�'� ; 
  % )*� ( FK  �� ! )*�; 
 % !*� ( PK   �� ! !*� ; + 
} 

  ��&+�"## 	$  { 
   % &�'� ( J     ��&+� &�'� ;  
   % )*� ( FK  ��&+� )*�;   
   % !*� ( PK   ��&+� !*� ; 
} 

} 
 
Cleaner (PK, FK, J, R, ER) with arguments 
being respectively: set of primary key constraints, 
set of foreign key constraints, set of indexes, rowset 
and error rowset. Using given arguments Cleaner 
moves tuples from R that do not satisfy given 
constraints to ER and attaches timestamp and 
comment to each invalid tuple.
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�#�����. -#���	 PK, FK, J, R, ER ) { 
    % !*� ( PK�  
          ���/ 01�2 3� 24!#�1�2 5  R | % 24!#� 
( 24!#�1�2:  24!#� � �+��2 +�2&+)7 !*� 
  R8  R  9  ���/ 01�2 

 ER 8  ER :  ���/ 01�2 
% &�'� ( ;J | &�'�  &+ 4�&<4�}}  

       ���/ 01�2 3� 24!#�1�2 5  R | % 24!#� 
( 24!#�1�2:  24!#� � �+��2 +�2&+)7 &�'� 
  R8  R 9  ���/ 01�2 

         ER 8  ER :  ���/ 01�2 
    % )*� ( FK   
       ���/ 01�2 3� 24!#�1�2 5  R | % 24!#� 
( 24!#�1�2:  24!#� � �+��2 +�2&+)7 )*� 
  R8  R  9  ���/ 01�2 

        ER 8  ER :  ���/ 01�2 
      } 

 
Loader prepares the tuples from source rowset so 
that they satisfy given threshold for each tuple set 
that is defined via filter statements. Once source 
data is prepared to adhere to the given constraints it 
can be loaded quickly into the production tables.  
 
= ���� 	$; 
!��!���"##>&?��+& �+	$; 
% & ( ;1. . m} 

!��!���	DR�
� , DR� ,   DER� ,   DET�); 

} 
!��!���"##B�-2C�D#�+	$ ;   

% & ( ;1. . n}  
!��!���	FR�

� , FR� ,   ER� ,   ET�);  
} 

!��!���	 R�, R,   ER, ET ) { 
% ET� ( ET  
&) 	 |EF�  	ER$| H I2�$ ;      
R

� 8   R�   9   EF�  	R�$; 
} 

} 
# ��"##	 ) { 

% & ( ;1. . m}  ?����	 DR, DR�$; 
% & ( ;1. . n}  ?����	FR, FR�$; 

} 
}  

 
When implemented, agents rely on a set of metadata 
tables describing the aforementioned structures. 
Metadata tables are mostly programmatically 
populated using information extracted from the 
system tables, but some parts are manually 
populated (e.g. which tables are dimensions and 
which are fact tables). That way, we could make an 
easy upgrade from the existing system by 
programmatically populating metadata tables. When 
developing a new fact table, the required number of 
changes in the ETL process is significantly reduced. 
Instead of writing a number of alter table 

statements, it is only required to populate metadata 
tables using existing procedures. 
Finally, we propose (and implement) the subsequent 
ETL process: 
 
��&+IC=	$ ; 

������� CD� � ��0 �������	D�$ 

CD�. �� !"##	$ 

% & ( ;1. . m}   DR��  �  K 
% & ( ;1. . m}  �'�-42� Dload�� 
% & ( ;1. . m}  �#�����. -#���  
        	DPK�

�
,DFK�

� ,DJ �� ,  DR�
� , EDR�$ 

CD�. ��&+�"##	$ 

������� �B� � ��0 �������	F �$ 

�B�. �� !"##	$ 
% & ( ;1. . n}    FR��  �  K 
% & ( ;1. . n}  �'�-42� Fload�� 
% & ( ;1. . n}  �#�����. -#��� 

           	FPK�
�
,FFK�

� ,FJ �� ,  FR�
� , ER�) 

�B�. ��&+�"##	$ 
= ����. !��!���"##>&?��+& �+	$ 
= ����. !��!���"##B�-2C�D#�+	$ 
������� CD � ��0 �������	D$ 
������� CF � ��0 �������	F$ 

CF. �� !"##	$ 

CD. �� !"##	$ 

     = ����. # ��"##	) 
CD. ��&+�"##	$ 
CF. ��&+�"##	$ 

OLAP. processCubes	$ 

} 

 
The last six statements are the critical ones and 
should pass uninterrupted. Before they're executed 
the website is closed and when they're finished, the 
website is opened again. Our ETL process was 
designed with this in mind and the main purpose of 
the prime tables is to minimize that downtime [9].  
It should be noted that, in the end of the ETL 
process, error tables contain valuable information 
about the erroneous data. They are used to rectify 
the data. When analyzing data, every user is 
presented with version (date) of the fact table and 
the number of erroneous rows. This way, users are 
much more eager to rectify their data. Although the 
data warehouse should not be the cleansing tool for 
the relational database, it often is, and 
inconsistencies in the data often become obvious 
only when one begins to analyze the data. 
 
Fig. 3 shows simplified scheme of the implemented 
ETL process ("empty records" are indicated with 
white background, last good data snapshot is 
indicated with dotted background, latest version 
(new records) is indicated with shaded background). 
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Fig. 3 Simplified scheme of Cleaner and Loader actions 
 
 
5 Query log 
HEIS DW is interfaced using the web application 
and all user activity on the website is logged. To 
increase the quality of service, we've decided to 
apply the business intelligence methodology to our 
log data. Queries, in particular, are logged in three 
steps: before execution, when executed and when 
displayed.  Based on the gathered data we have 
defined fQueryLog fact table and included it in the 
ETL process along with other fact tables in HEIS 
DW (Fig. 4). 

 

 
Fig. 4 fQuerlyLog fact table star schema 

 
Integrated query logging options supported by some 
RDMBS manufacturers would not suffice in our 
case because we're tracking queries executed both 
on RDBMS and OLAP server, and are matching 
those queries with our predefined queries and 
categories. For instance, one non-parameterized 

query consist of a number of MDX and SQL queries 
– we are able to track the execution time of every 
query and the overall execution time of the non-
parameterized query, and we're able to distinguish 
when a single query is being executed within a non-
parameterized query or by itself. We've defined 9 
dimensions and 9 measures. Measures 
queryExecuted and queryDisplayed (can be either 0 
or 1) are used both as measures and dimension keys. 
queryLogAutonumberRun and 
queryLogAutonumberExec are degenerate 
dimensions, used for debugging purposes and to 
maintain direct reference to log entries. Dimension 
dQuery provides a catalog of predefined queries. 
This catalog is derived from MDX or SQL queries 
stored in the database. As for custom queries (ad 
hoc queries generated by a user), since they're not 
available in the catalog (database), they are 
represented as generic "custom query" entry in the 
dimension dQuery. 
This fact table allows for all kinds of analysis that 
allow for a proactive approach to maintenance.  
Fig. 5 shows total time distribution for the past 15 
working days. The x-axis shows query execution 
time intervals (in seconds) grouped by query type 
(MDX or SQL). The y-axis shows the number of 
queries (for instance, approximately 2000 MDX 
queries were executed in 0-1 second interval). It is 
apparent that most of the queries execute in less 
than a second, but there is a small fraction of queries 
that took longer to execute, some even more than 5 
minutes. We've examined the data and found that 
the query optimizer didn't work well with certain 
users (related to the way user access policy has been 
implemented) on a detailed query that was 
referencing the fCourseEnrollment table. Using the 
query optimizer hints we've reduced that time to 
below 30 seconds in the worst case and to below 10 
seconds on average. This problem was fixed even 
before helpdesk received a complaints from users.  

 

 
Fig. 5 Total time distribution by query type for past 15 
working days 
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Fig. 6 Result count distribution by query type for past 15 
working days 
 
Fig. 6 shows result count distribution for the past 15 
days by query type – we've noticed a number of 
queries with more than 5k rows (every detailed 
query is limited to the top N rows, usually 5k or 
10k). It turned out that certain users were (mis)using 
DW to unload data from the HEIS. 

 

 

 
Fig. 7 Number of queries by application type in the past 
15 days. Query names in Croatian are not meant to be 
readable 
 
Fig 7 shows the number of queries by application 
type for the past 15 days. It is apparent that all types 
are used. From there, one can drill down (except for 
the summary queries) to see which of the queries 
within categories are used more often or not used at 
all, etc. 
In conclusion, this fact table, along with other logs 
we're maintaining, allows one to have a clear picture 
of users' behavior and to detect bad query 
performance as soon as possible. 

 
 

6 HEIS DW portal 
Ultimately, enhancements to our ETL process affect 
user's experience. Users are notified in a simplified 
way of the current state of their data. Fig. 8 shows 
the initial page of the HEIS DW portal – user is 
informed that one fact table has two erroneous rows 
and, since that institution has a 0 threshold policy, 
last valid snapshot is used. Three frames below 
show a shortened list of detailed ad hoc queries, 
summary ad hoc queries and predefined queries 
(from left to right). 

 
 
 
 
 
 

 
Fig. 8 DW portal – a user's perspective 
 
The HEIS DW portal also has a restricted-access 
administrator's pages. Those pages are used by the 
help desk to facilitate daily maintenance and support 
operations. For instance, help desk personnel can 
inspect various logs (cleaner log, loader log, 

A list of cubes: 
One cube has 2 invalid rows. 
Others are up to date. 
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changer log, overall etl log, etc.), see a list of 
currently active users and their permissions, analyze 
various reports on queries being executed by users, 
etc.  
Fig. 9 shows the administrator's perspective on 
problems with the ETL process. There are 4 
erroneous rows in total, equally distributed over two 
higher education institutions. 
Administrator can easily see what institution has 
problem with which fact table and, notably – why. 
With this information at hand, administrator can 
take appropriate actions. 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
Fig. 9 DW portal – an administrator's perspective 

 
 

7 Conclusion 
In this paper Data Warehouse for the Higher 
Education Information System in Croatia is 
presented. The system enables fast and easy-to-use, 
web based way of querying and analyzing data in 
order to facilitate operational work and provide 
support for decision making in Croatian higher 
education institutions. It is explained that HEIS DW 
has to be accurate and up-to-date as it is being used 
on daily basis for operational purposes. For 
instance, it is used to generate all kinds of 
scholarship grants on various higher educational 
institutions, often using different criteria of 
excellence. Since a possibility of erroneous data 
entering relational database always exists, it is very 

important to prevent one higher education 
institution's errors from affecting another. Naturally, 
only one fact table per certain topic (e.g. course 
enrollment process) is used to store all higher 
education institutions data. We explain the necessity 
for horizontal data segmentation (in our case by 
higher education institutions) and versioning, thus 
isolating one institution data (and errors) from 
another. 
As a solution to this problem, robust and efficient 
ETL process that allows for horizontal segmentation 
is proposed and formally described. 
It is often stated that data warehousing is a process, 
not a project. Principal, if not the most important 
aspect of that process is maintenance and tending to 
the user's experiences and requirements. Proposed 
ETL process enhancements affect user experience in 
a positive way. Users are more informed and in a 
position to rectify erroneous data in collaboration 
with the help desk.  Further on, it is described how 
data warehousing methodology has been used to 
facilitate maintenance and allow for a proactive 
approach to maintenance that increases the quality 
of service.  
In the future, we would like to see HEIS DW used 
more as a strategic tool, as it provides that 
functionality. To facilitate that process, our plans 
involve new ways of data visualization and data 
mining. 
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