
Auction Resource Allocation Mechanisms in Grids of
Heterogeneous Computers

TIMOTHY M. LYNAR
The University of Newcastle

Ourimbah, NSW, 2258
AUSTRALIA

tim.lynar@newcastle.edu.au

RIC D. HERBERT
The University of Newcastle

Ourimbah, NSW, 2258
AUSTRALIA

ric.herbert@newcastle.edu.au

SIMON
The University of Newcastle

Ourimbah, NSW, 2258
AUSTRALIA

simon@newcastle.edu.au

Abstract: This paper examines economic resource allocation through a number of auction types for a grid of e-
waste computers. It examines the time to complete tasks and the energy usage of completing the tasks on a grid.
A model of a simulated grid is developed and used to evaluate the resource allocation mechanisms. The model is
an agent-based simulation where by user agents submit tasks to node agents that process these tasks. We evaluate
three types of resource-allocator agents which all use a type of auction. The auction types are batch auction,
continuous double auction and a pre-processed batch auction. The pre-processed batch auction is developed to
try to have the advantages of both the continuous double auction and the batch auction. The simulated grid is
calibrated to a real e-waste grid where each node has a performance index. This grid is a test grid of eight nodes
of heterogenous computer hardware and with differing computational ability and energy usage. We simulate the
auction types under the same task input streams. We consider a task impulse response stream on energy usage
and time to complete all tasks and a input stream step response. Finally we consider the three auction allocation
mechanisms under a random task stream. The paper finds that the choice of auction method makes a substantial
difference in the time to complete tasks and in total energy consumption.
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1 Introduction
A computing grid is a network of distributed hard-
ware and software resources that can be utilized to
compute common tasks [22]. Foster and Karonis [10]
liken computing grids to the power grid, where users
and resources are distributed and users have access to
a dependable and consistent supply of computational
power: “A computational grid is a hardware and soft-
ware infrastructure that provides dependable, consis-
tent, pervasive, and inexpensive access to high-end
computational capabilities” [10, p.3]. Grids typically
span many geographical locations and contain hetero-
geneous resources with varying computational abili-
ties [33]. Often grids are made of existing comput-
ing resources (e.g. research computing clusters and
high performance computers) logically formed into a
consolidated computing resource. A specific exam-
ple is the world-wide Large Hadron Collider (LHC)
Grid, which is made up of 140 computing centers in
33 countries. Computing grids are becoming increas-
ingly important and have been used in many applica-
tions [27].

There are many claimed potential benefits to grid
computing including the ability to utilize an existing
high performance computing environment for a low

price [10]. Supercomputers can solve problems in
seconds that would take a personal computer days to
solve, but the speed of a supercomputer comes at a
high monetary cost. Schneck [28] found that super-
computers are by far the most expensive form of com-
puter. Grid computing offers one way of gaining the
power and speed of a supercomputer for a fraction of
the price.

The cost savings can be even greater when the
grid is made up not of new hardware but of com-
puters destined for the scrap-heap. The problem of
electronic waste (e-waste) or waste electrical and elec-
tronic equipment (WEE) is inescapable in today’s so-
ciety, and personal computers contribute significantly
to this problem. Most personal computers are dumped
after just a year or two of use, at a huge cost to health
and the environment, as their owners succumb to the
desire to keep up with the ever-increasing power of
new computers. One way to help reduce e-waste is to
extend the life of obsolete computers by using them
in grid computing. We have built a grid of obsolete
desktop computers that were destined for the waste
stream, and are using it to explore aspects of compu-
tational grids.

Within a grid, the allocation of computer node re-
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sources to computing tasks is carried out by a resource
allocation mechanism. In this paper we examine three
different economic resource allocation mechanisms,
based on different auctions, for a grid of electronic
waste computers. Our aim is to create a resource
allocation mechanism that dynamically allocates re-
sources over a heterogeneous grid in a way that both
maximizes the throughput of tasks and minimizes en-
ergy consumption.

1.1 Grid Resource Allocation
A significant body of research on resource alloca-
tion and scheduling has proposed a number of dif-
ferent allocation mechanisms, many of which rely on
task execution time predictions and on the assump-
tion that these predications are accurate. These stud-
ies emphasize the importance of the grid workflow
[26]. Ali et al. [2] utilize an ‘expected time to exe-
cute’ metric which contains pre-processed estimates
for all expected tasks on each computational resource.
These values are typically assumed and can come
from benchmarking, task profiling, prior executions
or user input. The Casanova et al. [5] scheduling sys-
tem assumes that accurate estimates of execution time
are provided to the system from past execution his-
tory or from input by the user. Smith et al. [29] se-
lectively utilize past execution history in combination
with genetic algorithms to predict the execution times
of tasks. Kim et al. [20] examine heuristic techniques
of scheduling dynamically in heterogeneous comput-
ing environments. Execution times are calculated us-
ing a heuristic method known as gamma distribution.
The Spooner et al. [30] approach to estimating task
execution time utilizes descriptions of resources and
modeling of tasks to produce estimates of application
runtime. Many resource allocation schedulers are not
based on economic principles, for example Santiago
et al. [26].

There have been a number of economic-based
grid and cluster resource allocation mechanism stud-
ies [see, for example, 8, 18, 36, 37, 38]. Many
of these mechanisms have limitations when applied
to the grid environment. These limitations include
not accounting for the heterogenous nature of grid
computing, assuming that the computing resources
are reliable, and requiring users to know how long
their job will take to execute on unknown hardware
[3, 4, 6, 12, 32].

1.2 Green Computing
While the prime focus of high-performance comput-
ing has historically been on performance, there is now
an increasing focus on energy conservation [17]. E-

waste computers, such as those we have used to build
our grid, have significant variation in their power us-
age and their computational performance ability. For
environmental reasons, a performance metric for such
a grid should take account not only of a node’s pro-
cessing ability but also of its power usage.

The consideration of energy usage as a primary
concern in high performance computing is relatively
recent. There has been much research done in re-
cent years on energy consumption in cluster comput-
ing and data centers [9, 11, 13, 14, 15, 16, 17, 19, 24,
25, 31, 34, 35]. However, little has been published on
energy conservation in high-performance grid com-
puting [39]. The few notable exceptions include Pa-
tel et al. [23], who examine the idea of exploiting the
heterogenous nature of distributed data centers to con-
serve energy.

Few economic resource allocation systems con-
sider the energy usage of the node resources. This
is particularly relevant with older computer systems
as there was less emphasis on ‘green computing’ in
their design. In previous work we have shown how
energy usage of a computing resource can be defined
and used for an e-waste grid by giving each node a
performance index that includes both computational
performance and energy usage [21]. In this paper we
use this performance index for a resource node in the
allocation mechanism.

The aim of the performance index is to indicate,
through ranking, which nodes have the most desir-
able mix of low power requirements and high com-
putational performance. There are few current mech-
anisms available that perform this dual function, al-
though there are many current measures of a node’s
performance available, including both synthetic and
non-synthetic benchmarks.

The different nodes in a heterogenous grid could
be ranked by many different measures of perfor-
mance, including power, floating point operations
per second (Flops), and any other synthetic or non-
synthetic benchmark that can be executed over the
grid. One measure that accounts for both a node’s
computational performance and its utilization of
power has been described as the “power-performance
ratio” [17]. These measures such as flops

watts have been
utilized by many projects as a measure of power to
performance [1].

Benchmarks are an important measure of per-
formance and allow for the easy comparison of one
node against another. However, computational per-
formance alone does not give the resource allocation
mechanism enough information to discern which re-
source is most desirable to utilize. The resource allo-
cation mechanism must be able to rank nodes accord-
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ing not only to their computational performance but
also to their power requirements. We created a perfor-
mance index to give each node in the grid a compara-
tive value based on its computational performance and
power requirement. This comparative value can then
be used by the resource allocation mechanism to de-
termine which resources are most desirable to utilize
at any given time. More details of the performance
index can be found in Lynar et al. [21].

2 The Model
Our approach is to run the same input stream of tasks
on the grid using different resource allocation mech-
anisms based on different auction types, and to com-
pare the stream’s completion time and the grid’s en-
ergy usage for each mechanism. We have constructed
a model of a grid and calibrated it to correspond to
our actual grid. This small simulated grid consists of
eight nodes, details of which are displayed in Table 1 –
keeping it small allows us to easily compare the grid’s
responses to the different resource allocation mecha-
nisms.

The model is agent-based. There is a set of user-
agents that submit tasks to the grid, a set of resource
node agents that process tasks, and a resource al-
location agent that allocates the tasks to particular
resources. Our focus is on differing economic re-
source allocation approaches by the resource alloca-
tion agent.

One issue that will significantly impact on the
energy usage is the ability to power nodes off when
they are not in use. An issue here is the question of
when the additional energy savings of having the node
turned off outweigh the additional energy required to
turn the node on and off. This work is left for future
research.

In our model, resource nodes consist of e-waste
computers that offer computational power. The com-
puters are heterogeneous and hence have differing
computational performance and energy consumption.
The grid receives from users an input stream of tasks
that require computation and thus ask for resources.
Each resource node then bids for tasks, the bid that it
makes being its performance index. The performance
indexes of the nodes in our model are shown in Ta-
ble 1. Finally, the resource allocation mechanism al-
locates the tasks to the resources.

To thoroughly test the resource allocation mecha-
nisms we subject each of them to three quite different
input streams, an impulse stream, a step input stream,
and a set of inputs submitted at random times over a
fixed time horizon. The model is run with each of
these streams on each of the different resource alloca-

Table 1: Table of inputs from real nodes showing watt
usage when processing (Wi), Millions of Flops per
second (Fi), Performance Index value (Pi), and pro-
cessor type (CPU)

Node Wi Fi Pi CPU
1 60 236.625 39.33 Pentium 3
2 62 235.357 37.90 Pentium 3
3 63 286.661 45.40 Pentium 4
4 63 286.302 45.40 Pentium 4
5 83 1544.0 186.02 Athlon 64 5600+
6 103 1795.0 174.27 Athlon 64 6000+
7 79 318.208 40.25 Pentium 4
8 80 317.737 39.63 Pentium 4

tion mechanisms, and the stream execution time and
the total energy consumption are compared.

The structure of the simulation is described in Al-
gorithm 1.

Algorithm 1 The algorithm of the simulation
Define Resources
Define Workload
for all Time steps do

Choose resource allocation mechanism
Assign tasks
Analyse resources
Process tasks
Record statistics

end for

2.1 Model Assumptions
To simplify the model we make the following assump-
tions:

• a resource can only process one task at a time;

• the computational requirement of incoming tasks
is unknown;

• any resource can process any task;

• each task can be processed on a single resource;
and,

• bids from resources arrive in a random order.
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2.2 Auction Methods
In the resource allocation mechanism we compare
three auction types, a batch auction, a continuous dou-
ble auction, and a pre-processed batch auction.

2.2.1 The batch auction
The batch auction (Algorithm 2) gathers bids from all
of the resources, sorts the bids on their size, and then
assigns incoming tasks to resources in order of sub-
mission.

Batch auctions can guarantee that the fastest
available resource will win, however the batch task
of gathering bids can result in a significantly delayed
start for execution of the resource [6].

In our model the batch auction takes place every
ten seconds and input tasks are queued to be allocated.
A resource may be busy completing a task previously
allocated to it, in which case it will not take part in the
current auction.

Algorithm 2 The batch auction
loop

The allocation mechanism requests each re-
source for a bid
The mechanism waits for the bids to be returned
or the auction to time out
The mechanism sorts resources’ bids so that the
resource with the highest bid is first
for all Tasks (in order of submission) do

Assign task to next unallocated resource
end for

end loop

2.2.2 The Continuous Double Auction
In a continuous double auction or CDA (Algorithm 3)
the first bid that matches or exceeds an ask is allo-
cated. Continuous double auctions cannot guarantee
that the fastest available resource will win the auction
[7]. This can be undesirable for a resource allocation
mechanism in a grid.

In our model any resource’s bid can match any
task’s ask as all tasks can be processed by any re-
source. Hence the first bid will always be allocated
to the first ask. To simulate a real double auction,
we shuffle bids in a random order. In this manner the
CDA as implemented in this model is basically a ran-
dom allocation.

2.2.3 The Pre-processed Batch Auction
We developed a pre-processed batch auction or PPB
(Algorithm 4) that aims to retain the advantage of be-

Algorithm 3 The continuous double auction
Shuffle known resources
loop

for all Tasks (in order of submission) do
for all Resources do

if The resource is not assigned a task and
task is unassigned then

Assign task to resource
end if

end for
end for

end loop

Algorithm 4 The pre-processed batch auction
loop

The mechanism constantly receives bids from re-
sources and assumes the last bit to be accurate
The resources are sorted so that the resource with
the highest bid is first
for all jobs (in order of submission) do

for all Resources in order of bid size do
if The resource is not assigned a job and the
task has not already been assigned then

Assign Job to Resource
end if

end for
end for

end loop

ing continuous like the CDA while still attempting to
allocate the fastest available resource to the task with
the greatest computational requirements. In the PPB
auction there is a central database of current bids, and
every time a node’s status changes the node updates its
bid on the database. This enables the fastest available
resource to be selected for executing any given task,
without the need to delay the execution while a time-
consuming auction is conducted. In other words, the
resource allocation mechanism remembers the prior
bid of each resource and assumes that prior bid to be
correct for the next ask. Because the resources con-
tinually update their bids, there is always a current
bid available for the auction to sort by. That is, nodes
place fresh bids whenever their status changes, and it
is these bids that are used when a task requests a re-
source.
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Table 2: Time to Complete Impulse Response by Auc-
tion Type

Number of tasks Batch CDA PPB
1 139 700 130
2 139 700 130
3 709 700 700
4 709 848 700
5 709 848 700
6 709 852 700
7 857 852 848
8 861 852 852

Table 3: Order in which Nodes Used in Impulse Re-
sponse Results

Auction Node Order
Batch 5, 6, 4, 3, 7, 8, 1, 2
CDA 3, 7, 8, 1, 4, 2, 5, 6
PPB 5, 6, 4, 3, 7, 8, 1, 2

Table 4: Time in seconds to complete steady state
stream for each level of difficulty and each auction
type

Batch CDA PPB
Easy 450 50 50
Medium 452 89 89
Hard 458 212 202

3 Results
3.1 Impulse Response
A good understanding of the differences in the re-
source allocation mechanisms can be obtained by ex-
amining the time the system takes to complete a single
task. This can be considered as a steady-state impulse
response. Beginning with a single input task, we in-
crease this to a stream of eight input tasks, at which
point each of the eight nodes will have a task allo-
cated to it. All of these eight tasks require the same
computational effort.

Table 2 shows that for a single task the Batch auc-
tion based resource allocation mechanism completes
the task in 139 seconds. The CDA takes 700 sec-
onds and the PPB takes 130 seconds. Why are the
batch based methods faster? This is because they allo-

cate the task to the node with the highest Performance
Index, which is typically the node with the greatest
processing power. On the other hand the CDA mech-
anism, as implemented for this model, allocates the
task to a random node. The PPB is faster than the con-
ventional Batch mechanism as it relies on pre-lodged
bids and so does not have to wait for all nodes to re-
turn a bid.

Table 2 also shows the response for completion
time as the number of tasks is increased in steps of
one until there is a task for each node. As the num-
ber of tasks increases the Batch and PPB take about
the same amount of time and the CDA still illustrates
the random allocation. (We use the same sequence of
quasi-random numbers in each run in Tables 2 and 3,
so as the number of tasks increases, the same nodes
are allocated tasks in the same order.) When there are
the same number of tasks as nodes, all mechanisms
take about the same time to complete the tasks, but
the Batch mechanism shows the additional overhead
of calling for and waiting for all bids.

The order that resource nodes are allocated by the
mechanisms is given in Table 3. For the Batch and
PPB mechanisms this is the same order, and corre-
sponds to the order of ranking of their Performance
Index (see Table 1). For the CDA it is a random order.

One result that is clearly seen from Table 2 is that,
when the tasks are all the same size, and there are
fewer tasks than nodes (both somewhat artificial sit-
uations), there can be a substantial difference in the
time of completion between the batch-based and the
CDA mechanisms.

3.2 Step Input Response
For the next comparison of the resource allocation
mechanisms we examine a step input, in which the
input stream of tasks is one task per second for 50
seconds. We use three input streams of tasks – easy,
medium and hard. Easy tasks are small enough that
even the least efficient node can perform them in a
single time step; medium tasks can be performed in
a single time step by a node with the mean Perfor-
mance Index value; and for hard tasks, even the best-
performing nodes require more than a single time step
to compute them.

Table 4 shows the time (in seconds) for all tasks to
be completed for each input stream and each auction
type. Perhaps most obviously, task difficulty makes
very little difference with the Batch auction: while the
medium and hard input streams take longer, the differ-
ence is very small. This is clearly not the case for the
CDA and PPB auction mechanisms, in both of which
the hard tasks take more than four times as long as the
easy tasks.
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Figure 1: Cumulative Completed Tasks for Auction Types and Computational Effort from Step Input.

Faced with a steady stream of uniform jobs, the
CDA and PPB mechanisms both outperform the Batch
auction mechanism. For easy tasks they are nine times
as fast, and for hard tasks they are about twice as fast.
These differences are due principally to the Batch auc-
tion’s overhead of polling the nodes and waiting for
their responses each time an ask is submitted.

Of the two batch auction approaches, pre-
processing is certainly worthwhile – partly because
the model assumes that each node’s bid will be the
same as it was prior to the previous task, and that as-
sumption is correct with this form of input stream.

The transient dynamics of the step input streams
are shown in Figure 1. The figure plots the accu-
mulated completed tasks in each second for the nine
combinations of auction mechanism and task diffi-
culty. A number of the lines overlap, leaving four re-
sult patterns, as labeled in the figure: easy CDA and
PPB; medium CDA and PPB; hard CDA and PPB; and
Batch. The overhead of conducting an auction every
ten seconds can be seen in the stepped nature of the
Batch auction responses.

Figure 1 shows that the step-response dynamics
are linear for each of the combinations of auction type
and task difficulty. This suggests that economies or
diseconomies of scale are unlikely to result from scal-
ing the system by changing the number of nodes.

In Figure 2 we present the dynamics of energy
consumption at each second. The figure displays the
transient energy usage of the grid whilst using the dif-
fering auctions. The energy consumption of the Batch

auction constantly switches between high and low be-
cause of the idle time spent waiting for each auction
to complete. This behavior indicates that the tasks are
very small in computational requirements. The CDA
and PPB auctions consume the same peak energy con-
tinuously until all tasks are complete, then drop back
at the same time to the energy used by the grid when
it is idle.

The energy consumption of idle nodes, as evident
in Figure 2, highlights the potential value of powering
down nodes when they are not in use. This is a feature
that we intend to build into the model and implement
in our physical grid of e-waste computers.

3.3 Random Workload Response
Our final results compare the resource allocation
mechanisms with an input stream whose submissions
are made at random times. We use seven workload
sets with different combinations of computational ef-
fort and number of tasks. In each set, the input stream
submits the same tasks, but with submissions occur-
ring at random times within a fixed time horizon. We
examine the time taken and energy consumed to com-
plete all tasks in the stream.

The seven workload scenarios are given in Ta-
ble 5. The first scenario (Set 1) consists of a small
number of large tasks; Set 2, a small number of small
tasks; Set 3, a large number of large tasks; Set 4, a
large number of small tasks; Set 5, a small number of
huge tasks; Set 6, a large number of huge tasks; and
Set 7, a large number of tiny tasks.
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Table 5: Workload Data Sets

Set Effort Tasks Batch CDA PPB
Time Energy Time Energy Time Energy

1 2000 200 7971 1437 7974 1439 7969 1437
2 200 200 7970 1436 7968 1437 7968 1436
3 2000 2000 8001 1455 7993 1466 7993 1446
4 200 2000 8000 1441 7992 1441 7992 1440
5 20000 200 9037 1609 8706 1609 7992 1440
6 20000 2000 997549 144157 997543 146407 997546 144168
7 20 2000 8000 14421 7992 1441 7992 1440

The high and low values were chosen based on
the computational capability of the nodes used in the
model. The least powerful node would take two sec-
onds to compute a task with a computational require-
ment of 200 and would take 20 seconds to compute a
task with a computational requirement of 2000. The
most powerful node would take less than one second
to compute a task with a computational requirement
of 200 but would take 3 seconds to compute a task of
2000.

Table 5 shows the time to complete all tasks and
the total energy used to complete the tasks for each
of these input streams. Notice that in these results
the Batch auction based mechanism performs about
as well as the other mechanisms. This may be because
the flow of tasks over time is steady and the overheads
of the periodic auction are counter-balanced by allo-

cating the tasks to the better performing nodes com-
pared to the faster allocation of tasks in the other allo-
cation mechanisms.

Comparing the auction types on time-to-complete
and energy usage for the different workload scenarios
it can be seen that there is little to prefer one auction
type over the other. All resource allocation mecha-
nisms produce about the same results for each of the
workloads. However, it should be noted that these
workflows consist of tasks that can be quickly com-
puted on any resource.

In terms of energy consumption, Set 6, the most
demanding workload, shows the Batch auction per-
forming best, although not by a great deal.
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4 Conclusion
In this paper we have implemented a model of a grid
of e-waste computers, calibrating the model against a
real physical grid. We have then examined the perfor-
mance of three economic resource allocation mecha-
nisms based on different auction types.

The auction-based resource allocation mecha-
nisms were tested by considering a variety of small
simulated workflows of user-allocated tasks and ex-
amining the time to complete the task workflow and
the energy consumption in completing the workflow.
The workflow types comprised an impulse workflow,
a step workflow and a random workflow.

We have shown that the choice of auction method
to be used in the economic resource allocation mech-
anism can make a difference in the time to complete
tasks. It can also make a difference in total energy
consumption used by the workflow. We discovered
that the effect of changing the mechanism is highly
dependent on the workflow.

In the workloads examined for this paper, all tasks
had the same size, so each task required the same com-
putational effort as the preceding task. The tasks in
each workload were also generally evenly spaced. In
future work we plan to introduce variability into task
size and spacing.

Another issue that can be seen in this paper is that
the e-waste computers in our grid tend to consume
substantial energy when they are idle. In further work
we will examine power-on-power-off as a means to
save energy.

We also intend to implement these resource al-
location mechanisms on our physical grid and more
substantial grids, and to introduce larger and more re-
alistic workflows. Further we will do some closed-
loop work on dynamic power-on-power-off of nodes
and on dynamically choosing the auction type to suit
the circumstances.
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