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Abstract: - The local geometric properties such as curvatures and normal vectors play important roles in analyzing the 
local shape of objects. The result of the geometric operations such as mesh simplification and mesh smoothing is 
dependent on how to compute the normal vectors and the curvatures of vertices, because there are  no exact definitions of 
the normal vector and the discrete curvature in meshes. Therefore, the discrete curvature and normal vector estimation 
play the  fundamental roles in the fields of computer graphics and computer vision. In this paper, we propose  new 
methods for computing  normal vector and curvature well, which are more intuitive than the previous methods. Our 
normal vector computation algorithm is able to compute the normal vectors more accurately and is available to meshes 
of arbitrary topology. It is due to the properties of local conformal mapping and the mean value coordinates. Secondly, 
we point out the fatal error of the previous discrete curvature estimations, and then propose a new discrete 
sectional-curvature estimation to be able to overcome the error. The method is based on the parabola interpolation and 
the geometric properties of Bezier curve. It is confirmed by experiment that the normal vector and the curvature 
generated by our algorithm are more accurate than that of the previous methods.  
 
Key-Words: - Normal vector, curvature, local geometric property, mesh segmentation 
 
1   Introduction 
The complicated objects dealt in the field of computer 
graphics may be obtained by acquiring 3D position 
information by using 3D scanners, or generated by 
operating 3D modeling tools such as 3D Studio MAX or 
Maya. In order to efficiently deal with the objects, they 
may be represented by a form of mesh which includes the 
position information of vertices and the connectivity of 
them. According to the demand of users, the geometric 
operations such as mesh simplification and smoothing are 
applied to the objects[1,2,3]. In order to accomplish such 
geometric operations efficiently, we have to find out 
rightly the local properties of the mesh. In general, 
normal vector and curvature play the important roles as 
the local properties in the field of differential geometry 
such as curve and surface [19,20]. So the users want to 
use the same properties in the discrete space such as 
polygon and mesh as they were. However, there is not the 
exact formula of such properties because mesh is a 
discrete type. Therefore, we need a more exact measure 
of the local properties. Especially, the normal vector of 
vertices plays an important role in the rendering process 
which makes much account of reality.  
 

2   Previous Works 
 
2.1 Normal Vector  
There are two approaches in the computation of normal 
vectors [4,5]. The first approach is to approximate the 
surface interpolating a vertex and compute the normal 
vector of the surface at the vertex. The result of this 
approach is tightly dependent on the configuration of the 
1-ring neighborhood vertices and the degree of 
approximated surface. The second approach is to 
combine the normal vectors of faces adjacent to a vertex. 
Gouroud proposed the first algorithm of this approach 
that uses the average ( GN ) of the normal vectors of 
adjacent faces to the vertex in a triangular mesh [6]. This 
method is simple so that it is fast. However, it never uses 
the geometric information of the neighborhood of the 
vertex so that we can not apply a variety of geometric 
operations directly. Moreover, this method may bring the 
different normal vectors according to the change of 
topology as shown in Figure 1. 
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Fig.1 The change of normal vector 

according to the topology 
 
Thurmer et al. proposed a more improved method that is 
based on the angle-weight ( TN ) in order to resolve the 
topology-dependent problem of Gouroud’ method [7]. 
This method uses only the interior angle without the 
information such as the area of adjacent faces and the 
length of incident edges. It is not considered that this 
method prefectly reflect the geometric properties. 
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Taubin [8] and Max [9] proposed area-weight normal 
vector ( MN ) algorithms in 1995 and 1999. The normal 
vector of a vertex by these methods is generated when we 
approximate a surface interpolating the vertex and 
represent the surface with Taylor series. The area-weight 
is induced when the normal vector of the surface is 
converted to a mesh. It is not considered that they derived 
a more exact normal vector because the parameter used in 
their Taylor’s series is not geodesic so that the error of 
approximation is large. In order to improve the 
area-weighted normal vector computation, Chen [10] 

proposed a new area-weighted normal vector ( CN ) 
computation the weight of which is the value of the area 
of an adjacent face divided by the length of the line 
segment between the given vertex and the center of the  
face. The normal vertex of a vertex v is defined by 
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where if  and ig  are the area of face if  and the center 

of mass of if , respectively. This normal vector is 
affected by the non-adjacent vertices as well as the two 
adjacent vertices so that this method may cause 
inaccurate normal vectors. Figure 2 shows an example 
that two faces have the same local geometric property but 
the different weights.  
 

 
Fig. 2: Two faces with the same local 

geometric property and the different weights 
 

In this paper, we propose a new normal vector 
computation method which considers the interior angle 
and the length of adjacent edges simultaneously. Our 
method applies conformal mapping to the 1-ring 
neighborhood vertices of a given vertex, and then 
computes the mean value coordinates of the vertex with 
respect to the middle points between the mapped adjacent 
vertices and the Origin. Finally, the normal vector of the 
vertex is represented by linear combination of the edge 
normal vectors with the mean value coordinates. The 
edge normal vector is the average of the normal vectors of 
two adjacent faces. It is well-known that the conformal 
mapping reflects the local geometric properties well and 
the mean value coordinate is continuous over the entire 
domain. Our experimental results show that our method 
can compute the more exact normal vectors than the 
previous algorithms. Moreover, we may resolve the 
problem of phong shading that the intensity at a point is 
dependent on how to choose a coordinate system of world 
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The normal vector ( CMN ) of our method may be 
regarded as that it reflects the local geometric property 
better than the previous methods because it is generated 
by applying the conformal mapping and the mean value 
coordinates. In general, the geometric property of a 
vertex in a 3D mesh has a tendency to resemble the 
property of the surface interpolating the 1-ring 
neighborhood and the vertex. The edges of the 1-ring 
neighborhood are approximated to the surface better than 
the faces because of the interpolating condition. So our 
method is very intuitive. 
 
4   Curvature Computation 
 
First of all, we review the circle-based discrete curvature 
estimation adopted in the previous methods of estimating 
the discrete curvature of meshes. This method utilizes the 
Taylor series of a curve and adopts the distance between 
two vertices as parameter of the curve. It makes the 
trajectory of points with the same curvature be a circle. 
So, in this paper we call this method as C-discrete 
curvature. 
 
4.1 C-Discrete Curvature Formula 
 
Most of the previous discrete curvature estimation 
directly compute the sectional discrete curvature whether 
they use the tensor of curvature or Laplacian Operator 
[13,14,17]. All of them compute the curvature by using 
the Taylor series of a curve interpolating two vertices. Let 
p and pi be a given vertex and its adjacent vertex, 
respectively and let g(s) be a continuous curve passing 
through the two vertices: g(0) = p, ipsg =)( . Then the 
curve may be represented by its Taylor series:  

 

)(
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)0()0()( 32 sOsgsggsg +
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2
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where T and N are the unit tangent vector of the unit 
normal vector, respectively, and κ(p) is the sectional 
curvature of g(s) at point p to the direction ppi. By 
applying the inner product to both sides with N, we may 
get the following equation: 

 

N · ሺgሺsሻ െ pሻ ؄  sሺN · Tሻ ൅ sଶ சሺ୮ሻ
ଶ

ሺN · N) 
 

Because N ⋅T = 0 and N ⋅N = 1, the above equation may 
be changed to the following simple equation: 

 

κሺpሻ ؄
2ሾN · ሺgሺsሻ െ pሻሿ

sଶ   
 
 The previous methods define the C-discrete curvature κC 
(p) by assuming that the parameter of the series is the 
distance between two vertices:  

 

κCሺpሻ ؄
2ሾN · ሺgሺsሻ െ pሻሿ

|gሺsሻ െ p|ଶ   

        
Now, we point out the fatal error of the c-Discrete  
method. First of all, we find out the set of points with the 
same discrete curvature α. For the convenience of 
computation, we assume that p=(0,0), pi = (x, y) and N = 
(0, -1). Then the formula of the C-discrete curvature of p 
is as follows:  
 

κCሺpሻ ؄
2ሾN · ሺgሺsሻ െ pሻሿ

|gሺsሻ െ p|ଶ ൌ
െ2y

xଶ ൅ yଶ ൌ α 

 
 

 
 
Figure 7. The set of points with curvature α 

 
Then, x2 + ( y + 1/α)2 = 1/α2The trajectory is the circle of 
center  (0, -1/α) and radius 1/α as shown in Figure 7. That 
is, whenever the adjacent vertex pi is on the radius of the 
circle though it makes the different interior angle with the 
given vertex p, the sectional C-discrete curvature of p to 
the direction ppi is the same as that of the circle. In 
general, the interior angle of a triangle is sharper than 
those of square and octagon. So, we may consider that the 
curvature of a vertex in triangles is greater than that of 
other regular polygons (see Figure 3). The result of the 
C-discrete curvature estimation breaks the general 
concepts. Moreover, there is another drawback of this 
method that the range of the value is restricted. If ||ppi|| >1, 
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of the last polygon has a sharper angle  than the others. In 
order to solve this imperfection, we propose the 
symmetric parabola-based discrete curvature estimation 
using a symmetric parabola. 
 
4.1 SP-Discrete Curvature Formula 
Let N be the unit vector bisecting the interior angle of B: 
N = ( BA/||BA|| + BC/||BC|| ) / || BA/||BA|| + BC/||BC|| ||. 
Then, we can consider two right-angled triangles AA'B 
and CC'B as shown in Figure 13. One has the width of 
length vA and the height of hA , the other has the width of 
length vC and the height of  hC:  
 

 
Figure 13. Polygon and its Parabola 

 
 
hA = N ⋅ BA, vA = || BA - (N ⋅BA) N ||,    hC = N ⋅ BC, vC = 
|| BC - (N ⋅BC) N ||.  
 
Then, we can consider the right-angled triangle MM'B 
with the width vm = (vA+ vC)/2 and the height hm = (hA + 
hC)/2. Therefore, we define the symmetric P-type discrete 
curvature of the vertex B as κSP(B)≡ (2 hm)/vm

2.  
 

 
5   Experimental Results 
 
5.1 Normal Vector 
Figure 14 shows a variety of polyhedrons which are 
approximations of a unit sphere. The upper polyhedrons 
are generated by recursively subdividing a regular 
tetrahedron, and the lower ones are generated by using 
the parameters of longitude and latitude. The upper cases 
are more irregular than the lower cases because the 
triangles of a different size may be appear, so that the 
error of the normal vector of a vertex in recursively 
generated polyhedrons may be larger than the others.  
 
Table 2 and 3 show the mean error of normal vectors of a 
vertex in the approximated polyhedral of the unit sphere. 
In order to measure the exactness of the normal vectors, 
we used the following  error energy 
 

><−= NNvvE ii ,1)( , 

where iNv  is the unit normal vector of a vertex iV  of the 
approximated sphere  and N  is the normal vector of the 
unit sphere. 
 
 

 

 
Fig. 14: Approximated Spehres 
 

Table 2. Mean error for mesh generated by recursive method 
No. Of  
vertices 

10 34 130 514 2050 

]2[GN 0.00E-08 7.25E-03 1.48E-03 3.41E-04 7.00E-05

]3[TN 0.00E-08 3.57E-03 6.98E-04 1.35E-04 2.50E-05
]4[MN 0.00E-08 1.42E-02 2.89E-03 6.47E-04 1.31E-04
]6[CN 0.00E-08 7.42E-04 3.57E-04 9.30E-05 2.00E-05

CMN 0.00E-08 5.22E-04 1.41E-04 3.10E-05 6.00E-06

 
 
Table 3. Mean error for mesh generated by parametric method 

No. of  
Vertices 

23 50 122 262 578 

]2[GN 4.03E-03 7.86E-04 2.22E-04 5.20E-05 2.40E-05

]3[TN 1.41E-03 5.54E-04 1.11E-04 6.00E-05 6.00E-06
]4[MN 8.87E-03 1.96E-03 5.88E-04 6.30E-04 6.30E-05

]6[CN 1.77E-03 1.11E-03 1.11E-04 5.00E-05 5.00E-06

CMN  7.89E-04 4.63E-04 5.70E-05 1.60E-05 2.00E-06

 
According to the result of experiment, the normal vector 
computation proposed by Chen [10] is better than the 
other previous methods. However, the exactness of our 
method is two times than that of Chen. So we argue that 
our method is the best of all.  
 
Figure 15 shows the results of rendering generated by 
Phong shading which are based on the GN  method,  CN  
method, and CMN  method. The positions of camera and 
light are the same so that the highlighted region should 
symmetrically appear near the vertex positioned in the 
center of the rendering. Figure 14(a) is the wire-frame of 
a cube. It has irregular topology. The vertex positioned in 
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All of them use the circle-based discrete curvature to 
compute the sectional curvature. In this paper, we point 
out the fatal error of C-type discrete curvature 
computation, and proposed the parabola-based discrete 
curvature computation to resolve the problem. Our 
method may be the basis of normal vector estimation and 
segmentation of meshes. 
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