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Abstract: - The local geometric properties such as curvatures and normal vectors play important roles in analyzing the
local shape of objects. The result of the geometric operations such as mesh simplification and mesh smoothing is
dependent on how to compute the normal vectors and the curvatures of vertices, because there are no exact definitions of
the normal vector and the discrete curvature in meshes. Therefore, the discrete curvature and normal vector estimation
play the fundamental roles in the fields of computer graphics and computer vision. In this paper, we propose new
methods for computing normal vector and curvature well, which are more intuitive than the previous methods. Our
normal vector computation algorithm is able to compute the normal vectors more accurately and is available to meshes
of arbitrary topology. It is due to the properties of local conformal mapping and the mean value coordinates. Secondly,
we point out the fatal error of the previous discrete curvature estimations, and then propose a new discrete
sectional-curvature estimation to be able to overcome the error. The method is based on the parabola interpolation and
the geometric properties of Bezier curve. It is confirmed by experiment that the normal vector and the curvature
generated by our algorithm are more accurate than that of the previous methods.
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1 Introduction 2 Previous Works
The complicated objects dealt in the field of computer
graphics may be obtained by acquiring 3D position 2.1 Normal Vector

information by using 3D scanners, or generated by  There are two approaches in the computation of normal
operating 3D modeling tools such as 3D Studio MAX or  vectors [4,5]. The first approach is to approximate the
Maya. In order to efficiently deal with the objects, they  surface interpolating a vertex and compute the normal
may be represented by a form of mesh which includesthe  vector of the surface at the vertex. The result of this
pOSitiOﬂ information of vertices and the ConneCtiVity of approach is t|ght|y dependent on the Conﬁguration of the
them. According to the demand of users, the geometric 1-ring neighborhood vertices and the degree of
operations such as mesh simplification and smoothing are approximated surface. The second approach is to
applied to the objects[1,2,3]. In order to accomplish such  combine the normal vectors of faces adjacent to a vertex.
geometric operations efficiently, we have to find out  Gouroud proposed the first algorithm of this approach
rightly the local properties of the mesh. In general, that uses the average (N, ) of the normal vectors of
normal vector and curvature play the important roles as . © . .
the local properties in the field of differential geometry adjacent_fac_es to the vertex in a triangular m(_ash [6]. This
such as curve and surface [19,20]. So the users want to method is sn_np!e S0 that_ it is fast. Hovyever, It never uses
use the same properties in the discrete space such as the geometric information of the nelg_hborhood of the
polygon and mesh as they were. However, there is not the vertex_so thfﬂ we can not apply_ a variety of geo_metrlc
operations directly. Moreover, this method may bring the

exact formula of such properties because mesh is a diff | di he ch f
discrete type. Therefore, we need a more exact measure Ifferent normal vectors according to the change o
topology as shown in Figure 1.

of the local properties. Especially, the normal vector of
vertices plays an important role in the rendering process
which makes much account of reality.
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Fig.1 The change of normal vector
according to the topology

Thurmer et al. proposed a more improved method that is
based on the angle-weight (N ) in order to resolve the

topology-dependent problem of Gouroud’ method [7].
This method uses only the interior angle without the
information such as the area of adjacent faces and the
length of incident edges. It is not considered that this
method prefectly reflect the geometric properties.
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Taubin [8] and Max [9] proposed area-weight normal
vector (N,, ) algorithms in 1995 and 1999. The normal

vector of a vertex by these methods is generated when we
approximate a surface interpolating the vertex and
represent the surface with Taylor series. The area-weight
is induced when the normal vector of the surface is
converted to a mesh. It is not considered that they derived
a more exact normal vector because the parameter used in
their Taylor’s series is not geodesic so that the error of
approximation is large. In order to improve the
area-weighted normal vector computation, Chen [10]
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proposed a new area-weighted normal vector ( N )

computation the weight of which is the value of the area
of an adjacent face divided by the length of the line
segment between the given vertex and the center of the
face. The normal vertex of a vertex v is defined by

Zn:a)i Nf,
1

Zn:a)i NfiH
1

i

B |9; V]

where | ;| and g, are the area of face f; and the center

of mass of fi , respectively. This normal vector is

affected by the non-adjacent vertices as well as the two
adjacent vertices so that this method may cause
inaccurate normal vectors. Figure 2 shows an example
that two faces have the same local geometric property but
the different weights.

Fig. 2: Two faces with the same local
geometric property and the different weights

In this paper, we propose a new normal vector
computation method which considers the interior angle
and the length of adjacent edges simultaneously. Our
method applies conformal mapping to the 1-ring
neighborhood vertices of a given vertex, and then
computes the mean value coordinates of the vertex with
respect to the middle points between the mapped adjacent
vertices and the Origin. Finally, the normal vector of the
vertex is represented by linear combination of the edge
normal vectors with the mean value coordinates. The
edge normal vector is the average of the normal vectors of
two adjacent faces. It is well-known that the conformal
mapping reflects the local geometric properties well and
the mean value coordinate is continuous over the entire
domain. Our experimental results show that our method
can compute the more exact normal vectors than the
previous algorithms. Moreover, we may resolve the
problem of phong shading that the intensity at a point is
dependent on how to choose a coordinate system of world
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space because the mean value coordinate is unrelated to
the world space’s coordinates system.

2.2 Curvature

The estimation of curvatures in triangular meshes plays
important role in many applications such as surface
segmentation, anisotropic remeshing or rendering. A lot
of efforts have been devoted to this problem, but there is
no consensus on the appropriate way[12-18]. Popular
methods include quadratic fitting, where the estimated
curvature is the one of the quadratic that best fits a certain
neighborhood of a vertex locally. Most recently,
Goldfeather proposed the use of a cubic approximation
scheme that takes into account vertex normals in the
1-ring[14]. The accuracy of these curvature estimations is
dependent of that of fitting. If the one-ring neighborhood
has many vertices or has a oscillated shape, then the
approximated surface does not resemble the local shape
and these estimations may vyield a high error. Other
methods typically consider some definition of curvature
that can be extended to the polyhedral setting. These
methods compute Gaussian curvature and Mean
curvature based on the Gauss-Bonnet theory and Euler
theory. Taubin presented a method to estimate the tensor
of curvature of a surface at vertices of a mesh [17].
Watanabe proposed a simple method of estimating the
principal curvatures of a discrete surface [18]. Meyer et.
al proposed a discrete analog of the Laplace-Beltrami
operator to estimate the discrete curvature[13].

Figure 3. Several Polygons with the same
discrete curvature

Most of these methods compute directly the sectional
curvatures for each adjacent edge of a vertex. They
assume the normal curve interpolate both the given vertex
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and an adjacent vertex and the curve is represented by
Taylor series. However, they make the same mistake that
they adopt the distance between the given vertex and its
adjacent neighbor vertex as the parameter of the series.
Figure 3 shows their drawback. There are several
polygons of different interior angles, all of which are
circumscribed by circles of the same radius. The discrete
curvatures estimated by those methods are the same as
that of the circle. It is quite alien to universal concepts.

In this paper, we present symmetric parabola-based
discrete curvature estimation in order to solve such a
problem in computing the sectional curvatures by the
previous discrete curvature estimations. Our method is
based on the parabola interpolation. We show that our
method has a good geometric property so that we may
derive a more simple formula and resembles the local
shape better than the previous methods. Moreover, we
detect a fatal error of the circle-based discrete curvature
estimations.

3 Normal Vector Computation

In this section, we explain the mean value coordinates
that is a generalization of the bary-centric coordinate and
introduce our normal vector computation base on the
mean value coordinates.

3.1 Mean Value Coordinates

We have been often asked a question “Can we represent a
point inside a polygon as a linear combination of the
vertices of the polygon uniquely?”. If possible, we may
represent all of information of a point inside a polygon
with the information of the vertices. There is a convex
combination approach as a general solution of the
problem. Specially, the representative solution of the
approach is the mean value coordinate proposed by
Floater [11].

Fig. 4: Configuration of mean value coordinates

Equation (1) shows a general form of the convex
combination approach that is a linear combination of the

vertices U, ,i =1,---,m of the polygon for an arbitrary
interior point P of a polygon as shown in Figure 3.
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P=Y AU, .Y 4 =14 0.
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)

Floater defined the coefficients of the linear combination
satisfying the above equation by the following manner:

. tan(——) + tan(—>)
A =— ' , @) = 2
5, U,
k=1

Figure 5 shows an example of excellence of the mean
value coordinate. The same color means the same mean
value coordinate with respect to the vertex of a regular
7-gon, which is on the y-axis. The left and the right
figures are the results for a convex polygon and for a
concave polygon, respectively. The upper and the lower
figures are generated by the mean value coordinate and
the barycentric coordinate, respectively. The mean value
coordinate system generates the continuous coefficient
whether or not a point is inside or outside, and whether or
not the polygon is convex or concave. On the other hand,
the result generated by the barycentric coordinate system
is very confused and the value of coefficients is
discontinuous. The continuity of the coefficient plays an
important role in a variety of application such as surface
interpolation.

Fig.5: Mean value coordinates (upper) vs.

Barycentric coordinates (lower) for a
convex polygon (a,c) and a concave
polygon (b,d)

3.2 Normal Vector Computation

ISSN: 1109-2750

Hyoung-Seok Kim, Ho-Sook Kim

In this subsection, we introduce our algorithm for
computing the normal vector of a vertex based on the

mean value coordinates. We assume that a vertex V has
m adjacent vertices V,,V,,---,V,. . Then the vertex V is

surrounded with faces f, = AV,VV,,, i=1---,m. We

i+l

denote the unit normal vector of a face f, = AVVV,
by Nf. and the unit normal vector of the common edge

e, of faces f. and f, ., by Ne,. In order to get the

i+1
relationship of V with respect to the adjacent vertices V.

we apply the conformal mapping to the 1-ring
neighborhood of the vertex V as shown in the Figure 6.
The left figure is the configuration of the 1-ring

neighborhood, and the right is the result of the conformal
mapping of the neighborhood. The vertices V and V, are
mapped to the vertices P and U, , respectively,
satisfying the following conditions:

2
PUL =MV o ==
2.0
j=1
v Ne
Nf,, y Nf,
0
V2
vV, V,
U, U,
X

Um—l
Fig. 6: Conformal mapping: (a) 3D Mesh (b) 2D polygon
We define a new normal vector based on the mean value

coordinates and a local conformal mapping by the
following manner:

Zm:AiNei 1 = w;

New =o' &
> ANe, Za)k
1 k=1

1664 Issue 10, Volume 8, October 2009



WSEAS TRANSACTIONS on COMPUTERS

= Qy
" tan( 5 ) + tan( > )
Vi P

The normal vector ( N, ) of our method may be

regarded as that it reflects the local geometric property
better than the previous methods because it is generated
by applying the conformal mapping and the mean value
coordinates. In general, the geometric property of a
vertex in a 3D mesh has a tendency to resemble the
property of the surface interpolating the 1-ring
neighborhood and the vertex. The edges of the 1-ring
neighborhood are approximated to the surface better than
the faces because of the interpolating condition. So our
method is very intuitive.

4 Curvature Computation

First of all, we review the circle-based discrete curvature
estimation adopted in the previous methods of estimating
the discrete curvature of meshes. This method utilizes the
Taylor series of a curve and adopts the distance between
two vertices as parameter of the curve. It makes the
trajectory of points with the same curvature be a circle.
So, in this paper we call this method as C-discrete
curvature.

4.1 C-Discrete Curvature Formula

Most of the previous discrete curvature estimation
directly compute the sectional discrete curvature whether
they use the tensor of curvature or Laplacian Operator
[13,14,17]. All of them compute the curvature by using
the Taylor series of a curve interpolating two vertices. Let
p and p; be a given vertex and its adjacent vertex,
respectively and let g(s) be a continuous curve passing

through the two vertices: g(0) = p, g(S) = p,. Then the
curve may be represented by its Taylor series:

S0 o)

9(s) = g(0)+ T .s+%-;c(p).s2 +0(s%)

a(s) = 9(0) + gf’) S+

where T and N are the unit tangent vector of the unit
normal vector, respectively, and x(p) is the sectional
curvature of g(s) at point p to the direction ppi. By
applying the inner product to both sides with N, we may
get the following equation:
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N-(g(s) —p) = s(N-T) + s> 2 (N - N)

Because N -T =0 and N -N = 1, the above equation may
be changed to the following simple equation:

2[N - (g(s) — p)]

g2

k(p) =

The previous methods define the C-discrete curvature kc
(p) by assuming that the parameter of the series is the
distance between two vertices:

2[N- (g(s) —p)]
|g(s) — pl?

xc(p) =

Now, we point out the fatal error of the c-Discrete
method. First of all, we find out the set of points with the
same discrete curvature a. For the convenience of
computation, we assume that p=(0,0), pi = (X, y) and N =
(0, -1). Then the formula of the C-discrete curvature of p
is as follows:

2[N - (g(s) — p)]
lg(s) — pl?

=X2+y2=a

xc(p) =

Figure 7. The set of points with curvature o

Then, x? + (y + 1/a)® = 1/a®The trajectory is the circle of
center (0, -1/a) and radius 1/ow as shown in Figure 7. That
is, whenever the adjacent vertex p; is on the radius of the
circle though it makes the different interior angle with the
givenvertex p, the sectional C-discrete curvature of p to
the direction pp; is the same as that of the circle. In
general, the interior angle of a triangle is sharper than
those of square and octagon. So, we may consider that the
curvature of a vertex in triangles is greater than that of
other regular polygons (see Figure 3). The result of the
C-discrete curvature estimation breaks the general
concepts. Moreover, there is another drawback of this
method that the range of the value is restricted. If ||ppi|| >1,
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then y/(x2+y2) < 1. Hence, k(p) = xzzTyyz < 2. Therefore,

we have known that this method cannot reflect the local
shape although the adjacent vertices have a sharp interior
angle because of the upper bound of curvature values(see
Figure 8).

a
(1]}

[ ]
]

Figure 8. An counter-example of C-discrete
curvature

Figure 9 shows an example that indicates the drawbacks
of the C-discrete curvature estimation. The vertices of a
polygon lie on the union of two circles of the same radius.
By C-type estimation, there are two types of the curvature
value: one is the curvature of a point adjacent to points on
different circles, the other is that of a point adjacent to
points on the same circle. The former is shown by green
square, the other is shown by red disc. Although the
points of the second type have the same curvature, the
interior angles are not same. For example, the left vertex
has a smaller interior angle than the other vertices, so that
we may guess that its curvature is larger than the others.
Therefore, it is a contrst to the result of the C-type
curvature estimation.

Figure 9. The geometric meaning of
C-discrete curvature

4.2. Parabola-Based Discrete Curvature

In this subsection, we introduce a new discrete curvature
estimation based on the parabola interpolation. The
formula has a good geometric property, so the curvature
estimated by our method well resembles the local shape
of polygons. In general, the local shape of a polygon at a
vertex is determined by the geometric relationship
between the vertex and its adjacent vertices. We have
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known that the concept of curvature is derived from a
curve and it is a quantity to measure the local bending of
curves. Therefore, the best method to resemble the local
shape, following the original definition of a curvature is
to use the quadratic curve interpolating the three
consecutive vertices.

We adopt a quadratic Bezier curve as an interpolating
curve because it has a good geometric property. Let
A, B, C be three consecutive vertices. The general form of
a quadratic Bezier curve is as follows:

P(t) = PO Boz(t) + Pl Blz(t) + Pz Bzz(t),

where P; are the control points of the Bezier curve and
BI(D = (7)1 - o

are the Bernstein polynomials of degree n. In general,
there are several methods to find the Bezier curve that
interpolates the given vertices. That is, the conditions for
two end vertices are already determined as follows: P(0)
= A, P(1) = C, so the method is determined according to
when the curve passes through the intermediate vertex B.
This problem is a parameterization of curves. We can
consider the following two methods:

® Standard: P(1/2) =B

® Length-based: P(||AB ||/ (JJAB||+||BC||))=B
The standard parameterization is simple to derive the
good geometric relations, where the length-based
parameterization well resembles the local shape but
yields more complex formula. In this paper, we adopt the
standard parameterization so that we may find out a good

relationship between the curvature of a curve and the
discrete curvature of a polygon.

First of all, we compute the three control points Po, Py, P,
of the quadratic Bezier curve, satisfying the standard
parameterization condition:
Po=A, Pb=(M4B-A-C)/2, P,=C.
Therefore, the interpolating Bezier curve is as follows:
P(t) = A Bo’(t) + (4B-A-C)/2 B,A(t) + C BA(t).

The curvature of P(t) at t=0.5 is

©p(0.5) = ||P"(0.5)xP(0.5)]|/|P'(0.5)
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= || 4(A-2B+C) x (C-A) ||/ ||C-A|]’.

Hence, we can define a new Parabola-based discrete
curvature of the given vertex B as follows:

l14(A — 2B + C) x (C — A)||
[IC—Al|?

xp(p) =

First of all, we find out the geometric properties of the
P-discrete curvature formula. Let V=(C-A)/2 and G =
A-2B+C. The P-discrete curvature formula is

14G x 2V|| _ ||Gl| sin®
|12VI[® V12

xp(p) =

where 6 is the in-between angle of the vectors G and V.
The numerator of the above equation is the area of the
parallelogram BDEF and is four times as much as the area
of the triangle BCF as shown in Figure 10. Therefore, the
P-discrete curvature formula is ke (B) = (2h) / v2, where, h
and v are the height and the width of the triangle BCF,
respectively.

E

D

Figure 10. The geometric meaning of
P-curvature formula

In order to verify the propriety of the P-discrete curvature,
we regularly sample n points on a circle of radius r and
compute their P-discrete curvature. Let p;= (r cos ((2 7 i)
n), rsin((2mi)/n)),i=0,...,n-1, be the vertices of a
n-gon on the circle. By trigonometry, we can compute the
values of v and h as follows:

v =rsin ((2 i) /n),

h=r(1-cos(2=i)/n)).

Therefore, as the number of sampling points increases to
the infinity, the value of curvature at a vertex of the n-gon
becomes that of the circle.

2r(1-cos (Z?Hi)) 1

r

lim

r{i—l;lc}oKp (pn) = n—oo ZT[
r2sin? (— i)
n
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c‘/l\‘. "//\\‘\
400 200 153

Figure 11. Polygons with the different
p-curvature values

Table 1. The P-discrete curvature and its radius of curvature of
the sampled points on the circle of radius 1

n 3 4 5 6 100
Curvature 400 |200 |153 |1.33 |1.00
radius 0.25 | 050 |[0.65 |0.75 |1.00

1667

Figure 11 and Table 1 show the several polygons on a
circle of radius 1 and their P-discrete curvature values.
This result is an excellent contrast to that of C-discrete
curvature estimation (Figure 3). The C-type estimation
wishes that the curvature of the sampled vertices may
become that of a circle because the vertices are sampled
on the circle. The method puts emphasis on the point of
view that the vertices are on a circle. However, it goes
against the concept of curvatures. It loses the information
on the local shape. On the other hand, our method
recognizes the vertices of polygons on the circle to have a
sharper angle, not to be on a circle. That is, the P-discrete
curvature of vertices of a triangle is 4 and that of
rectangle is 2.0 (see Figure 11). More the number of
vertices increases to the infinity, less the curvature value
decreases to 1. Therefore, our method resembles the local
shape of vertices more than the C-discrete curvature
estimation.

4.3. Symmetric P- Discrete Curvature

2v

Figure 12. Polygons with the same
p-curvature values

There is an example that the P-discrete curvature
estimation is not yet the perfect solution of resembling
the local shape of polygons. Figure 12 contains three
polygons each of which has the same width of 2v and the
same height of h. So, they have the same discrete
curvature. However, we can expect that the third polygon
has the largest curvature among them because the vertex
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of the last polygon has a sharper angle than the others. In
order to solve this imperfection, we propose the
symmetric parabola-based discrete curvature estimation
using a symmetric parabola.

4.1 SP-Discrete Curvature Formula

Let N be the unit vector bisecting the interior angle of B:
N = ( BA/||BA|| + BC/||BC|| ) / || BA/||BAJ| + BC/||BC]| ||.
Then, we can consider two right-angled triangles AA'B
and CC'B as shown in Figure 13. One has the width of
length v, and the height of h, , the other has the width of
length vc and the height of hc:

Figure 13. Polygon and its Parabola

ha=N-BA,va=|BA-(N-BA)N|,
| BC - (N -BC) N

hczN'BC,VC:

Then, we can consider the right-angled triangle MM'B
with the width v, = (va+ vc)/2 and the height hy, = (ha +
hc)/2. Therefore, we define the symmetric P-type discrete
curvature of the vertex B as ksp(B)= (2 hy)/Vin’.

5 Experimental Results

5.1 Normal Vector

Figure 14 shows a variety of polyhedrons which are
approximations of a unit sphere. The upper polyhedrons
are generated by recursively subdividing a regular
tetrahedron, and the lower ones are generated by using
the parameters of longitude and latitude. The upper cases
are more irregular than the lower cases because the
triangles of a different size may be appear, so that the
error of the normal vector of a vertex in recursively
generated polyhedrons may be larger than the others.

Table 2 and 3 show the mean error of normal vectors of a
vertex in the approximated polyhedral of the unit sphere.

In order to measure the exactness of the normal vectors,
we used the following error energy

E(v;) =[1- < Nv;,N >/,
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where Nv; is the unit normal vector of a vertex V, of the

approximated sphere and N is the normal vector of the
unit sphere.

Fig. 14: Approximated Spehres

Table 2. Mean error for mesh generated by recursive method

No. Of 10 34 130 514 2050
vertices

Ns[2] 0.00E-08 7.25E-03 1.48E-03 3.41E-04 7.00E-05
N, [3] 0.00E-08 3.57E-03 6.98E-04 1.35E-04 2.50E-05
N, [4] 0.00E-08 1.42E-02 2.89E-03 6.47E-04 1.31E-04
N.[6] 0.00E-08 7.42E-04 3.57E-04 9.30E-05 2.00E-05
N 0.00E-08 5.22E-04 1.41E-04 3.10E-05 6.00E-06

CM

Table 3. Mean error for mesh generated by parametric method

No. of 23 50 122 262 578
Vertices

Na[2] 4.03E-03 7.86E-04 2.22E-04 5.20E-05 2.40E-05
N, [3] 1.41E-03 5.54E-04 1.11E-04 6.00E-05 6.00E-06
N [4] 8.87E-03 1.96E-03 5.88E-04 6.30E-04 6.30E-05
N.[6] 1.77E-03 1.11E-03 1.11E-04 5.00E-05 5.00E-06
Neu 7.89E-04 4.63E-04 5.70E-05 1.60E-05 2.00E-06

According to the result of experiment, the normal vector
computation proposed by Chen [10] is better than the
other previous methods. However, the exactness of our
method is two times than that of Chen. So we argue that
our method is the best of all.

Figure 15 shows the results of rendering generated by
Phong shading which are based on the N, method, N

method, and N, method. The positions of camera and

light are the same so that the highlighted region should
symmetrically appear near the vertex positioned in the
center of the rendering. Figure 14(a) is the wire-frame of
a cube. It has irregular topology. The vertex positioned in
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the center is adjacent to 4 triangles on the upper rectangle,
where it is adjacent to a triangle on the left and the right
rectangles, respectively. Therefore, the highlighted area
should be shifted up and down. Figure 15 (b) and (c) are

the results of N, method and N. method, respectively.

Figure 15 (d) generated by our method shows more
realistic rendering than the other methods. The
highlighted area of our method looks more realistic than
the others.

(a) Wire-frame (b) n,method

(¢) N;method

(d) New method

Fig. 15 results of rendering

5.2 Comparison of SP-DC and C-DC

We compared the symmetric parabola-based discrete
curvature with the circle-based discrete curvature by
using the Taylor series of curves interpolating the given
two points. The C-curvature adopts the distance BM
between two points as the parameter of the curve,
whereas the SP-curvature adopts the horizontal distance
MM' between them (see Figure 13). First of all, we derive
the analytic formula of the symmetric parabora-based
discrete curvature by using the Taylor series. For the
convenience of deriving, we assume that the bisecting
unit vector is N =(0, -1), a given vertex is p = (0, hp), and
its adjacent vertex is p; (vm, 0). Then, the parabola g(t) =
(t, f(t)) interpolating two vertices is symmetric so that the
unit normal vector at p is the same as N and f (0)=0.
Hence, the first and second derivatives of the parabola at
the vertex p are $g'(0) = (1, 0), g (0) = (0, f "(0)).
Therefore, we can compute the curvature of the curve at
the vertex p as follows:

_llg”(0) x g’ (@l
llg' (O)1I®
In order to compute the second derivative of f(t), we use

the Taylor series of f(t). Because f(t) is a quadratic
function, the form is as follows: f(t) = f(0) + f ' (0) t + f

= [If" (Ol
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"(0y/212, £7(0) = (2 (f(t) - f(0))) / 2 = (2 hy)/v. Therefore,
the symmetric parabora-based discrete curvature is the
same as the curvature of the curve g(t): k4(0) = ksp(p).

Table 4 The comparison of SP-curvature with C-curvature

C-Discrete SP-Discrete
Curvature Curvature
Formula kc(B) = (2 ksp(B) = (2 N-BA)
N-BA)/ || ABJ]? /| BA- (N
BAN|?
Parameter Distance Horizontal
Distance
Range ke(B) <2 if ksp(B) < o0
IAB| = 1
Trajectory circle parabola
Magnitude kc(B) < xsp(B)

The differences of C-discrete curvature and SP-discrete
curvature are shown in Table 4. It includes the formulae
of curvatures, the parameters of the curves in the Taylor
series, the trajectory of points with the constant curvature,
the range of curvature values, and the comparison of their
magnitudes.

6 Conclusion

The analysis on the local properties of 3D meshes plays
an important role in the applications such as morphing,
simplification, smoothing. In this paper, we proposed
new computation algorithms of the normal vector and
curvature at a vertex of meshes of arbitrary topology. Our
normal vector computation applies conformal mappings
to the 1-ring neighborhood of a vertex and computes the
mean value coordinates of the vertex with respect to the
vertices of the neighborhood. So, the normal vector
generated by our method may well reflect the local
geometric property due to the conformal mapping, and
preserve the continuity of the coefficients over the
mapped domain. Therefore, it could be confirmed by our
experimental results that our method computes the
normal vectors of vertices of a mesh more accurately than
others. Moreover, this method may be applied to not only
triangular meshes but also the meshes with an arbitrary
topology, and has the advantage of getting the more
realistic rendering. As a future research, we will develop
the main algorithms of Phong shading based on the result
of this research.

By exploiting the more exact computation of normal
vectors, we are able to compute the right discrete
curvature of vertices. The common previous methods
compute directly the sectional curvatures for each
one-ring neighbor, and then derive the gaussian curvature
and the mean curvature using the sectional curvatures.
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All of them use the circle-based discrete curvature to
compute the sectional curvature. In this paper, we point
out the fatal error of C-type discrete curvature
computation, and proposed the parabola-based discrete
curvature computation to resolve the problem. Our
method may be the basis of normal vector estimation and
segmentation of meshes.
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