

New Families of Computation-Efficient Parallel Prefix Algorithms

 YEN-CHUN LIN

Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology

43 Keelung Road, Sec. 4, Taipei 106

TAIWAN

yclin747@gmail.com

http://faculty.csie.ntust.edu.tw/~yclin/yclin.htm

LI-LING HUNG

Department of Computer Science and Information Engineering

Aletheia University

32 Chen-Li St., Tamsui, Taipei County 251

TAIWAN

llhung@mail.au.edu.tw

Abstract: - New families of computation-efficient parallel prefix algorithms for message-passing

multicomputers are presented. The first family improves the communication time of a previous family of

parallel prefix algorithms; both use only half-duplex communications. Two other families adopt collective

communication operations to reduce the communication times of the former two, respectively. The

precondition of the presented algorithms is also given. These families each provide the flexibility of either

fewer computation time steps or fewer communication time steps to achieve the minimal running time

depending on the ratio of the time required by a communication step to the time required by a computation step.

Relative merits and drawbacks of parallel prefix algorithms are described and illustrated to provide insights into

when and why the presented algorithms can be best used.

Key-Words: - Collective communication, Computation-efficient parallel prefix, Half-duplex communication,

Message-passing multicomputer, Parallel algorithm, Precondition, Prefix computation

1 Introduction
Prefix computation is considered as a primitive

operation because of its importance and usefulness

[4]. It can be defined as follows: given n inputs x1,

x2,…, xn, and an associative binary operator ⊕,
compute yi = x1 ⊕ x2 ⊕…⊕ xi, for 1 ≤ i ≤ n. For ease
of presentation, unless otherwise stated, this study

uses xi’s and yi’s as inputs and outputs, respectively,

and assumes that the number of inputs is n.

Prefix computation has been extensively studied

for its wide application in fields such as biological

sequence comparison, cryptography, design of

silicon compilers, job scheduling, image processing,

loop parallelization, polynomial evaluation,

processor allocation, and sorting [1-3, 8, 10, 13, 15,

24-27, 29, 54, 56, 58]. The binary operation ⊕ can be
as simple as a Boolean operation or an extremely

time-consuming operation, such as multiplication of

matrices [11].

Numerous parallel prefix algorithms for various

parallel computing models have been proposed [1, 7,

9, 12, 18-20, 25, 27, 30, 31, 39, 44, 45, 47, 49], and

many parallel prefix circuits have also been designed

[3, 5, 6, 14, 17, 22, 26-28, 31, 33-35, 37, 38, 40-43,

46, 48, 50, 51, 57, 58]. Additionally, prefix

computation is a built-in operation for Message-

Passing Interface parallel programming [16], and is

implemented in hardware in the Thinking Machines

CM-5 [53].

Egecioglu and Koc present a computation-

efficient parallel prefix algorithm, henceforth named

EK, for the half-duplex multicomputer model with p

processing elements (PEs), where p < n [11]. Half-

duplex communication is the weakest

communication model of message-passing

multicomputers, with which each PE of a

multicomputer can only send or receive a message in

a communication step. This model of communication

is basic and important [23]. Although a PE of a

modern multicomputer can send and receive in the

same step, it usually takes a longer time to send and

receive than to send or receive only due to the

inherent hardware capability and software overhead

[21, 52]. On a p-PE system, the half-duplex

communication ensures that no more than p/2

messages are transferred in a communication step

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1651 Issue 10, Volume 8, October 2009

and thus a communication step will not take too

much time.

Lin proposes a parallel prefix algorithm,

henceforth named L, whose communication time is

less than that of EK on the same model [32]. L has

been generalized to become a family of parallel

algorithms named A [19], which allow multiple

combinations of the computation time and

communication time; L is just an extreme member of

the family. The other members of the family take less

computation time and may also take less

communication time than L does. One can take the

exact time of performing ⊕ and that of

communicating a message into account to obtain a

member that requires the minimal running time on a

specific multicomputer.

In this paper, new families of computation-

efficient parallel prefix algorithms for message-

passing parallel computers with p PEs, where p < n,

are presented. The communication time of the A

family can be decreased to result in another family.

We then use collective communications to further

improve the communication time, and derive one

more family of algorithms from each of the first two

families. Collective communication operations, such

as broadcast and scatter, can be better than an

equivalent sequence of send or receive operations for

ease of programming and execution efficiency [55].

The rest of this paper is organized as follows.

Section 2 reviews the A family of parallel prefix

algorithms for half-duplex message-passing

multicomputers, including the computation time and

communication time, as well as other properties, of

this family. Section 3 shows how the communication

time of the A family can be decreased to become the

second family. Section 4 reduces the communication

time by using collective communications to obtain

two more families of algorithms. Section 5 shows

that the four families of algorithms are not always

effective when p < n, and derives a much stronger

precondition of the algorithms. Section 6 compares

prefix algorithms for multicomputers. Conclusions

are finally drawn in Section 7.

2 Review of the A family of parallel

prefix algorithms
In this section, we review the A family of parallel

algorithms for solving the prefix problem of n inputs

with p PEs, where p < n, on the half-duplex

multicomputer model. The p PEs are represented by

P1, P2,…, Pp. For ease of presentation, i:j is used to

represent the result of computing

xi ⊕ xi+1 ⊕…⊕ xj, where i ≤ j.

Algorithm A(n, p, k) {Solving the prefix

problem of n inputs, x1, x2,…, xn, using p PEs to

generate y1, y2,…, yn, where p = kq + 1, k ≥ 1, q ≥ 1.
In phase 1, k PEs are assigned to perform only

computations; all the other PEs need to communicate

among themselves, except when p – k = 1. To use

this algorithm effectively, n ≥ (p2 + kp + k + 1)/2 is
required. For ease of presentation, assume that all

numerical values are integers.}

Phase 1: Partition the inputs into two parts N1 =

(x1, x2,…, xv) and N2 = (xv+1, xv+2,…, xn), where

0 < v < n. The value of v will be explained shortly. If

p = k + 1, then P1 uses N1 to compute outputs y1,

y2,…, yv sequentially; otherwise, P1, P2,…, Pp–k use

N1 to compute y1, y2,…, yv by invoking A(v, p – k, k)

recursively. In the mean time, N2 is first distributed

evenly among the other k PEs, Pp–k+1, Pp–k+2,…, Pp;

each of the PEs holds c = (n – v)/k input values.

These k PEs then take c – 1 parallel computation

steps to compute z1 = (z1,1, z1,2,…, z1,c), z2 =

(z2,1, z2,2,…, z2,c),…, zk = (zk,1, zk,2,…, zk,c),

respectively, where

zi,j = (v + (i – 1)c + 1):(v + (i – 1)c + j).

The value of v is chosen to make the total number

of computation steps in this phase required by the

first p – k PEs equal to that required by the other k

PEs, and it is given later. Note that yv is obtained by

Pp–k.

(Figure 1 should help the reader understand Phase

1.)

Phase 2: Initially, Pp–k sends yv to all the other

PEs. Next, Pp–k+1 scatters, i.e., partitions and

distributes, z1 among all the PEs evenly, each PE

having c/p of the c values. All the PEs then

concurrently perform

yv+i = yv ⊕ z1,i, i = 1, 2,…, c,

in c/p computation steps. Note that yv+c is computed

by Pp.

(Figure 2 should help the reader understand Phase

2.)

Phase m (m = 3, 4,…, k + 1): Initially, Pp sends

yv+(m–2)c to all the other PEs. Next, Pp–k+m–1 scatters

zm–1 among all the PEs evenly, each PE having c/p

values. All the PEs then concurrently perform

yv+(m–2)c+i = yv+(m–2)c ⊕ zm–1,i, i = 1, 2,…, c,

in c/p computation steps. Note that yv+(m–1)c is

computed by Pp.

(Figure 3 should help the reader understand

Phases 3 through k + 1.)

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1652 Issue 10, Volume 8, October 2009

(x1, x2,…, xn)

(x1, x2,…, xv) (xv+1, xv+2,…, xn)
used in running

A(v, p – k, k)

on the first p – k

PEs recursively

y1, y2,…, yv z1, z2,…, zk

where zi = (zi,1, zi,2,…, zi,c)

zi,j = (v+(i–1)c+1):(v+(i–1)c+j)

distributed to the last k PEs,

each with c = (n – v)/k values

Fig. 1. Phase 1 of Algorithm A(n, p, k)

when p > k + 1.

yv z1

P1, P2,…, Pp

sent to all PEs
scattered to all PEs, each

with c/p values

yv+i = yv⊕ z1,i , i = 1, 2,…, c

computed in c/p computation steps

Fig. 2. Phase 2 of Algorithm A(n, p, k).

yv+(m–2)c zm–1

yv+(m–2)c+i = yv+(m–2)c⊕ zm–1,i , i = 1, 2,…, c

P1, P2,…, Pp

computed in c/p computation steps

sent to all PEs
scattered to all PEs, each

with c/p values

Fig. 3. Phase m (m = 3, 4,..., k + 1) of A(n, p, k).

Let C(n, p, k) denote the number of computation

steps required by Algorithm A(n, p, k), and R(n, p, k)

denote the number of communication steps. As in the

two previous papers [11, 32], the initial input data

loading time is not taken into account. To help the

reader understand the algorithm, we give two

examples in the following.

First, consider the case when p = 4, k = 3.

Phase 1: Assign N1 = (x1, x2,…, xv) to P1 and N2 =

(xv+1, xv+2,…, xn) to P2, P3, and P4. The prefixes of N1

are computed by P1, and N2 is processed by the other

PEs. By the rule of deciding v, the number of

computation steps required by P1, v – 1, equals the

number of parallel computation steps required by the

other three PEs, (n – v)/3 – 1. Hence, v = n/4, and it

takes n/4 – 1 computation steps in this phase. After

phase 1 has completed, P1 obtains y1, y2,…, yn/4; P2

obtains z1,1, z1,2,…, z1,n/4; P3 obtains z2,1, z2,2,…, z2,n/4;

and P4 obtains z3,1, z3,2,…, z3,n/4.

Phase 2: P1 initially sends yn/4 to P2, P3, P4 in 3

communication steps. Then, P2 sends 1/4 of the n/4

values obtained in phase 1 to each of the other three

PEs in 3 communication steps. That is, z1,1 through

z1,n/16, z1,n/8+1 through z1,3n/16, and z1,3n/16+1 through z1,n/4

are sent to P1, P3, P4, respectively. Subsequently, the

four PEs compute n/4 outputs yn/4+1, yn/4+2,…, yn/2 in

n/16 parallel computation steps. At the end, P4 has

yn/2.

Phase 3: P4 initially sends yn/2 to the other PEs in 3

communication steps. Then, P3 sends 1/4 of the n/4

values obtained in phase 1 to each of the other three

PEs in 3 communication steps. That is, z2,1 through

z2,n/16, z2,n/16+1 through z2,n/8, and z2,3n/16+1 through z2,n/4

are sent to P1, P2, P4, respectively. Subsequently, the

four PEs compute n/4 outputs yn/2+1, yn/2+2,…, y3n/4

concurrently in n/16 computation steps. At the end,

P4 has y3n/4.

Phase 4: P4 sends y3n/4 and 1/4 of the n/4 values

obtained in phase 1 to each of the other three PEs in

3 communication steps. That is, z3,1 through z3,n/16,

z3,n/16+1 through z3,n/8, and z3,n/8+1 through z3,3n/16 are

sent to P1, P2, P3, respectively. Subsequently, the

four PEs concurrently compute n/4 outputs y3n/4+1,

y3n/4+2,…, yn in n/16 computation steps.

Therefore, the total number of computation steps

is

C(n, 4, 3) = (n/4 – 1) + n/16 + n/16 + n/16

= 7n/16 – 1. (1)

The total number of communication steps is

R(n, 4, 3) = 3 × 2 + 3 × 2 + 3 = 15.
Next, consider the case when p = 7, k = 3.

Phase 1: Assign N1 = (x1, x2,…, xv) to the first four

PEs, and assign N2 = (xv+1, xv+2,…, xn) to the last three

PEs. From Eq. (1), we know that P1, P2, P3, P4 can

compute the prefixes of N1 in C(v, 4, 3) = 7v/16 – 1

computation steps. In the mean time, P5, P6, P7 share

N2 evenly and compute their respective prefixes

concurrently, taking (n – v)/3 – 1 computation steps.

By the rule of deciding v,

7v/16 – 1 = (n – v)/3 – 1,

v = 16n/37.

Consequently, each of the last 3 PEs has (n – v)/3 =

7n/37 input values. Thus, the values z1,1 through

z1,7n/37 are obtained in P5, z2,1 through z2,7n/37 in P6, and

z3,1 through z3,7n/37 in P7. Note that P4 obtains yv =

y16n/37, and C(16n/37, 4, 3) = 7n/37 – 1.

Phase 2: P4 initially sends y16n/37 to the other six

PEs in 6 communication steps. Then, P5 sends 1/7 of

the 7n/37 values obtained in phase 1 to each of the

other six PEs in 6 communication steps.

Subsequently, the seven PEs compute 7n/37 outputs

y16n/37+1, y16n/37+2,…, y23n/37 in n/37 parallel

computation steps. At the end, P7 has y23n/37.

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1653 Issue 10, Volume 8, October 2009

Phase 3: P7 initially sends y23n/37 to the other six

PEs in 6 communication steps. Then, P6 sends 1/7 of

the 7n/37 values obtained in phase 1 to each of the

other six PEs in 6 communication steps.

Subsequently, the seven PEs concurrently compute

7n/37 outputs y23n/37+1, y23n/37+2,…, y30n/37 in n/37

computation steps. At the end, P7 has y30n/37.

Phase 4: P7 initially sends y30n/37 and 1/7 of the

7n/37 values obtained in phase 1 to each of the other

six PEs in 6 communication steps. The seven PEs

then concurrently compute 7n/37 outputs y30n/37+1,

y30n/37+2,…, yn in n/37 computation steps.

Therefore, the total number of computation steps

is

C(n, 7, 3) = 7n/37 – 1 + (n/37) × 3
= 10n/37 – 1.

The total number of communication steps is

R(n, 7, 3) = R(16n/37, 4, 3) + 6 × 5 = 45.
C(n, p, k) and R(n, p, k) in the general case, as

well as other properties of Algorithm A, such as the

values of p and k that lead to the smallest C(n, p, k)

and R(n, p, k), are given in the following theorems.

Theorem 1. When p = k + 1, v=n/p; otherwise,

v =
2

2

1
1

p kp k
p kp k
− + +
+ + +

n.

Theorem 2. C(n, p, k) =
2

2 ()
1.

1
n p k

p kp k
+

−
+ + +

Theorem 3. If d > a and e > b, then

C(n, a, b) > C(n, d, b) > C(n, d, e).

Theorem 4. R(n, p, 1) = p(p − 1);
R(n, p, k) = (2k − 1)(p – 1)(p + k – 1)/2k for k ≥ 2.

Theorem 5. If d > a, then R(n, d, k) > R(n, a, k). If

p ≥ 2k2 – 3k + 1 and k ≥ 2,
then

R(n, p, k) ≤ R(n, p, 1)

and

R(n, p, 2) ≤ R(n, p, k) < R(n, p, k + 1);

otherwise,

R(n, p, 1) < R(n, p, k) < R(n, p, k + 1).

Theorem 6. Algorithm A is cost optimal when n =

Ω(p
3
).

Theorem 7. To use Algorithm A(n, p, k) effectively,

it is required that n ≥ (p2 + kp + k + 1)/2.

Note that Theorems 4 and 7 reveal that the

communication time is independent of n when n ≥
(p

2
 + kp + k + 1)/2. Like Algorithms EK and L,

Algorithm A is practical when the amount of time

required to perform a binary operation ⊕ is greater

than that required to transfer a message between two

PEs. This situation may happen, for example, when

the binary operation is a time-consuming floating-

point matrix multiplication or a series of matrix

multiplications.

3 Algorithm B with reduced

communication time
When p ≥ 2k + 1 and k ≥ 2, Algorithm A can be

modified to become a faster algorithm named B.

Recall that in phase 1 of Algorithm A, the number of

computation steps required by the first p – k PEs

equals the number of computation steps required by

the other k PEs. In addition, the first p – k PEs

communicate among themselves in phase 1, but the

last k PEs perform no communication operations;

thus, the last k PEs are idle for the amount of time

that the first p – k PEs take to communicate.

To reduce this idle time, we note that in Algorithm

A there are communications among the last k PEs in

phases 2 through k + 1, which can be performed in

phase 1, but the communications involving the first

p – k PEs in phases 2 through k + 1 should not be

moved to phase 1. In each of these k phases, the

original communications that can be moved to phase

1 are message transfers from one of the last k PEs to

the other k – 1 PEs. Thus, at most k(k − 1)

communication steps can be moved to phase 1.

Note that we still need to make sure whether all or

only part of the k(k – 1) communication steps should

be moved. Comparing k(k – 1) with the number of

communication steps performed in phase 1 of

Algorithm A, which is R(v, p – k, k), can clarify this.

From Theorem 4,

R(v, p – k, k) = (2k − 1)(p − k − 1)(p − 1)/2k.

Since p ≥ 2k + 1, we have
R(v, p – k, k) ≥ (2k − 1)k(2k)/2k = k(2k − 1).

Thus,

R(v, p – k, k) – k(k – 1) ≥ k2 > 0.
That is, R(v, p – k, k) > k(k − 1). Therefore, all the

k(k – 1) communication steps can be performed in

phase 1 without increasing the communication time

needed in phase 1. Clearly, Algorithm B(n, p, k)

takes less communication time than Algorithm

A(n, p, k). Note that the two algorithms take the

same amount of computation time.

Let S(n, p, k) denote the number of

communication steps required by Algorithm

B(n, p, k). Thus, S(n, p, k) is the sum of the following

components:

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1654 Issue 10, Volume 8, October 2009

(i) S(v, p – k, k) communication steps required by

the first p – k PEs when invoking B(v, p – k, k)

in phase 1.

(ii) p – 1 communication steps required by Pp–k to

send yv to the other p – 1 PEs in phase 2.

(iii) (k – 1)(p – 1) communication steps required by

Pp to send yv+ic to the other p – 1 PEs in phase

i + 2, for i = 1, 2,…, k – 1.

(iv) k(p – k) communication steps taken to distribute

part of zi, for 1 ≤ i ≤ k, evenly among P1, P2,…

Pp–k in phases 2 through k + 1.

Note that in phase k + 1, since the

communications that contribute to component (iii)

and those that contribute to component (iv) are all

sent out by Pp, the latter communications can be

merged to the former ones, eliminating p − k

communication steps in this phase. Let

p = k(i + 1) + 1, where i ≥ 1.
It can be shown that [36]

S(n, p, k) = 2 22 1 1
3 2.

22
k

p p k k
k
−

− + − +

Clearly, S(n, p, k) = Θ(p
2
). Therefore, the

discussion of cost optimality of Algorithm A applies

to Algorithm B. That is, Algorithm B is also cost

optimal when n = Ω(p
3
).

4 Using Collective Communications
In this section, we propose to reduce the

communication time of Algorithms A and B when

collective communications are available. Their

computation parts remain the same.

We first consider modifying Algorithm A to

obtain a new one named E. In phase i + 2, 0 ≤ i ≤

k – 1, of Algorithm A, the p – 1 transfers of yv+ic to

all the other PEs can be replaced by a single

broadcast to achieve the same effect; in addition,

scattering of zi+1 can be done with a single scatter

operation.

With a suitable implementation, either a broadcast

or scatter operation takes Θ(log p) time to send to p

PEs on a multicomputer [48]. Thus, broadcasting the

k values yv, yv+c,…, yv+(k–1)c is equivalent to taking

c1k log p point-to-point communication steps, where

c1 is a constant, and k scatter operations are

equivalent to taking c2k log p point-to-point

communication steps, where c2 is a constant. Let c =

c1 + c2 and p = k(i + 1) + 1, where i ≥ 0. We use

T(n, p, k) to denote the number of communication

steps required by Algorithm E(n, p, k). It can be

shown that T(n, p, k) = O(p log p) [36].

Algorithm E takes the same the number of

computation steps as the former two families do.

Since Theorem 2 gives C(n, p, k) = Θ(n/p),

Algorithm E takes Θ(n/p) + O(p log p) time. If n =

Ω(p
2
 log p), then n/p = Ω(p log p), and thus Θ(n/p) +

O(p log p) = Θ(n/p). Since the sequential solution for

the prefix problem takes Θ(n) time, Algorithm E is

cost optimal when n = Ω(p
2
 log p).

The modification made to Algorithm B by using

broadcast and scatter can be done similarly, and

results in the same communication time complexity.

Thus, the resulting algorithm, named F, is also cost

optimal when n = Ω(p
2
 log p). Note that Algorithm F

takes the same number of computation steps as the

other three families do.

5 Precondition of algorithms
Theorem 7 gives that the relation

n ≥ (p2 + kp + k + 1)/2
is required to use Algorithm A effectively. We can

see that the same is also true for the other algorithms

introduced in this paper. Before going into the

general case, we first use two examples to shed some

light.

Suppose n = 1024, p = 256, and k = 85. From

Theorem 2, we have

C(1024, 256, 85) < 7.

However, it is even impossible to compute the sum

of 1024 inputs in 7 computation steps, let alone the

prefix computation of 1024 inputs. Therefore,

Theorem 2 does not hold under this situation. That is,

the four families of algorithms cannot complete the

prefix computation in fewer than 7 computation steps.

As a more general case, suppose n = 1024, p =

256 = kq + 1, and q ≥ 1. From Theorem 1, v =

1024(256
2
 – 256k + k + 1)/(256

2
 + 256k + k + 1)

inputs are assigned to the first 256 – k PEs, and

n – v = 2kpn/(p
2
 + kp + k + 1)

= 512×1024k /(2562 + 256k + k + 1)
< 8k

inputs are assigned to the last k PEs. That is, each of

the last k PEs has at most 8 inputs. Then, in phase 2,

P257–k sends at most 8 values to at most 8 of the 256

PEs for further computation; that is, at least 248 PEs

are idle while the other PEs are busy. This ineffective

use of PEs also exists in phases 3 through k + 1 of all

four families.

Thus, in phase 1 at least kp inputs should be

assigned to the last k PEs, which guarantees that in

any other phase each PE can be assigned at least one

value to compute. Using n – v ≥ kp and Theorem 1,

we see that

n – n(p
2
 – kp + k + 1)/(p

2
 + kp + k +1) ≥ kp,

n ≥ (p2 + kp + k + 1)/2.

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1655 Issue 10, Volume 8, October 2009

Therefore, this is the precondition for running the

presented algorithms effectively.

6 Comparison of algorithms
Lin and Lin present a parallel prefix algorithm

named PLL for the half-duplex multicomputer [39];

PLL requires 2n/p + 1.44 log2 p – 1 computation

steps and 1.44 log2 p + 1 communication steps when

using p PEs, where 10 ≤ p < n. The number of

computation steps of any of our algorithms is less

than that of PLL, but the number of communication

steps is greater than that of PLL.

Since Algorithm L is a special case of A(n, p, k),

precisely A(n, p, 1), it takes C(n, p, 1) computation

steps and R(n, p, 1) communication steps. From

Theorem 2, a larger k leads to less computation time.

As for the communication time, from Theorem 5,

R(n, p, k) ≤ R(n, p, 1) when p ≥ 2k
2
 – 3k + 1 and k ≥

2; otherwise, R(n, p, k) > R(n, p, 1). That is, A(n, p, k)

is definitely faster than L when p ≥ 2k
2
 – 3k + 1 and

k ≥ 2. However, when p < 2k
2
 – 3k + 1, we need to

know the ratio of the time required by a

communication step to the time required by a

computation step, τ, to decide which algorithm is

faster.

Algorithm B can also be faster than Algorithm L.

To compare their communication times, we see that

when k ≥ 2,
R(n , p, 1) – S(n, p, k) = (p

2
 – kp – 2k

3
 + 6k

2
 –4k)/2k.

Recall that Algorithm B exists only when p ≥ 2k + 1
and k ≥ 2. Therefore, when p2 – kp – 2k3 + 6k2 – 4k >
0, p ≥ 2k + 1, and k ≥ 2, Algorithm B is faster than

Algorithm L; otherwise, we need to know the value

of τ to decide which is faster.
To help the reader understand the relative merits

and drawbacks of these algorithms, we give some

example figures in the following. Fig. 4 shows the

numbers of computation steps required when n =

8192 and p = 13. Note that k represents the number

of PEs that perform no communications in phase 1 of

our algorithms. Since PLL is a very different

algorithm, it should not appear in the figures;

however, for easy comparison, we show its related

data in every figure as if k = 1. Clearly, Algorithms

A and E each take the fewest number of computation

steps when k = 12. Note that when 2 ≤ k ≤ (p – 1)/2,

i.e., when Algorithms B and F are defined, the two

algorithms each take the same number of

computation steps as Algorithm A. Algorithm PLL

takes the most, 1265, computation steps.

Figure 5 shows the numbers of communication

steps required by four algorithms. We assume that

each collective communication involving p PEs

requires the same amount of time as 2 log2 p point-

to-point communications. Algorithm E takes the

fewest communication steps among the four

algorithms. As already mentioned, although the exact

number of communication steps of Algorithm F is

not derived, Algorithm F, when defined, needs

slightly less communication time than Algorithm E.

Moreover, EK takes 3550 communication steps,

which is too large to fit in the figure; PLL takes 7

communication steps, which is too small to fit in the

figure.

k

0 2 4 6 8 10 12 14

N
u
m
b
e
r
o
f
c
o
m
p
u
ta
ti
o
n
 s
te
p
s

1200

1210

1220

1230

1240

1250

1260

1270

Algorithms A and E

Algorithms EK and L

Algorithm PLL

Algorithms B and F

 Fig. 4. The numbers of computation steps required

when n = 8192 and p = 13.

k

0 2 4 6 8 10 12 14

N
u
m
b
e
r
o
f
c
o
m
m
u
n
ic
a
ti
o
n
 s
te
p
s

50

100

150

200

250

300

Algorithm A

Algorithm L

Algorithm B

Algorithm E

 Fig. 5. The numbers of communication steps

required when n = 8192 and p = 13.

Note that τ has an impact on the total running

time. If τ is small, which may be true when the

binary operation ⊕ is matrix multiplication, our new

algorithms are more probable to be faster than

previous ones. For example, Figs. 6 and 7 show the

running times of algorithms when n = 8192 and p =

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1656 Issue 10, Volume 8, October 2009

13, for τ = 1 and 0.1, respectively. When τ = 1, Fig. 6
shows that Algorithm E is faster than A, B, and L;

however, Algorithm PLL is the fastest. Algorithm F,

which is not shown in the figure, should be faster

than E, but might be slower than PLL.

k

0 2 4 6 8 10 12 14

R
u
n
n
in
g
 t
im
e

1250

1300

1350

1400

1450

1500

Algorithm A

Algorithm B

Algorithm PLL

Algorithm L

Algorithm E

 Fig. 6. Running times in number of computation

steps when n = 8192, p = 13, and τ = 1.

In contrast, as shown in Fig. 7, when τ = 0.1,
Algorithm B is generally faster than A and L, but

A(8192, 13, 12) is faster than B(8192, 13, 6). Note

that k = 12 is not valid for Algorithm B. Algorithm E

is faster than the others, and E(8192, 13, 12) is the

fastest. Also note that since F(8192, 13, 6) is only

slightly faster than E(8192, 13, 6), E(8192, 13, 12)

should be faster than F(8192, 13, 6). Note that

Algorithm PLL becomes the slowest.

To contrast the running times when n = 4096 with

those when n = 8192, Fig. 8 is given. The figure

shows that Algorithm E is faster than the other

algorithms, and E(4096, 13, 12) is the fastest.

k

0 2 4 6 8 10 12 14

R
u
n
n
in
g
 t
im
e

1210

1220

1230

1240

1250

1260

1270

Algorithm A

Algorithm B

Algorithm PLL

Algorithm L

Algorithm E

 Fig. 7. Running times in number of computation

steps when n = 8192, p = 13, and τ = 0.1.

k

0 2 4 6 8 10 12 14

R
u
n
n
in
g
 t
im
e

610

615

620

625

630

635

640

Algorithm A

Algorithm B

Algorithm PLL

Algorithm L

Algorithm E

 Fig. 8. Running times in number of computation

steps when n = 4096, p = 13, and τ = 0.1.

7 Conclusions
We have presented new algorithms to speed up

A(n, p, k), a family of computation-efficient parallel

algorithms run on half-duplex multicomputers with p

PEs to solve the prefix problem of n inputs, where p

= kq + 1, k ≥ 1, q ≥ 1, and n ≥ (p2 + kp + k + 1)/2.
This family is cost optimal when n = Ω(p

3
).

Algorithm A has been modified to become another

family, Algorithm B, which may run faster than A.

Either A or B can be transformed into another new

family by adopting broadcast and scatter operations

to reduce the communication time. The resulting two

families are cost optimal when n = Ω(p
2
 log p).

Each of the four families of algorithms provides

the flexibility of using either fewer computation time

steps (and more communication time steps) or fewer

communication time steps (and more computation

time steps) to achieve the minimal running time. The

key in considering this computation-communication

trade-off and, more importantly, whether the running

time is less than other prefix algorithms hinge on the

ratio of the time required by a communication step to

the time required by a computation step.

For the presented algorithms, the last k PEs are

idle for some amount of time in phase 1. Clearly, in

phase 1, if we assign fewer than v inputs to the first

p – k PEs and thus more than n – v inputs to the last k

PEs, then the first p – k PEs do fewer computations

and the last k PEs do more. Therefore, the idle time

can be eliminated, and the running time reduced.

How many inputs should be assigned to the first

p – k PEs is still open.

Although we have used the multicomputer model

to present the algorithms, they can be adapted to suit

shared-memory multiprocessors. The multiprocessor

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1657 Issue 10, Volume 8, October 2009

usually needs less communication time than the

multicomputer. Thus, the multiprocessor should also

be a good platform for the presented algorithms.

Acknowledgment

This research was supported in part by the National

Science Council of Taiwan under contract NSC 98-

2221-E-011-072.

References:

[1] S. G. Akl, Parallel Computation: Models and

Methods, Prentice-Hall, 1997.

[2] S. Aluru, N. Futamura, and K. Mehrotra,

Parallel biological sequence comparison using

prefix computations, Journal of Parallel and

Distributed Computing, Vol. 63, No. 3, 2003,

pp. 264-272.

[3] A. Bilgory and D. D. Gajski, A heuristic for

suffix solutions, IEEE Transactions on

Computers, Vol. C-35, No. 1, 1986, pp. 34-42.

[4] G. E. Blelloch, Scans as primitive operations,

IEEE Transactions on Computers, Vol. 38, No.

11, 1989, pp. 1526-1538.

[5] R. P. Brent and H. T. Kung, A regular layout for

parallel adders, IEEE Transactions on

Computers, Vol. C-31, No. 3, 1982, pp. 260-264.

[6] D. A. Carlson and B. Sugla, Limited width

parallel prefix circuits, Journal of

Supercomputing, Vol. 4, No. 2, 1990, pp. 107-

129.

[7] L. Cinque and G. Bongiovanni, Parallel prefix

computation on a pyramid computer, Pattern

Recognition Letters, Vol. 16, No. 1, 1995, pp.

19-22.

[8] R. Cole and U. Vishkin, Faster optimal parallel

prefix sums and list ranking, Information and

Computation, Vol. 81, No. 3, 1989, pp. 334-352.

[9] A. Datta, Multiple addition and prefix sum on a

linear array with a reconfigurable pipelined bus

system, Journal of Supercomputing, Vol. 29, No.

3, 2004, pp. 303-317.

[10] C. Efstathiou, H. T. Vergos, and D. Nikolos,

Fast parallel-prefix modulo 2n + 1 adders, IEEE

Transactions on Computers, Vol. 53, No. 9,

2004, pp. 1211-1216.

[11] O. Egecioglu and C. K. Koc, Parallel prefix

computation with few processors, Computers

and Mathematics with Applications, Vol. 24, No.

4, 1992, pp. 77-84.

[12] S. C. Eisenstat, O(log* n) algorithms on a Sum-

CRCW PRAM, Computing, Vol. 79, No. 1,

2007, pp. 93-97.

[13] A. Ferreira and S. Ubeda, Parallel complexity of

the medial axis computation, in Proc. Int. Conf.

on Image Processing, Washington, D.C., 1995,

pp. 105-108.

[14] F. E. Fich, New bounds for parallel prefix

circuits, in Proc. 15th Symposium on the Theory

of Computing, 1983, pp. 100-109.

[15] A. L. Fisher and A. M. Ghuloum, Parallelizing

complex scans and reductions, in Proc. ACM

SIGPLAN '94 Conf. on Programming Language

Design and Implementation, Orlando, FL, 1994,

pp. 135-146.

[16] W. Gropp, E. Lusk, and A. Skjellum, Using

MPI: Portable Parallel Programming with the

Message-Passing Interface, MIT Press, 1994.

[17] T. Han and D. A. Carlson, Fast area-efficient

VLSI adders, in Proc. 8th Computer Arithmetic

Symposium, Como, Italy, 1987, pp. 49-56.

[18] D. R. Helman and J. JaJa, Prefix computations

on symmetric multiprocessors, Journal of

Parallel and Distributed Computing, Vol. 61,

2001, pp. 265-278.

[19] L.-L. Hung and Y.-C. Lin, Parallel prefix

algorithms on the multicomputer, WSEAS

Transactions on Computer Research, Vol. 3, No.

4, 2008, pp. 229-239.

[20] L.-L. Hung and Y.-C. Lin, Two families of

parallel prefix algorithms for multicomputers, in

Proc. 7th WSEAS International Conference on

Telecommunications and Informatics, Istanbul,

Turkey, 2008, pp. 37-43.

[21] Inmos, The Transputer Databook, 3rd ed.,

Inmos, 1992.

[22] P. M. Kogge and H. S. Stone, A parallel

algorithm for the efficient solution of a general

class of recurrence equations, IEEE

Transactions on Computers, Vol. C-22, No. 8,

1973, pp. 783-791.

[23] D. W. Krumme, G. Cybenko, and K. N.

Venkataraman, Gossiping in minimal time,

SIAM Journal on Computing, Vol. 21, No. 1,

1992, pp. 111-139.

[24] C. P. Kruskal, T. Madej, and L. Rudolph,

Parallel prefix on fully connected direct

connection machines, in Proc. Int. Conf. on

Parallel Processing, St. Charles, IL, 1986, pp.

278-284.

[25] C. P. Kruskal, L. Rudolph, and M. Snir, The

power of parallel prefix, IEEE Transactions on

Computers, Vol. C-34, 1985, pp. 965-968.

[26] R. E. Ladner and M. J. Fischer, Parallel prefix

computation, Journal of the ACM, Vol. 27, No.

4, 1980, pp. 831-838.

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1658 Issue 10, Volume 8, October 2009

[27] S. Lakshmivarahan and S. K. Dhall, Parallel

Computing Using the Prefix Problem, Oxford

University Press, 1994.

[28] S. Lakshmivarahan, C. M. Yang, and S. K.

Dhall, On a new class of optimal parallel prefix

circuits with (size + depth) = 2n – 2 and lοg n
≤ depth ≤ (2 log n – 3), in Proc. Int. Conf. on
Parallel Processing, St. Charles, IL, 1987, pp.

58-65.

[29] F. T. Leighton, Introduction to Parallel

Algorithms and Architectures: Arrays, Trees,

Hypercubes, Morgan Kaufmann, 1992.

[30] R. Lin, K. Nakano, S. Olariu, M. C. Pinotti, J. L.

Schwing, and A. Y. Zomaya, Scalable

hardware-algorithms for binary prefix sums,

IEEE Transactions on Parallel and Distributed

Systems, Vol. 11, No. 8, 2000, pp. 838-850.

[31] Y.-C. Lin, Optimal parallel prefix circuits with

fan-out 2 and corresponding parallel algorithms,

Neural, Parallel & Scientific Computations, Vol.

7, No. 1, 1999, pp. 33-42.

[32] Y.-C. Lin, A family of computation-efficient

parallel prefix algorithms, WSEAS Transactions

on Computers, Vol. 5, No. 12, 2006, pp. 3060-

3066.

[33] Y.-C. Lin and J.-N. Chen, Z4: A new depth-size

optimal parallel prefix circuit with small depth,

Neural, Parallel & Scientific Computations, Vol.

11, No. 3, 2003, pp. 221-235.

[34] Y.-C. Lin and J.-W. Hsiao, A new approach to

constructing optimal parallel prefix circuits with

small depth, Journal of Parallel and Distributed

Computing, Vol. 64, No. 1, 2004, pp. 97-107.

[35] Y.-C. Lin, Y.-H. Hsu, and C.-K. Liu,

Constructing H4, a fast depth-size optimal

parallel prefix circuit, Journal of

Supercomputing, Vol. 24, No. 3, 2003, pp. 279-

304.

[36] Y.-C. Lin and L.-L. Hung, Four Families of

Computation-Efficient Parallel Prefix

Algorithms for Multicomputers, Department of

Computer Science and Information Engineering,

National Taiwan University of Science and

Technology, Taipei, Taiwan, Technical Report:

NTUST-CSIE-08-01, February 2008.

[37] Y.-C. Lin and L.-L. Hung, Fast problem-size-

independent parallel prefix circuits, Journal of

Parallel and Distributed Computing, Vol. 69,

No. 4, 2009, pp. 382-388.

[38] Y.-C. Lin and L.-L. Hung, Straightforward

construction of depth-size optimal, parallel

prefix circuits with fan-out 2, ACM

Transactions on Design Automation of

Electronic Systems, Vol. 14, No. 1, 2009,

Article 15.

[39] Y.-C. Lin and C. M. Lin, Efficient parallel

prefix algorithms on multicomputers, Journal of

Information Science and Engineering, Vol. 16,

No. 1, 2000, pp. 41-64.

[40] Y.-C. Lin and C.-K. Liu, Finding optimal

parallel prefix circuits with fan-out 2 in constant

time, Information Processing Letters, Vol. 70,

No. 4, 1999, pp. 191-195.

[41] Y.-C. Lin and C.-C. Shih, Optimal parallel

prefix circuits with fan-out at most 4, in Proc.

2nd IASTED Int. Conf. on Parallel and

Distributed Computing and Networks, Brisbane,

Australia, 1998, pp. 312-317.

[42] Y.-C. Lin and C.-C. Shih, A new class of depth-

size optimal parallel prefix circuits, Journal of

Supercomputing, Vol. 14, No. 1, 1999, pp. 39-

52.

[43] Y.-C. Lin and C.-Y. Su, Faster optimal parallel

prefix circuits: New algorithmic construction,

Journal of Parallel and Distributed Computing,

Vol. 65, No. 12, 2005, pp. 1585-1595.

[44] Y.-C. Lin and C.-S. Yeh, Efficient parallel

prefix algorithms on multiport message-passing

systems, Information Processing Letters, Vol.

71, No. 2, 1999, pp. 91-95.

[45] Y.-C. Lin and C.-S. Yeh, Optimal parallel prefix

on the postal model, Journal of Information

Science and Engineering, Vol. 19, No. 1, 2003,

pp. 75-83.

[46] J. Liu, S. Zhou, H. Zhu, and C.-K. Cheng, An

algorithmic approach for generic parallel adders,

in Proc. Int. Conf. on Computer-Aided Design,

San Jose, CA, 2003, pp. 734-740.

[47] R. Manohar and J. A. Tierno, Asynchronous

parallel prefix computation, IEEE Transactions

on Computers, Vol. 47, No. 11, 1998, pp. 1244-

1252.

[48] J. H. Park and H. K. Dai, Reconfigurable

hardware solution to parallel prefix computation,

Journal of Supercomputing, Vol. 43, No. 1,

2008, pp. 43-58.

[49] E. E. Santos, Optimal and efficient algorithms

for summing and prefix summing on parallel

machines, Journal of Parallel and Distributed

Computing, Vol. 62, 2002, pp. 517-543.

[50] M. Sheeran and I. Parberry, A New Approach to

the Design of Optimal Parallel Prefix Circuits,

Department of Computer Science and

Engineering, Chalmers University of

Technology, Goteborg, Sweden, Technical

Report: 2006:1, 2006.

[51] M. Snir, Depth-size trade-offs for parallel prefix

computation, Journal of Algorithms, Vol. 7,

1986, pp. 185-201.

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1659 Issue 10, Volume 8, October 2009

[52] M. Snir, P. Hochschild, D. D. Frye, and K. J.

Gildea, The communication software and

parallel environment of the IBM SP2, IBM

Systems Journal, Vol. 34, No. 2, 1995, pp. 205-

221.

[53] Thinking Machines, Connection Machine

Parallel Instruction Set (PARIS), Thinking

Machines, 1986.

[54] H. Wang, A. Nicolau, and K. S. Siu, The strict

time lower bound and optimal schedules for

parallel prefix with resource constraints, IEEE

Transactions on Computers, Vol. 45, No. 11,

1996, pp. 1257-1271.

[55] Z. Xu and K. Hwang, Modeling communication

overhead: MPI and MPL performance on the

IBM SP2, IEEE Parallel & Distributed

Technology, Vol. 4, No. 1, 1996, pp. 9-23.

[56] F. Zhou and P. Kornerup, Computing moments

by prefix sums, Journal of VLSI Signal

Processing Systems, Vol. 25, No. 1, 2000, pp. 5-

17.

[57] H. Zhu, C.-K. Cheng, and R. Graham,

Constructing zero-deficiency parallel prefix

circuits of minimum depth, ACM Trans. on

Design Automation of Electronic Systems, Vol.

11, No. 2, 2006, pp. 387-409.

[58] R. Zimmermann, Binary Adder Architectures

for Cell-Based VLSI and Their Synthesis, Ph.D.

thesis, Swiss Federal Institute of Technology

(ETH), Zurich, 1997.

WSEAS TRANSACTIONS on COMPUTERS Yen-Chun Lin, Li-Ling Hung

ISSN: 1109-2750 1660 Issue 10, Volume 8, October 2009

