
  

New Families of Computation-Efficient Parallel Prefix Algorithms 

   YEN-CHUN LIN                      

Department of Computer Science and Information Engineering 

National Taiwan University of Science and Technology 

43 Keelung Road, Sec. 4, Taipei  106 

TAIWAN 

yclin747@gmail.com                

http://faculty.csie.ntust.edu.tw/~yclin/yclin.htm 
 

LI-LING HUNG 

Department of Computer Science and Information Engineering 

Aletheia University 

32 Chen-Li St., Tamsui, Taipei County  251 

TAIWAN 

llhung@mail.au.edu.tw 
 

Abstract: - New families of computation-efficient parallel prefix algorithms for message-passing 

multicomputers are presented. The first family improves the communication time of a previous family of 

parallel prefix algorithms; both use only half-duplex communications. Two other families adopt collective 

communication operations to reduce the communication times of the former two, respectively. The 

precondition of the presented algorithms is also given. These families each provide the flexibility of either 

fewer computation time steps or fewer communication time steps to achieve the minimal running time 

depending on the ratio of the time required by a communication step to the time required by a computation step. 

Relative merits and drawbacks of parallel prefix algorithms are described and illustrated to provide insights into 

when and why the presented algorithms can be best used. 
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1   Introduction  
Prefix computation is considered as a primitive 

operation because of its importance and usefulness 

[4]. It can be defined as follows: given n inputs x1, 

x2,…, xn, and an associative binary operator ⊕, 
compute yi = x1 ⊕ x2 ⊕…⊕ xi, for 1 ≤ i ≤ n. For ease 
of presentation, unless otherwise stated, this study 

uses xi’s and yi’s as inputs and outputs, respectively, 

and assumes that the number of inputs is n.  

Prefix computation has been extensively studied 

for its wide application in fields such as biological 

sequence comparison, cryptography, design of 

silicon compilers, job scheduling, image processing, 

loop parallelization, polynomial evaluation, 

processor allocation, and sorting [1-3, 8, 10, 13, 15, 

24-27, 29, 54, 56, 58]. The binary operation ⊕ can be 
as simple as a Boolean operation or an extremely 

time-consuming operation, such as  multiplication of 

matrices [11]. 

Numerous parallel prefix algorithms for various 

parallel computing models have been proposed [1, 7, 

9, 12, 18-20, 25, 27, 30, 31, 39, 44, 45, 47, 49], and 

many parallel prefix circuits have also been designed 

[3, 5, 6, 14, 17, 22, 26-28, 31, 33-35, 37, 38, 40-43, 

46, 48, 50, 51, 57, 58]. Additionally, prefix 

computation is a built-in operation for Message-

Passing Interface parallel programming [16], and is 

implemented in hardware in the Thinking Machines 

CM-5 [53]. 

Egecioglu and Koc present a computation-

efficient parallel prefix algorithm, henceforth named 

EK, for the half-duplex multicomputer model with p 

processing elements (PEs), where p < n [11]. Half-

duplex communication is the weakest 

communication model of message-passing 

multicomputers, with which each PE of a 

multicomputer can only send or receive a message in 

a communication step. This model of communication 

is basic and important [23]. Although a PE of a 

modern multicomputer can send and receive in the 

same step, it usually takes a longer time to send and 

receive than to send or receive only due to the 

inherent hardware capability and software overhead 

[21, 52]. On a p-PE system, the half-duplex 

communication ensures that no more than p/2 

messages are transferred in a communication step 
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and thus a communication step will not take too 

much time. 

Lin proposes a parallel prefix algorithm, 

henceforth named L, whose communication time is 

less than that of EK on the same model [32]. L has 

been generalized to become a family of parallel 

algorithms named A [19], which allow multiple 

combinations of the computation time and 

communication time; L is just an extreme member of 

the family. The other members of the family take less 

computation time and may also take less 

communication time than L does. One can take the 

exact time of performing ⊕ and that of 

communicating a message into account to obtain a 

member that requires the minimal running time on a 

specific multicomputer. 

In this paper, new families of computation-

efficient parallel prefix algorithms for message-

passing parallel computers with p PEs, where p < n, 

are presented. The communication time of the A 

family can be decreased to result in another family. 

We then use collective communications to further 

improve the communication time, and derive one 

more family of algorithms from each of the first two 

families. Collective communication operations, such 

as broadcast and scatter, can be better than an 

equivalent sequence of send or receive operations for 

ease of programming and execution efficiency [55]. 

The rest of this paper is organized as follows. 

Section 2 reviews the A family of parallel prefix 

algorithms for half-duplex message-passing 

multicomputers, including the computation time and 

communication time, as well as other properties, of 

this family. Section 3 shows how the communication 

time of the A family can be decreased to become the 

second family. Section 4 reduces the communication 

time by using collective communications to obtain 

two more families of algorithms. Section 5 shows 

that the four families of algorithms are not always 

effective when p < n, and derives a much stronger 

precondition of the algorithms. Section 6 compares 

prefix algorithms for multicomputers. Conclusions 

are finally drawn in Section 7.   

 

 

2   Review of the A family of parallel 

prefix algorithms 
In this section, we review the A family of parallel 

algorithms for solving the prefix problem of n inputs 

with p PEs, where p < n, on the half-duplex 

multicomputer model. The p PEs are represented by 

P1, P2,…, Pp. For ease of presentation, i:j is used to 

represent the result of computing  

xi ⊕ xi+1 ⊕…⊕ xj, where i ≤ j. 

 

Algorithm A(n, p, k) {Solving the prefix 

problem of n inputs, x1, x2,…, xn, using p PEs to 

generate y1, y2,…, yn, where p = kq + 1, k ≥ 1, q ≥ 1. 
In phase 1, k PEs are assigned to perform only 

computations; all the other PEs need to communicate 

among themselves, except when p – k = 1. To use 

this algorithm effectively, n ≥ (p2 + kp + k + 1)/2 is 
required. For ease of presentation, assume that all 

numerical values are integers.} 

Phase 1: Partition the inputs into two parts N1 = 

(x1, x2,…, xv) and N2 = (xv+1, xv+2,…, xn), where  

0 < v < n. The value of v will be explained shortly. If 

p = k + 1, then P1 uses N1 to compute outputs y1, 

y2,…, yv sequentially; otherwise, P1, P2,…, Pp–k use 

N1 to compute y1, y2,…, yv by invoking A(v, p – k, k) 

recursively. In the mean time, N2 is first distributed 

evenly among the other k PEs, Pp–k+1, Pp–k+2,…, Pp; 

each of the PEs holds c = (n – v)/k input values. 

These k PEs then take c – 1 parallel computation 

steps to compute z1 = (z1,1, z1,2,…, z1,c), z2 = 

(z2,1, z2,2,…, z2,c),…, zk = (zk,1, zk,2,…, zk,c), 

respectively, where 

zi,j = (v + (i – 1)c + 1):(v + (i – 1)c + j). 

The value of v is chosen to make the total number 

of computation steps in this phase required by the 

first p – k PEs equal to that required by the other k 

PEs, and it is given later. Note that yv is obtained by 

Pp–k. 

(Figure 1 should help the reader understand Phase 

1.) 

 

Phase 2: Initially, Pp–k sends yv to all the other 

PEs. Next, Pp–k+1 scatters, i.e., partitions and 

distributes, z1 among all the PEs evenly, each PE 

having c/p of the c values. All the PEs then 

concurrently perform  

yv+i = yv ⊕ z1,i, i = 1, 2,…, c, 

in c/p computation steps. Note that yv+c is computed 

by Pp. 

(Figure 2 should help the reader understand Phase 

2.) 

 

Phase m (m = 3, 4,…, k + 1): Initially, Pp sends 

yv+(m–2)c to all the other PEs. Next, Pp–k+m–1 scatters  

zm–1 among all the PEs evenly, each PE having c/p 

values. All the PEs then concurrently perform 

yv+(m–2)c+i = yv+(m–2)c ⊕ zm–1,i, i = 1, 2,…, c, 

in c/p computation steps. Note that yv+(m–1)c is 

computed by Pp. 

(Figure 3 should help the reader understand 

Phases 3 through k + 1.) 
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(x1, x2,…, xn)

(x1, x2,…, xv) (xv+1, xv+2,…, xn)
used in running

A(v, p – k, k)

on the first p – k

PEs recursively

y1, y2,…, yv z1, z2,…, zk

where zi = (zi,1, zi,2,…, zi,c)

zi,j = (v+(i–1)c+1):(v+(i–1)c+j)

distributed to the last k PEs,

each with c = (n – v)/k values

 
Fig. 1. Phase 1 of Algorithm A(n, p, k)  

when p > k + 1. 

 

yv z1

P1, P2,…, Pp

sent to all PEs
scattered to all PEs, each 

with c/p values

yv+i = yv⊕ z1,i , i = 1, 2,…, c

computed in c/p computation steps

 
Fig. 2. Phase 2 of Algorithm A(n, p, k). 

 

yv+(m–2)c zm–1

yv+(m–2)c+i = yv+(m–2)c⊕ zm–1,i , i = 1, 2,…, c

P1, P2,…, Pp

computed in c/p computation steps

sent to all PEs
scattered to all PEs, each 

with c/p values

 
Fig. 3. Phase m (m = 3, 4,..., k + 1) of A(n, p, k). 

 

Let C(n, p, k) denote the number of computation 

steps required by Algorithm A(n, p, k), and R(n, p, k) 

denote the number of communication steps. As in the 

two previous papers [11, 32], the initial input data 

loading time is not taken into account. To help the 

reader understand the algorithm, we give two 

examples in the following.  

First, consider the case when p = 4, k = 3. 

Phase 1: Assign N1 = (x1, x2,…, xv) to P1 and N2 = 

(xv+1, xv+2,…, xn) to P2, P3, and P4. The prefixes of N1 

are computed by P1, and N2 is processed by the other 

PEs. By the rule of deciding v, the number of 

computation steps required by P1, v – 1, equals the 

number of parallel computation steps required by the 

other three PEs, (n – v)/3 – 1. Hence, v = n/4, and it 

takes n/4 – 1 computation steps in this phase. After 

phase 1 has completed, P1 obtains y1, y2,…, yn/4; P2 

obtains z1,1, z1,2,…, z1,n/4; P3 obtains z2,1, z2,2,…, z2,n/4; 

and P4 obtains z3,1, z3,2,…, z3,n/4. 

Phase 2: P1 initially sends yn/4 to P2, P3, P4 in 3 

communication steps. Then, P2 sends 1/4 of the n/4 

values obtained in phase 1 to each of the other three 

PEs in 3 communication steps. That is, z1,1 through 

z1,n/16, z1,n/8+1 through z1,3n/16, and z1,3n/16+1 through z1,n/4 

are sent to P1, P3, P4, respectively. Subsequently, the 

four PEs compute n/4 outputs yn/4+1, yn/4+2,…, yn/2 in 

n/16 parallel computation steps. At the end, P4 has 

yn/2. 

Phase 3: P4 initially sends yn/2 to the other PEs in 3 

communication steps. Then, P3 sends 1/4 of the n/4 

values obtained in phase 1 to each of the other three 

PEs in 3 communication steps. That is, z2,1 through 

z2,n/16, z2,n/16+1 through z2,n/8, and z2,3n/16+1 through z2,n/4 

are sent to P1, P2, P4, respectively. Subsequently, the 

four PEs compute n/4 outputs yn/2+1, yn/2+2,…, y3n/4 

concurrently in n/16 computation steps. At the end, 

P4 has y3n/4. 

Phase 4: P4 sends y3n/4 and 1/4 of the n/4 values 

obtained in phase 1 to each of the other three PEs in 

3 communication steps. That is, z3,1 through z3,n/16, 

z3,n/16+1 through z3,n/8, and z3,n/8+1 through z3,3n/16 are 

sent to P1, P2, P3, respectively. Subsequently, the 

four PEs concurrently compute n/4 outputs y3n/4+1, 

y3n/4+2,…, yn in n/16 computation steps. 

Therefore, the total number of computation steps 

is  

C(n, 4, 3) = (n/4 – 1) + n/16 + n/16 + n/16  

= 7n/16 – 1.                                 (1) 

The total number of communication steps is 

R(n, 4, 3) = 3 × 2 + 3 × 2 + 3 = 15. 
Next, consider the case when p = 7, k = 3.  

Phase 1: Assign N1 = (x1, x2,…, xv) to the first four 

PEs, and assign N2 = (xv+1, xv+2,…, xn) to the last three 

PEs. From Eq. (1), we know that P1, P2, P3, P4 can 

compute the prefixes of N1 in C(v, 4, 3) = 7v/16 – 1 

computation steps. In the mean time, P5, P6, P7 share 

N2 evenly and compute their respective prefixes 

concurrently, taking (n – v)/3 – 1 computation steps. 

By the rule of deciding v, 

7v/16 – 1 = (n – v)/3 – 1, 

v = 16n/37. 

Consequently, each of the last 3 PEs has (n – v)/3 = 

7n/37 input values. Thus, the values z1,1 through 

z1,7n/37 are obtained in P5, z2,1 through z2,7n/37 in P6, and 

z3,1 through z3,7n/37 in P7. Note that P4 obtains yv = 

y16n/37, and C(16n/37, 4, 3) = 7n/37 – 1. 

Phase 2: P4 initially sends y16n/37 to the other six 

PEs in 6 communication steps. Then, P5 sends 1/7 of 

the 7n/37 values obtained in phase 1 to each of the 

other six PEs in 6 communication steps. 

Subsequently, the seven PEs compute 7n/37 outputs 

y16n/37+1, y16n/37+2,…, y23n/37 in n/37 parallel 

computation steps. At the end, P7 has y23n/37. 
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Phase 3: P7 initially sends y23n/37 to the other six 

PEs in 6 communication steps. Then, P6 sends 1/7 of 

the 7n/37 values obtained in phase 1 to each of the 

other six PEs in 6 communication steps. 

Subsequently, the seven PEs concurrently compute 

7n/37 outputs y23n/37+1, y23n/37+2,…, y30n/37 in n/37 

computation steps. At the end, P7 has y30n/37. 

Phase 4: P7 initially sends y30n/37 and 1/7 of the 

7n/37 values obtained in phase 1 to each of the other 

six PEs in 6 communication steps. The seven PEs 

then concurrently compute 7n/37 outputs y30n/37+1, 

y30n/37+2,…, yn in n/37 computation steps. 

Therefore, the total number of computation steps 

is  

C(n, 7, 3) = 7n/37 – 1 + (n/37) × 3  
= 10n/37 – 1. 

The total number of communication steps is 

R(n, 7, 3) = R(16n/37, 4, 3) + 6 × 5 = 45. 
C(n, p, k) and R(n, p, k) in the general case, as 

well as other properties of Algorithm A, such as the 

values of p and k that lead to the smallest C(n, p, k) 

and R(n, p, k), are given in the following theorems. 

 

Theorem 1. When p = k + 1, v=n/p; otherwise, 

v =
2

2

1
1

p kp k
p kp k
− + +
+ + +

n. 

 

Theorem 2. C(n, p, k) =
2

2 ( )
1.

1
n p k

p kp k
+

−
+ + +

 

 

Theorem 3. If d > a and e > b, then  

C(n, a, b) > C(n, d, b) > C(n, d, e). 

 

Theorem 4.  R(n, p, 1) = p(p − 1); 
R(n, p, k) = (2k − 1)(p – 1)(p + k – 1)/2k   for k ≥ 2. 

 

Theorem 5. If d > a, then R(n, d, k) > R(n, a, k). If  

p ≥ 2k2 – 3k + 1 and k ≥ 2, 
then  

R(n, p, k) ≤ R(n, p, 1) 

and  

R(n, p, 2) ≤ R(n, p, k) < R(n, p, k + 1); 

otherwise,  

R(n, p, 1) < R(n, p, k) < R(n, p, k + 1). 

 

Theorem 6. Algorithm A is cost optimal when n = 

Ω(p
3
). 

 

Theorem 7. To use Algorithm A(n, p, k) effectively, 

it is required that n ≥ (p2 + kp + k + 1)/2. 
 

Note that Theorems 4 and 7 reveal that the 

communication time is independent of n when n ≥ 
(p

2
 + kp + k + 1)/2. Like Algorithms EK and L, 

Algorithm A is practical when the amount of time 

required to perform a binary operation ⊕ is greater 

than that required to transfer a message between two 

PEs. This situation may happen, for example, when 

the binary operation is a time-consuming floating-

point matrix multiplication or a series of matrix 

multiplications. 

 

 

3 Algorithm B with reduced 

communication time 
When p ≥ 2k + 1 and k ≥ 2, Algorithm A can be 

modified to become a faster algorithm named B. 

Recall that in phase 1 of Algorithm A, the number of 

computation steps required by the first p – k PEs 

equals the number of computation steps required by 

the other k PEs. In addition, the first p – k PEs 

communicate among themselves in phase 1, but the 

last k PEs perform no communication operations; 

thus, the last k PEs are idle for the amount of time 

that the first p – k PEs take to communicate. 

To reduce this idle time, we note that in Algorithm 

A there are communications among the last k PEs in 

phases 2 through k + 1, which can be performed in 

phase 1, but the communications involving the first 

p – k PEs in phases 2 through k + 1 should not be 

moved to phase 1. In each of these k phases, the 

original communications that can be moved to phase 

1 are message transfers from one of the last k PEs to 

the other k – 1 PEs. Thus, at most k(k − 1) 

communication steps can be moved to phase 1.  

Note that we still need to make sure whether all or 

only part of the k(k – 1) communication steps should 

be moved. Comparing k(k – 1) with the number of 

communication steps performed in phase 1 of 

Algorithm A, which is R(v, p – k, k), can clarify this. 

From Theorem 4,  

R(v, p – k, k) = (2k − 1)(p − k − 1)(p − 1)/2k. 

Since p ≥ 2k + 1, we have 
R(v, p – k, k) ≥ (2k − 1)k(2k)/2k = k(2k − 1). 

Thus, 

R(v, p – k, k) – k(k – 1) ≥  k2 > 0. 
That is, R(v, p – k, k) > k(k − 1). Therefore, all the 

k(k – 1) communication steps can be performed in 

phase 1 without increasing the communication time 

needed in phase 1. Clearly, Algorithm B(n, p, k) 

takes less communication time than Algorithm 

A(n,  p, k). Note that the two algorithms take the 

same amount of computation time. 

Let S(n, p, k) denote the number of 

communication steps required by Algorithm 

B(n, p, k). Thus, S(n, p, k) is the sum of the following 

components:  
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(i) S(v, p – k, k) communication steps required by 

the first p – k PEs when invoking B(v, p – k, k) 

in phase 1.  

(ii) p – 1 communication steps required by Pp–k to 

send yv to the other p – 1 PEs in phase 2.  

(iii) (k – 1)(p – 1) communication steps required by 

Pp to send yv+ic to the other p – 1 PEs in phase 

i + 2, for i = 1, 2,…, k – 1. 

(iv) k(p – k) communication steps taken to distribute 

part of zi, for 1 ≤ i ≤ k, evenly among P1, P2,… 

Pp–k in phases 2 through k + 1. 

 

Note that in phase k + 1, since the 

communications that contribute to component (iii) 

and those that contribute to component (iv) are all 

sent out by Pp, the latter communications can be 

merged to the former ones, eliminating p − k 

communication steps in this phase. Let  

p = k(i + 1) + 1, where i ≥ 1. 
It can be shown that [36] 

S(n, p, k) = 2 22 1 1
3 2.

22
k

p p k k
k
−

− + − +  

Clearly, S(n, p, k) = Θ(p
2
). Therefore, the 

discussion of cost optimality of Algorithm A applies 

to Algorithm B. That is, Algorithm B is also cost 

optimal when n = Ω(p
3
). 

 

 

4   Using Collective Communications  
In this section, we propose to reduce the 

communication time of Algorithms A and B when 

collective communications are available. Their 

computation parts remain the same.  

We first consider modifying Algorithm A to 

obtain a new one named E. In phase i + 2, 0 ≤ i ≤  

k – 1, of Algorithm A, the p – 1 transfers of yv+ic to 

all the other PEs can be replaced by a single 

broadcast to achieve the same effect; in addition, 

scattering of zi+1 can be done with a single scatter 

operation. 

With a suitable implementation, either a broadcast 

or scatter operation takes Θ(log p) time to send to p 

PEs on a multicomputer [48]. Thus, broadcasting the 

k values yv, yv+c,…, yv+(k–1)c is equivalent to taking 

c1k log p point-to-point communication steps, where 

c1 is a constant, and k scatter operations are 

equivalent to taking c2k log p point-to-point 

communication steps, where c2 is a constant. Let c = 

c1 + c2 and p = k(i + 1) + 1, where i ≥ 0. We use 

T(n, p, k) to denote the number of communication 

steps required by Algorithm E(n, p, k). It can be 

shown that T(n, p, k) = O(p log p) [36].  

Algorithm E takes the same the number of 

computation steps as the former two families do. 

Since Theorem 2 gives C(n, p, k) = Θ(n/p), 

Algorithm E takes Θ(n/p) + O(p log p) time. If n = 

Ω(p
2
 log p), then n/p = Ω(p log p), and thus Θ(n/p) + 

O(p log p) = Θ(n/p). Since the sequential solution for 

the prefix problem takes Θ(n) time, Algorithm E is 

cost optimal when n = Ω(p
2
 log p). 

The modification made to Algorithm B by using 

broadcast and scatter can be done similarly, and 

results in the same communication time complexity. 

Thus, the resulting algorithm, named F, is also cost 

optimal when n = Ω(p
2
 log p). Note that Algorithm F 

takes the same number of computation steps as the 

other three families do. 

 

 

5   Precondition of algorithms  
Theorem 7 gives that the relation  

n ≥ (p2 + kp + k + 1)/2 
is required to use Algorithm A effectively. We can 

see that the same is also true for the other algorithms 

introduced in this paper. Before going into the 

general case, we first use two examples to shed some 

light. 

Suppose n = 1024, p = 256, and k = 85. From 

Theorem 2, we have  

C(1024, 256, 85) < 7. 

However, it is even impossible to compute the sum 

of 1024 inputs in 7 computation steps, let alone the 

prefix computation of 1024 inputs. Therefore, 

Theorem 2 does not hold under this situation. That is, 

the four families of algorithms cannot complete the 

prefix computation in fewer than 7 computation steps. 

As a more general case, suppose n = 1024, p = 

256 = kq + 1, and q ≥ 1. From Theorem 1, v = 

1024(256
2
 – 256k + k + 1)/(256

2
 + 256k + k + 1) 

inputs are assigned to the first 256 – k PEs, and  

n – v = 2kpn/(p
2
 + kp + k + 1)  

= 512×1024k /(2562 + 256k + k + 1)  
< 8k  

inputs are assigned to the last k PEs. That is, each of 

the last k PEs has at most 8 inputs. Then, in phase 2, 

P257–k sends at most 8 values to at most 8 of the 256 

PEs for further computation; that is, at least 248 PEs 

are idle while the other PEs are busy. This ineffective 

use of PEs also exists in phases 3 through k + 1 of all 

four families.  

Thus, in phase 1 at least kp inputs should be 

assigned to the last k PEs, which guarantees that in 

any other phase each PE can be assigned at least one 

value to compute. Using n – v ≥ kp and Theorem 1, 

we see that 

n – n(p
2
 – kp + k + 1)/(p

2
 + kp + k +1) ≥ kp, 

n ≥ (p2 + kp + k + 1)/2. 
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Therefore, this is the precondition for running the 

presented algorithms effectively.  

 

 

6   Comparison of algorithms  
Lin and Lin present a parallel prefix algorithm 

named PLL for the half-duplex multicomputer [39]; 

PLL requires 2n/p + 1.44 log2 p – 1 computation 

steps and 1.44 log2 p + 1 communication steps when 

using p PEs, where 10 ≤ p < n. The number of 

computation steps of any of our algorithms is less 

than that of PLL, but the number of communication 

steps is greater than that of PLL. 

Since Algorithm L is a special case of A(n, p, k), 

precisely A(n, p, 1), it takes C(n, p, 1) computation 

steps and R(n, p, 1) communication steps. From 

Theorem 2, a larger k leads to less computation time. 

As for the communication time, from Theorem 5, 

R(n, p, k) ≤ R(n, p, 1) when p ≥ 2k
2
 – 3k + 1 and k ≥ 

2; otherwise, R(n, p, k) > R(n, p, 1). That is, A(n, p, k) 

is definitely faster than L when p ≥ 2k
2
 – 3k + 1 and 

k ≥ 2. However, when p < 2k
2
 – 3k + 1, we need to 

know the ratio of the time required by a 

communication step to the time required by a 

computation step, τ, to decide which algorithm is 

faster. 

Algorithm B can also be faster than Algorithm L. 

To compare their communication times, we see that 

when k ≥ 2, 
R(n , p, 1) – S(n, p, k) = (p

2
 – kp – 2k

3
 + 6k

2
 –4k)/2k. 

Recall that Algorithm B exists only when p ≥ 2k + 1 
and k ≥ 2. Therefore, when p2 – kp – 2k3 + 6k2 – 4k > 
0, p ≥ 2k + 1, and k ≥ 2, Algorithm B is faster than 

Algorithm L; otherwise, we need to know the value 

of τ  to decide which is faster. 
To help the reader understand the relative merits 

and drawbacks of these algorithms, we give some 

example figures in the following. Fig. 4 shows the 

numbers of computation steps required when n = 

8192 and p = 13. Note that k represents the number 

of PEs that perform no communications in phase 1 of 

our algorithms. Since PLL is a very different 

algorithm, it should not appear in the figures; 

however, for easy comparison, we show its related 

data in every figure as if k = 1. Clearly, Algorithms 

A and E each take the fewest number of computation 

steps when k = 12. Note that when 2 ≤ k ≤ (p – 1)/2, 

i.e., when Algorithms B and F are defined, the two 

algorithms each take the same number of 

computation steps as Algorithm A. Algorithm PLL 

takes the most, 1265, computation steps. 

Figure 5 shows the numbers of communication 

steps required by four algorithms. We assume that 

each collective communication involving p PEs 

requires the same amount of time as 2 log2 p point-

to-point communications. Algorithm E takes the 

fewest communication steps among the four 

algorithms. As already mentioned, although the exact 

number of communication steps of Algorithm F is 

not derived, Algorithm F, when defined, needs 

slightly less communication time than Algorithm E. 

Moreover, EK takes 3550 communication steps, 

which is too large to fit in the figure; PLL takes 7 

communication steps, which is too small to fit in the 

figure. 
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 Fig. 4. The numbers of computation steps required 

when n = 8192 and p = 13. 
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 Fig. 5. The numbers of communication steps 

required when n = 8192 and p = 13. 

 

 

Note that τ  has an impact on the total running 

time. If τ  is small, which may be true when the 

binary operation ⊕ is matrix multiplication, our new 

algorithms are more probable to be faster than 

previous ones. For example, Figs. 6 and 7 show the 

running times of algorithms when n = 8192 and p = 
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13, for τ = 1 and 0.1, respectively. When τ = 1, Fig. 6 
shows that Algorithm E is faster than A, B, and L; 

however, Algorithm PLL is the fastest. Algorithm F, 

which is not shown in the figure, should be faster 

than E, but might be slower than PLL. 
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 Fig. 6. Running times in number of computation 

steps when n = 8192, p = 13, and τ = 1. 
 

In contrast, as shown in Fig. 7, when τ = 0.1, 
Algorithm B is generally faster than A and L, but 

A(8192, 13, 12) is faster than B(8192, 13, 6). Note 

that k = 12 is not valid for Algorithm B. Algorithm E 

is faster than the others, and E(8192, 13, 12) is the 

fastest. Also note that since F(8192, 13, 6) is only 

slightly faster than E(8192, 13, 6), E(8192, 13, 12) 

should be faster than F(8192, 13, 6). Note that 

Algorithm PLL becomes the slowest. 

To contrast the running times when n = 4096 with 

those when n = 8192, Fig. 8 is given. The figure 

shows that Algorithm E is faster than the other 

algorithms, and E(4096, 13, 12) is the fastest. 
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 Fig. 7. Running times in number of computation 

steps when n = 8192, p = 13, and τ = 0.1. 
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 Fig. 8. Running times in number of computation 

steps when n = 4096, p = 13, and τ  = 0.1. 
 

 

7   Conclusions  
We have presented new algorithms to speed up 

A(n, p, k), a family of computation-efficient parallel 

algorithms run on half-duplex multicomputers with p 

PEs to solve the prefix problem of n inputs, where p 

= kq + 1, k ≥ 1, q ≥ 1, and n ≥ (p2 + kp + k + 1)/2. 
This family is cost optimal when n = Ω(p

3
). 

Algorithm A has been modified to become another 

family, Algorithm B, which may run faster than A. 

Either A or B can be transformed into another new 

family by adopting broadcast and scatter operations 

to reduce the communication time. The resulting two 

families are cost optimal when n = Ω(p
2
 log p). 

Each of the four families of algorithms provides 

the flexibility of using either fewer computation time 

steps (and more communication time steps) or fewer 

communication time steps (and more computation 

time steps) to achieve the minimal running time. The 

key in considering this computation-communication 

trade-off and, more importantly, whether the running 

time is less than other prefix algorithms hinge on the 

ratio of the time required by a communication step to 

the time required by a computation step. 

For the presented algorithms, the last k PEs are 

idle for some amount of time in phase 1. Clearly, in 

phase 1, if we assign fewer than v inputs to the first 

p – k PEs and thus more than n – v inputs to the last k 

PEs, then the first p – k PEs do fewer computations 

and the last k PEs do more. Therefore, the idle time 

can be eliminated, and the running time reduced. 

How many inputs should be assigned to the first  

p – k PEs is still open. 

Although we have used the multicomputer model 

to present the algorithms, they can be adapted to suit 

shared-memory multiprocessors. The multiprocessor 
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usually needs less communication time than the 

multicomputer. Thus, the multiprocessor should also 

be a good platform for the presented algorithms. 
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