
Empirical Determination of Sample Sizes for Multi-layer Perceptrons by
Simple RBF Networks

HYONTAI SUG

Division of Computer and Information Engineering
Dongseo University

Busan, 617-716
REPUBLIC OF KOREA

hyontai@yahoo.com http://kowon.dongseo.ac.kr/~sht

Abstract: - It’s well known that the computing time to train multilayer perceptrons is very long because of weight space
of the neural networks and small amount of adjustment of the wiights for convergence. The matter becomes worse when
the size of training data set is large, which is common in data mining tasks. Moreover, depending on samples, the
performance of neural networks change. So, in order to determine appropriate sample sizes for multilayer perceptrons
this paper suggests an effective approach with the help of simple radial basis function networks that work as a guide.
Experiments with the two different data sets that may represent business and scientific domain well showed the
effectiveness of the suggested method.

Key-Words: - multilayer perceptron, sample size, radial basis function network, data mining

1 Introduction
As data are gathered in wide application areas, data
mining draw many researchers’ attention. So neural
networks that is one of the successful data mining
methods have been applied to the wide areas and reported
successful [1]. But even though neural networks are one
of the most successful data mining or machine learning
methodologies, they have some weak points with respect
to performance due to the fact that they are built based on
greedy algorithms and the knowledge of experts as well
as data set itself used to train the neural networks. So,
there are some aspects of improvements; the
improvement of the structure of the neural networks, and
the improvement of connection weights, and the training
data set.

Multilayer perceptrons (MLPs) and radial basis
function (RBF) networks are two major neural networks
that have been applied successfully for classification
tasks in data mining. At a glance the structure of the two
neural networks are similar, but their training
mechanisms are different. While both networks have
three layers including the input layer, hidden layer, and
output layer, RBF networks differ from MLPs, because in
RBF networks the hidden layer performs some
unsupervised learning [2, 3, 4], but the others don’t.

Even though many methods have been suggested to
find optimal network structures, basically the structure of
the networks is usually determined by the knowledge of
human experts with some experiments to refine the neural
networks. As a result, built neural networks may not
represent the best knowledge models that are best for

some collection of training examples in the target data
set.

For the improvement of connection weights MLPs
use backpropagation algorithms. The backpropagation
algorithms rely on some greedy search algorithms like
gradient decent search algorithm [5]. In order to avoid
local optima the weights are adjusted slowly so that the
computing time can be very large. The matter becomes
worse, if the traing data set is large.

So, because most target databases for data mining
are very large, we need sampling process to the target
databases. But the found knowledge models based on
random samples are prone to sampling errors. An
alternative strategy may be to use the original database.
But, it may not be a good idea since it might be
computationally very expensive, and because the target
databases reflect only a portion of the target domain,
overfitting problem may happen.

Because RBF networks can be trained relatively in
short time unless the network structure is complex, we
may hope that if a sample size that has a good result in
RBF networks, the same thing may happen in MLPs
under the condition that we have appropriate neural
network structures of RBF networks and MLPs. So,
based on this idea we want to investigate the relationship
empirically by experimenting the idea for some
representative real world data sets.

In section 2, we provide the related work to our
research, and in sections 3 we present our method as well
as background technologies. Experiments were run to see
the effect of the method in section 4. Finally section 5
provides some conclusions.

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1504 Issue 9, Volume 8, September 2009

2 Related work
Neural networks are widely used for machine learning or
data mining tasks since the first neural network algorithm,
the perceptron [6]. Because of the limited predictability
of the perceptron, multilayer perceptrons have been
invented [7, 8, 9, 10]. Multilayer perceptrons have been
applied widely including mathematical problems [11, 12,
13] as well as application fields [14, 15]. There are two
kinds of networks based on how the networks are
interconnected – feed-forward neural networks and
recurrent neural networks [16]. MLPs are feed-forward
neural networks. The weak point of MLPs is
computational intensiveness. So most data mining
applications that use MLPs prefer samll-sized samples or
data sets.

RBF networks are one of the most popular
feed-forward networks [17, 18, 19] that are used as a
replacement for MLPs. A good point of RBF networks is
that they can be trained in relatively short time. But, due
to the feed-forward nature and the hidden layer functions
to approximate the target data set, local optima problem
also may occur.

In order to overcome local optima problem many
evolutionary search algorithms were suggested [20, 21,
22, 23] for RBF networks. Evolutionary search
algorithms try to find global optimal solutions so that it is
possible to find better RBF networks. But the algorithms
require more extensive computing time as well as more
elaborate techniques related to the evolutionray
computation like the representation technique of network
structures and weights.

Because some induction method is used to train the
data mining models like neural networks, the behavior of
trained data mining models also dependent on the taining
data set. So, there is research on sample size as well as
the property of samples and sampling scheme. Fukunaga
and Hayes [24] discussed the effect of sample size for
parameter estimates in a family of functions for
classifiers. Raudys and Jain [25] prefer small sized
samples for feature selection and error estimation for
several classifiers of pattern recognition. In paper [26] the
authors showed that class imbalance in training data has
effects in neural network development especially for
medical domain. Jensen and Oates [27] investigated three
sampling schemes, arithmetic, geometric, and dynamic
sampling for decision tree algorithms. In arithmetic
sampling and geometric sampling, the sample size grows
in arithmetic and geometric manner respectively.
Dynamic sampling method determines the sample size
based on dynamic programming. They found that the
accuracy of predictors increases as the sample size

increases and the curve of accuracy is logarithmic, so
they used the rate of increase in accuracy as stopping
criteria for sampling. They experimented with C4.5
decision tree algorithm which is freely available. In paper
[28] several resampling techniques like cross-validation,
the leave-one-out, etc. are tested to see the effect of the
sampling techniques in the performance of neural
networks, and discovered that the resampling techniques
has very different accuracy depending on feature space
and sample size.

3 The method
We apply three existing techniques in our method; radial
basis function networks, multilayer perceptrons, and
sampling techniques. Let’s see the principles of each
technique briefly.

3.1 Multilayer perceptrons
Multilayer perceptrons were introduced in middle of 80’s
to enhance the limited capability of perceptrons. MLPs
have an input layer, an output layer, and one or more
hidden layers. MLPs became popular by the efforts of
‘parallel distributed group’ [29]. An important property
of MLPs is backpropagation learning algorithm, and by
the learning algorithm a variety problem could be solved
including linear separability problem that were
impossible to solve with perceptrons. Unlike other
statistical method MLPs do not need assumptions about
data distribution so that they are good when we don’t
have much statistical knowledge about data. There are
many cases that report successful application of MLPs
[30, 31] as well as hardware implementation [32]. A MLP
is a combination of perceptrons that have simple structure
like Fig. 1. The output y of a perceptron is weighted sum
of its inputs.

 y = f(∑i=0~m wixi - θ) where is θ threshold for output. (1)

where f is an activation function. There are three
representative activation functions; step function, sign
function, and sigmoid function. In general, sigmoid
functions are widely used. An example of sigmoid
function is 1/(1 + e-x). Fig. 2 shows the graph of the
sigmoid function.

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1505 Issue 9, Volume 8, September 2009

Fig. 1 Schematic view of perceptron

Fig. 2 Sigmoid function

A multilayer perceptron has multiple hidden layers so
that it has more power in predictability than perceptrons.
Fig. 3 shows a schmetic view of a simple multilayer
perceptron where the number of hidden layer is one.

Fig.3 Schematic view of MLP

The task of forecasting with MLP can be stated as a
function approximation problem.

 Given a set x of samples (xi, yi) such that f(xi) = yi for
i = 1, ..., n, where n is the sample size and xi is the input
vector. We want to find an unknown function f’ that
minimize the error, E(f, f’) where f is a prior function that
predicts outcome exactly. So, f can be written as follows:

f: I � O (2)

where I is the domain of input and O is the domain of
output. A MLP has similar activation mechanism with
that of perceptrons, but the two are different in the sense
that MLPs can have multiple hidden layers and weights
are adjusted by backpropagation learning algorithms
[33].

3.2 Radial basis function networks
Radial basis function networks or RBF networks were
also introduced in late 80’s. There are many cases that
report successful application of RBF networks [34, 35, 36,
37]. The function of RBF networks is based on the
function of actual neurons like visual cortices that have
the property of being sensitive to some particular visual
characteristics [38].

The task of forecasting with RBF network is a
classification or regression problem, so the problem can
be stated as a function approximation problem like
equation (2).

Because in real world situation it is very common to
have incomplete traing input data set, error estimation is
necessary and usually done by the sum of square of errors
E’:

E’ = ∑i=1~n (yi – f’(xi))

2 (3)

So, RBF network is a function f’(x) having a linear
combination of hidden radial function hj(x). So the RBF
network can be written as follows:

f’(x) = ∑j=1~m wjhj(x) (4)

where hj(x) is the radial function in hidden node j and wj
is the weight between function hj(x) and output node.
 While multilayer perceptrons use sigmoid functions
for activation functions, RBF networks use radial basis
functions at hidden layer. Fig. 4 shows a schematic view
of a RBF network.

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1506 Issue 9, Volume 8, September 2009

Fig. 4 Schematic view of RBF network

Because radial basis function makes an
approximation based on the training data, one should
choose a basis function that can represent the target
domain well. There can be a variety of radial basis
functions, for example, Gaussian, multiquadric, cauchy,
etc.

Center point and radius are two parameters for a
radial function. The center of the radial function indicates
the central position, and the radius determines how the
function spreads around its center. If we use Gaussian as
a basis function, mean is the center and variance is the
radius.

In order to train RBF networks first we should find
appropriate centre and radius of radial basis function. For
this task, we may use some unsupervised learning
algorthms like K-means clustering. After deciding the
centers and radiuses the weigts can be trained.

3.3 Sampling method

3.3.1 Arithmetic sampling
In arithmetic sampling sample size is increased
arithmetically, so the sequence of sample sizes is in
arithmetical progression. We can define the sample size
Si in arithmetic sampling with the following equation:

Si = S0 + i × K (5)

Here, S0 is the initial sample size, i is an iteration number,
and K is a constant for increment.

So, we can have an arithmetical progression of
sample sizes like, S0, S1 = S0 + 1K, S2 = S0 + 2K, S3 = S0 +
3K, and so on. For example, if S0 = 200 and K = 100, then
S1 = 300, S2 = 400, S3 = 500, and so on.

Therefore, if we use arithmetic sampling with some
proper K value, we can trace the accuracy of neural
networks throughly. On the other hand this property may
become a drawback of the arithmetic sampling scheme,
because we may need a lot of repeated sampling, if K is
small. For example, let’s assume we have 1,000,000
records in a data set, and we start from 100,000 records as
an initial sample size and the constant K value is 1,000.
We have to do sampling 500 times to reach to the half of
the target data set. Because most target data sets for data
mining contain lots of data, it is highly possible that
arithmetic sampling alone cannot be used efficiently.

3.3.2 Geometric sampling
In geometric sampling method sample size is increased
geometrically so that the sequence of sample sizes are in
geometrical progression. We can define sample size Si for
sample i in geometric sampling with the following
equation:

Si = S0 × Ki (6)

Here, S0 is the initial sample size and K is a constant for
increment.

So, we can have a geometrical progression of
samples in size, S0, S1 = S0⋅K, S2 = S0⋅K2, S3 = S0⋅K3, and
so on. For example, if S0 = 2,000 and K = 2, then S1 =
4,000, S2 = 8,000, S3 = 16,000, and so on. As we can see
from the example, if we use geometric sampling, sooner
or later we can see very big sample sizes. So, the target
data set may be exhausted within a few rounds.

As an example, let’s assume that we have 1,000,000
records in a data set as before, and we start from 2,000
records as an initial sample size and the constant K value
is 2. So, the sequence of sample size becomes like 2,000,
4,000, 8,000, 16,000, 32,000, 64,000, 128,000, 256,000,
512,000. It takes only 9 rounds to reach to the half of the
target data set.

Another noticeable fact in geometric sampling is
that the sample size values are very sparse at the later
stage of the sampling. So, geometric sampling cannot be
a good sampling strategy, if used data mining algorithms
do not have the tendency of monotonic increase in
accuracy. Let’s assume that we have a learning curve that
have some sudden peaks in accuracy as the training size
grows. Because geometric sampling method has very
sparse sampling interval with respect to sample size at the
later stage of the sampling schedule, we might miss the
points. Please look at Fig. 5 that depicts learning curve
for some induction algorithm that have ocillating
accuracy as the sample size gorws. Because there some
sudden peaks in accuracy, sparseness in sample sizes like
1,000, 2,000, 4,000, 8,000, 16,000 may not detect the
good points like sample sizes, 12,000, 14,000. In the

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1507 Issue 9, Volume 8, September 2009

figure X axis represents sample size and Y axis represents
prediction accuracy.

Fig. 5 Learning curve in accuracy for
some possible data mining algorithm

3.4 The method
It is not easy to determine an appropriate sample size that
is the best for MLPs with target data set. So, in order to
overcome this problem we resort to repeated sampling
scheme for RBF networks that considers various sizes of
samples.

We do the sampling until the sample size is less than
or almost the half of the target data set, because we
assume that we have some large target data set that is
common in data mining domain and we want to have
enough test data also. Because we use RBF networks in
our method, as a first step we should determine what
radial basis function we will use. For this task we should
be careful about selecting the radial function that can
accomodate the target data well, because it may affect
final result much. The following is a brief description of
the procedure of the sampling scheme. It has two steps.

 [Step 1]
INPUT : a data set for data mining,

k: the number of random sampling for each sample
size,

s: initial sample size.
OUTPUT: S, A, V, I, D.
/* S: set of sample size,

A: set of accuracy,
 V: set of average accuracy,
 I: set of average improvement
 D: set of difference in max and min accuracy */
j := 1;
Do while s < | target data set | / 2

Do for i = 1 to k /* generate k RBF networks for each
loop*/

Do random sampling of size s;
Train and test a RBF network;
aij := Accuracy of the RBF network;
Aj := Aj ∪ {aij};

End for;
S := S ∪ s;
A := A ∪ Aj;
v := the average accuracy in Aj;
V := V ∪ {v}; /* V: average accuracy values */
i := (the average accuracy of the RBF networks of

previous step) – (the average accuracy of the RBF
networks); /* average improvement rate */

I := I ∪ { i}; /* I: set of i values */
d := (maximum of accuracy among the trained RBF

networks) - (minimum of accuracy among the
trained RBF networks);

/* d stands for the fluctuation of accuracy values in the
trained RBF networks */

D := D ∪ {d} ; /* D: set of d values */
If s >= mid_limit Then

s := s + sample_size_increment; j++;
Else
s := s × 2; j++;continue; /* while loop */

End if
End while;

[Step 2]
Choose a sample size as a starting sample size from Step
1 for MLPs which satisfies the following conditions:

1. A sample size that belongs to a group of some
best accuracies,

2. A sample size that have smaller value in
difference of minimum and maximum accuracy,

3. A sample size that is bigger.
Repeat

Train MLPs with the chosen sample sizes like RBF
networks in step 1;.
Increment sample size like RBF networks in step 1;

Until improvement < predefined_limit;

We double the sample size until the size reaches to
some point, mid_limit, then we increment the sample size
by some fixed value, because doubling the sample size
can exhaust the data very soon.

Even though we do random sampling, because we
may have some sampling bias and sampling errors, the
trained RBF networks may be in variety in accuracy. So,
in order to get rid of the effect of variety in accuracy we
sample multiple times whthin a sample size, then we
average the accuracy values of the trained neural
networks for each sample size, and this average accuracy

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1508 Issue 9, Volume 8, September 2009

with improvement value as well as fluctuation value in
accuracy is used to determine a proper sample size for
this purpose. We should set an appropriate value of k for
resampling.

Because the accuracy of MLPs have the tendency of
somewhat monotonic increase as the sample size grows,
we prefer bigger sample size. By selecting a bigger
sample size that generates good RBF networks in average
case with satisfactory accuracy, we can have better
MLPs for the sample size.

4 Experimentation
Experiments were run with two data sets in UCI machine
learning repository [39] called ‘adult’ and ‘forest cover
types’ to see the effect of the method. The adult data set
[40] is a refined version of ‘census income’ data set. The
census income data set is census data of 1994. The census
income data set is originated from the census bureau
database. The number of instances in the adult data set is
48,842. The total number of attributes in the adult data set
is forteen, and among them six attributes are continuous
attributes and one attribute is a class attribute where it has
two classes, yearly income being greater than or equal to
50,000 and less than 50,000 .

The ‘forst cover types’ data set [41] includes forest
information in four wilderness areas found in the
Roosevelt National Forest of northern Colorado. The
number of instances in the adult data set is 581,012. It has
twelve continuous attributes as independent variables,
while seven major forest cover types were used as a
dependent variable or a class variable. ‘Adult’ and ‘forest
cover types’ data sets were selected as representatives of
business and scientific domains respectively, because the
origin of ‘adult’ data set is census and it contains a lot of
nominal values, and ‘forest cover types’ data contains
continus values only which is common in scientific
domain. In addition both are relatively very large so that
they are appropriate for the experiment.

4.1 Experiment with adult data set

We used RBF network using K-means clustering to
train from various sample sizes of ‘adult’ data set. The
used basis function is Gaussian, because the ‘adult’ data
set is originated from census database. The given number
of clusters for K-means clustering is two which is based
on the number of classes.

We also trained MLPs with the same sample sets for
each different sample sizes. In order to train MLPs the
given number of hidden layers is also two. Bacause we
have many nominal values in the data set, we have many
nodes in input layer, so the given number of hidden layers

is relatively small. To compansate the small number of
hidden layer the training time of 10,000 is given. Table 1
and 2 show the summary of the results. For each sample
size seven random samples have been selected and seven
neural networks have been generated for the experiment.

The initial sample size for training is 200, and the
size of samples is doubled as the while loop runs. The
given mid_limit value for sample size is 6,400, and the
sample size increment from the mid_limit is 3,200. The
rest of the data set after sampling is used for testing.

In the table 1 and 2, the third column,
improvement(%), means the percentage of improvement
in accuracy compared to the neural networks of previous
sample size, and the fourth column represents the
difference of maximum and minimum values of accuracy
among the neural networks in the given sample size, and
the last column is for the average computation time in
second. The used computer is a pentium 4 personal computer
with 2MB main memory.

Table 1. RBF networks for ‘adult’ data
set with various sample sizes

Samp.
size

Average
Accuracy
(%)

Improve
-ment(%)

Diff. of
max & min
accuracy
(%)

Average
compu.
time(sec)

200 82.15153 NA 2.4239 0.04
400 83.3527 1.20117 1.6907 0.07
800 82.86174 -0.49096 0.9783 0.14
1,600 83.13183 0.27009 1.5071 0.76
3,200 83.64977 0.51794 1.1419 1.50
6,400 83.38611 -0.26366 2.0288 1.52
9,600 83.57734 0.19123 0.6345 2.21
12,800 83.45717 -0.12017 0.6165 3.01
16,000 83.42126 -0.03591 0.6970 3.82
192,00 83.52089 0.09963 0.6385 5.53

If we look at table 1, sample size 3,200 has the best

accuracy, and the second best is sample size 9,600.
Because accuracy of MLP increase as the sample size
grow, we may choose sample size 9600 as the training
point of the MLP. In other words, because the difference
of accuracy between sample size 3,200 and 9,600 is only
0.07243%, and the difference of max and min accuracy
between the two is almost half in sample size 9,600, and
the sample size is bigger, we choose the sample size of
9,600. Note that as the sample size increases, accuracy
does not increase monotonically. Note also that bigger
sample sizes have less fluctuation in difference of
maxmum and minimum accuracy values.

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1509 Issue 9, Volume 8, September 2009

Table 2. MLP networks for ‘adult’ data
set with various sample sizes

Samp.
size

Average
accuracy(%)

Improve
-ment(%)

Diff. of
max & min
accuracy
(%)

Average
compu.
time(sec)

200 77.96967 NA 2.6294 91.5
400 80.27067 2.301 5.5923 186.7
800 81.41629 1.14562 3.0182 351.9
1,600 82.36150 0.94521 0.362 673.4
3,200 82.58996 0.22846 3.6041 1337.3
6,400 82.99027 0.40031 4.5545 2780.1
9,600 84.51573 1.52546 0.3899 3977
12,800 84.55946 0.04373 0.6921 5340.4
16,000 83.86250 -0.69696 1.1414 6367
19,200 84.41695 0.55445 1.0521 7666.3

In table 2 the results of sample sizes other than 9,600

and 12,800 are also presented for reference. If we look at
table 2, sample size 12,800 has the best average accuracy,
and the second best is sample size 9,600. Note that even
with 1.33 times bigger sample size, the accuracy
improvement is only 0.04373% which is 1.000517 times
better so that we may stop further iteration.

Note also that the training of MLPs takes thousands
of times longer than that of RBF networks so that without
the help of RBF networks it will take very long time. Fig.
6 displays the change of prediction accuracies of RBF
networks (dotted line) and MLPs (solid line) for the data
set more clearly. In the figure X axis represents the
sample size and Y axis represents average prediction
accuracy.

Fig. 5 Average accuracy of RBF networks
and MLPs with different sample sizes

4.2 Experiment with forest cover types data set

We also used RBF network using K-means
clustering to train from various sample sizes of ‘forest

cover types’ data set. The used basis function is also
Gaussian because the data set has several attributes that
are in Gausian-like distribution. The given number of
clusters for K-means clustering is two, because average
class value distribution of the forest cover types data set
in each sample size is (38%, 48%, 16%) for classes (1, 2,
3 to 7) respectively. We also trained MLPs with the same
sample sets for each different sample sizes. In order to
train MLPs the given number of hidden layers is the half
of the number of attributes plus the number of classes.
Because we have relatively large number of hidden layer,
the traing time of 500 is given. Table 3 and 4 show the
summary of the results. For each sample size four random
samples have been selected and four neural networks
have been generated for the experiment.

The initial sample size for training is 200, and the
size of samples is doubled as the while loop runs. The
given mid_limit value for sample size is 102,400, and the
sample size increment from the mid_limit is 51,200. The
rest of the data set after sampling is used for testing.

In the table 3 and 4, the third column,
improvement(%), means the percentage of improvement
in accuracy compared to the neural networks of previous
sample size, and the fourth column represents the
difference of maximum and minimum values of accuracy
among the neural networks in the given sample size, and
the last column is for the average computation time in
second. The used computer is a pentium 4 personal computer
with 2MB main memory.

Table 3. RBF networks for ‘forest cover
types’ data set with various sample sizes

Samp.
size

Average
Accuracy
(%)

Improve
-ment(%)

Diff. of
max & min
accuracy
(%)

Average
compu.
time(sec)

200 62.4881 NA 3.2482 6
400 64.1559 1.6678 3.2483 10
800 65.8715 1.7156 1.4655 15
1,600 67.4969 1.6254 2.1950 23
3,200 68.0128 0.5159 1.2103 36
6,400 68.6423 0.6295 0.7520 80
12,800 69.0365 0.3942 0.5216 173
25,600 68.9293 -0.1072 0.4598 263
51,200 69.0065 0.00772 0.6869 504
102,400 69.2892 0.2827 0.5409 838
153,600 69.2987 0.0095 0.5868 1021
204,800 69.2851 -0.0136 0.3491 1882
256,000 62.7933 -6.4918 0.2313 2796

If we look at table 1, sample size 153,600 has the

best accuracy, and the second best is sample size 102,400.
Because accuracy of MLP increase as the sample size

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1510 Issue 9, Volume 8, September 2009

grow, we may choose sample size 153,600 as the training
point of the MLP. In other words, because the difference
of accuracy between sample size 153,600 and 103,200 is
only 0.0095%, and the difference of max and min
accuracy between the two is similar, we choose the
sample size of 153,600. Note that as the sample size
increases, accuracy does not increase monotonically in
RBF networks. Note also that bigger sample sizes have
less fluctuation in difference of maxmum and minimum
accuracy values.

Table 4. MLP networks for ‘forest cover
types’ data set with various sample sizes

Samp.
size

Average
Accuracy
(%)

Improve
-ment(%)

Diff. of
max & min
accuracy
(%)

Average
compu.
time(sec)

200 60.9312 NA 4.1225 25
400 62.2087 1.2775 5.0622 50
800 66.1581 3.9494 1.2054 101
1,600 68.1597 2.0016 2.5243 201
3,200 70.2124 2.0527 2.6439 403
6,400 72.9120 2.6996 1.5601 807
12,800 75.4644 2.5524 1.2752 1,652
25,600 76.9944 1.5300 0.3487 3,250
51,200 77.9508 0.9564 1.3631 6,616
102,400 78.7463 0.7955 0.9217 13,521
153,600 79.3981 0.6518 0.292 20,984
204,800 79.3237 -0.0744 0.7156 28,807
256,000 68.0523 -11.2724 0.4502 36,794

In table 4 the results of sample sizes other than

15,600 and 204,800 are also presented for reference. If
we look at table 4, sample size 153,600 has the best
average accuracy, and the second best is sample size
204,800. Note that even with 1.25 times bigger sample
size, the accuracy improvement is -0.074% so that we
may stop further iteration.

Note also that the training of MLPs takes tens of
times longer than that of RBF networks so that without
the help of RBF networks it will take very long time. Fig.
2 displays the change of prediction accuracies of RBF
networks (dotted line) and MLPs (solid line) for the data
set more clearly. In the figure X axis represents the
sample size and Y axis represents average prediction
accuracy.

Fig. 2 Average accuracy of RBF networks
and MLPs with different sample sizes

5 Conclusion
It is known that neural networks are one of the most
successful data mining or machine learning tools for
prediction, so that neural networks are widely accepted
for the tasks. There are two kinds of neural networks that
are widely used for classification – multi-layer
perceptrons (MLPs) and radial basis function (RBF)
networks. While good points of MLPs their general
applicability to almost all domain, good points of RBF
networks is relatively fast training time with good
predictability. Some drawbacks are high computational
complexity in MLPs and domain dependency of basis
function in RBF networks. But, whatever neural
networks are used, the neural networks may not always
be the best predictors due to the fact that they are trained
based on some greedy algorithms with limited data sets
and the knowledge of human experts. So, some
improvements may be possible.

Because the target data sets in data mining tasks
contain a lot of data, random sampling has been
considered a standard method to cope with large data sets
that are very common in data mining task. But, simple
random sampling might not generate perfect samples that
are good for the used data mining algorithms, and the task
of determining a proper sample size is arbitrary so that
the reliability of the trained data mining models may not
be good enough to be trusted. Moreover, it takes very
long computing time to train MLPs so that we have only
limited chance to do repeated sampling.

In order to overcome the problem, we propose a
method that first applies a repeated progressive sampling
method with various sample sizes for RBF networks to
decide the best random samples. Then, good sample sizes
from RBF networks are used to train MLPs. Experiments
with a real world data set showed very promising results.

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1511 Issue 9, Volume 8, September 2009

References:
[1] D.T. Larose, Data Mining Methods and Models,

Wiley-Interscience, 2006.
[2] C.M. Bishop, Neural networks for pattern

recognition, Oxford University press, 1995.
[3] J. Stastny, V. Skorpil, Analysis of Algorithms for

Radial Basis Function Neural Network, IFIP
International Federation for Information Processing,
Vol. 245, Personal Wireless Communications, eds. B.
Simak, R. Bestak, E. Kozowska, Springer, 2007, pp.
54-62.

[4] R.J. Howlett, L.C. Jain, Radial Basis Function
Networks I: recent developments in theory and
applications, Physics-Verlag, 2001.

[5] S. Russel, P. Novig, Artificial Intelligence: a Modern
Approach, 2nd ed., Prentice Hall, 2002.

[6] M.L. Minsky, S.A. Papert, Perceptrons – extended
edition: an introduction to computational geometry,
MIT press,1987.

[7] M.W. Gardner, S.R. Dorling, Artificial Neural
networks (The Multilayer Perceptron) – A Review of
Applications in the Atmospheric Sciences,
Atmospheric Environment, vol. 32, no. 14/15, 1998,
pp. 2627-2636.

[8] N.E. Mastorakis, The Optimal Multi-layer Structure
of backpropagation Networks, WSEAS Transactions
on Information Science and Applications, vol. 3, issue
9, 2006, pp. 1632-1637.

[9] R P. Lippmann, An Introduction to Computing with
Neural Nets, IEEE Acoustic, Speech, and Signal
Processing Magazine, vol . 4, 1987, pp. 4 -12.

[10] K. Hornik, M. Stinchcombe, H. White, Multilayer
Feedforward Networks are Universal Approximator,
Neural Networks, vol. 2, 1989, pp. 359-366.

[11] C. Lin, Implementation Feasibility of Convex
Recursive Deletion Regions using Multi-Layer
Perceptrons, WSEAS Transactions on Computers, vol.
7, issue 1, 2008, pp. 24-31.

[12] C. Lin, Neural Network Structures with Constant
Weights to Implement Dis-jointly Removed
Non-convex (DJRNC) Decision Regions: Part A –
Properties, Model, and Simple case, Proceedings of
the 8th WSEAS International Copnference on Neural
Networks, vol. 8, 2007, pp. 13-18.

[13] C. Cabrelli, U. Molter, R. Shonkwiler, A
Constructive Algorithm to Solve Convex Recursive
Deletion (CoRD) Classification Problems via
Two-layer Perceptron Networks, IEEE Transactions
on Neural Networks, vol. 11, no. 3, 2000, pp.
811-816.

[14] Y. Lin, C. Huang, C. Lin, Determination of
Insurance Policy Using Neural Networks and
Simplied Models with factor Analysis Technique,

WSEAS Transactions on Information Science and
Applications, vol. 5, issue 10, 2008, pp. 1405-1415.

[15] A.C. Comrie, Comparing Neural Networks and
Regression Models for Ozone Forecasting, Journal of
Air and Waste Management, vol. 47, 1997, pp.
653-663.

[16] P. Tan, M. Steinbach, V. Kumar, Introduction to
Data Mining, Addison Wesley, 2006.

[17] M.J.L. Orr, Introduction to Radial Basis Function
Networks, http://www.anc.ed.ac.uk/~mjo/intro.ps,
1996.

[18] Z. Zainuddin, O. Pauline, Function Approximation
Using Artificial Neural Networks, WSEAS
Transcations on Mathematics, vol. 7, issue 6, 2008,
pp. 333-338.

[19] G. Baylor, E.I. Konukseven, A.B. Koku, Control of
a Differentially Driven Mobile Robot Using Radial
Basis Function Based Neural Networks, WSEAS
Transcations on Systems and Control, vol. 3, issue 12,
2008, pp. 1002-1013.

[20] A. Esposito, M. Marinaro, D. Oricchio, S. Scarpetta,
Approximation of Continuous and Discontinuous
Mappings by a Growing Neural RBF-based
Algorithm, Neural Networks, Vol. 13, No. 6, 2000,
pp. 651-656.

[21] O. Buchtala, M. Klimek, B. Sick, Evolutionary
Optimazation of Radial Basis Function Classifiers for
Data Mining Applications, IEEE Transactions on
Systems, Man, and Cybernetics—Part B: Cybernetics,
Vol. 35, No. 5, 2005, pp. 928-947.

[22] A. Hofmann, B. Sick, Evolutionary Optimazation of
Radial Basis Function Networks for Intrusion
Detection, Proceedings of the International Joint
Conference on Neural Networks, Vol. 1, 2003, pp.
415-420.

[23] L. Nikolaos, Radial basis Function Networks to
Hybrid Neuro-Genetic RBFNs in Financial
Evaluation of Corporations, International Journal of
Computers, vol. 2, issue 2, 2008, pp. 176-183.

[24] K. Fukunaga, R.R. Hayes, Effects of Sample Size in
Classifier Design, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 11, issue 8,
1989, pp. 873-885.

[25] S.J. Raudys, A.K. Jain, Small Sample Size Effects in
Statistical Pattern recognition: Recommendations for
Practitioners, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 13, No. 3, 1991, pp.
252-264.

[26] M.A. Mazuro, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A.
Baker, G.D. Tourassi, Training neural network
classifiers for medical decision making: The effects of
imbalanced datasets on classification performance,
Neural Networks, Vol. 21, Issues 2-3, 2008, pp.
427-436.

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1512 Issue 9, Volume 8, September 2009

[27] T. Oatesm, D. Jensen, Efficient progressive
sampling, Proceedings of the Fifth International
Conference on Knowledge Discovery and data
Mining, 1999, pp. 23-32.

[28] S. Berkman, H. Chan, L. Hadjiiski, Classifier
performance estimation under the constraint of a
finite sample size: Resampling scheme applied to
neural network classifiers, Neural Networks, Vol. 21,
Issues 2-3, 2008, pp. 476 -483.

[29] D.E. Rumelhart, G.E. Hinton, R.J. Williams,
Learning Internal Representation by Error
Propagation, Parallel Distributed Processing, D.E.
Rumelhart, J.L. McClelland eds., The MIT Press, vol.
1, 1986.

[30] L. Tarassenko, Guide to Neural Computing
Applications, Hodder Arnold Publication, 1998.

[31] D. Balageas, C. Fritzen, A. Guemes eds., Structural
Health Monitoring, Independent Pub Group, 2006.

[32] A.R. Omondi, J.C. Rajapakse, FPGA
Implementations of Neural Networks, Springer, 2006.

[33] H. White, Learning in Artificial Neural Networks: A
Statiscal Perspective, Neural Computation, vol. 1,
1989, pp. 425-465.

[34] G. Bayar, E.I. Konukseven, A.B. Koku, Control of a
Differentially Driven mobile Robot Using Radial
Basis Function Based Neural Networks, WSEAS
Transactions on Systems and Control, Vol. 3, Issue 12,
2008, pp. 1002-1013.

[35] V.R. Mankar, A.A. Ghatol, Use of RBF Neural
Network in EMG Signal Noise Removal, WSEAS
Transactions on Circuits and Systems, Vol. 7, Issue 4,
2008, pp. 259-265.

[36] M. Qu, F.Y. Shih, J. Jing, H. Wang, Automatic solar
flare detection using MLP, RBF, and SVM, Solar
Physics, vol. 27, no. 1, 2003, pp. 157-172.

[37] S. Marinai, M. Gori, G. Soda, Artificial neural
networks for document analysis and recognition,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 1, 2005, pp. 23-35.

[38] T. Piggio, F. Girosi, Regularization Algorithms for
Learning That are Equivalent to Multilayer Networks,
Science, Vol. 2247, 1990, pp. 987-982.

[39] D. Newman, UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of
California, Department of Information and Computer
Science, 2005.

[40] R. Kohavi, Scaling up the accuracy of Naive-Bayes
classifiers: a decision-tree hybrid, Proceedings of the
scond international conference on knowledge
discovery and data mining, 1996, pp. 202-207.

[41] J.A. Blackard, J.D. Denis J, Comparative
Accuracies of Artificial Neural Networks and
Discriminant Analysis in Predicting Forest Cover
Types from Cartographic Variables, Computers and

Electronics in Agriculture, vol. 24, no. 3, 2000, pp.
131-151.

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 1513 Issue 9, Volume 8, September 2009

