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Abstract: - It’s well known that the computing time to train multilayer perceptrons is very long because of weight space 
of the neural networks and small amount of adjustment of the wiights for convergence. The matter becomes worse when 
the size of training data set is large, which is common in data mining tasks. Moreover, depending on samples, the 
performance of neural networks change. So, in order to determine appropriate sample sizes for multilayer perceptrons 
this paper suggests an effective approach with the help of simple radial basis function networks that work as a guide. 
Experiments with the two different data sets that may represent business and scientific domain well showed the 
effectiveness of the suggested method. 
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1 Introduction  
As data are gathered in wide application areas, data 
mining draw many researchers’ attention. So neural 
networks that is one of the successful data mining 
methods have been applied to the wide areas and reported 
successful [1].  But even though neural networks are one 
of the most successful data mining or machine learning 
methodologies, they have some weak points with respect 
to performance due to the fact that they are built based on 
greedy algorithms and the knowledge of experts as well 
as data set itself used to train the neural networks. So, 
there are some aspects of improvements; the 
improvement of the structure of the neural networks, and 
the improvement of connection weights, and the training 
data set.  

Multilayer perceptrons (MLPs) and radial basis 
function (RBF) networks are two major neural networks 
that have been applied successfully for classification 
tasks in data mining. At a glance the structure of the two 
neural networks are similar, but their training 
mechanisms are different. While both networks have 
three layers including the input layer, hidden layer, and 
output layer, RBF networks differ from MLPs, because in 
RBF networks the hidden layer performs some 
unsupervised learning [2, 3, 4], but the others don’t. 

Even though many methods have been suggested to 
find optimal network structures, basically the structure of 
the networks is usually determined by the knowledge of 
human experts with some experiments to refine the neural 
networks.  As a result, built neural networks may not 
represent the best knowledge models that are best for 

some collection of training examples in the target data 
set.  

For the improvement of connection weights MLPs 
use backpropagation algorithms. The backpropagation 
algorithms rely on some greedy search algorithms like 
gradient decent search algorithm [5]. In order to avoid 
local optima the weights are adjusted slowly so that the 
computing time can be very large. The matter becomes 
worse,  if the traing data set is large. 

So, because most target databases for data mining 
are very large, we need sampling process to the target 
databases. But the found knowledge models based on 
random samples are prone to sampling errors. An 
alternative strategy may be to use the original database. 
But, it may not be a good idea since it might be 
computationally very expensive, and because the target 
databases reflect only a portion of the target domain, 
overfitting problem may happen.  

Because RBF networks can be trained relatively in 
short time unless the network structure is complex, we 
may hope that if a sample size that has a good result in 
RBF networks, the same thing may happen in MLPs 
under the condition that we have appropriate neural 
network structures of RBF networks and MLPs. So, 
based on this idea we want to investigate the relationship 
empirically by experimenting the idea for some 
representative real world data sets.  

In section 2, we provide the related work to our 
research, and in sections 3 we present our method as well 
as background technologies. Experiments were run to see 
the effect of the method in section 4. Finally section 5 
provides some conclusions. 
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2   Related work 
Neural networks are widely used for machine learning or 
data mining tasks since the first neural network algorithm, 
the perceptron [6]. Because of the limited predictability 
of the perceptron, multilayer perceptrons have been 
invented [7, 8, 9, 10]. Multilayer perceptrons have been 
applied widely including mathematical problems [11, 12, 
13] as well as application fields [14, 15]. There are two 
kinds of networks based on how the networks are 
interconnected – feed-forward neural networks and 
recurrent neural networks [16]. MLPs are feed-forward 
neural networks. The weak point of MLPs is 
computational intensiveness. So most data mining 
applications that use MLPs prefer samll-sized samples or 
data sets.  

RBF networks are one of the most popular 
feed-forward networks [17, 18, 19] that are used as a 
replacement for MLPs. A good point of RBF networks is 
that they can be trained in relatively short time. But, due 
to the feed-forward nature and the hidden layer functions 
to approximate the target data set, local optima problem 
also may occur.  

In order to overcome local optima problem many 
evolutionary search algorithms were suggested [20, 21, 
22, 23] for RBF networks. Evolutionary search 
algorithms try to find global optimal solutions so that it is 
possible to find better RBF networks. But the algorithms 
require more extensive computing time as well as more 
elaborate techniques related to the evolutionray 
computation like the representation technique of network 
structures and weights. 

Because some induction method is used to train the 
data mining models like neural networks, the behavior of 
trained data mining models also dependent on the taining 
data set. So,  there is research on sample size as well as 
the property of samples and sampling scheme. Fukunaga 
and Hayes [24] discussed the effect of sample size for 
parameter estimates in a family of functions for 
classifiers. Raudys and Jain [25] prefer small sized 
samples for feature selection and error estimation for 
several classifiers of pattern recognition. In paper [26] the 
authors showed that class imbalance in training data has 
effects in neural network development especially for 
medical domain. Jensen and Oates [27] investigated three 
sampling schemes, arithmetic, geometric, and dynamic 
sampling for decision tree algorithms. In arithmetic 
sampling and geometric sampling, the sample size grows 
in arithmetic and geometric manner respectively. 
Dynamic sampling method determines the sample size 
based on dynamic programming.   They found that the 
accuracy of predictors increases as the sample size 

increases and the curve of accuracy is logarithmic, so 
they used the rate of increase in accuracy as stopping 
criteria for sampling.  They experimented with C4.5 
decision tree algorithm which is freely available. In paper 
[28] several resampling techniques like cross-validation, 
the leave-one-out, etc. are tested to see the effect of the 
sampling techniques in the performance of neural 
networks, and discovered that the resampling techniques 
has very different accuracy depending on feature space 
and sample size. 
 

 

3   The method 
We apply three existing techniques in our method; radial 
basis function networks, multilayer perceptrons, and 
sampling techniques. Let’s see the principles of each 
technique briefly. 
 
  
3.1 Multilayer perceptrons 
Multilayer perceptrons were introduced in middle of 80’s 
to enhance the limited capability of perceptrons. MLPs 
have an input layer, an output layer, and one or more 
hidden layers. MLPs became popular by the efforts of 
‘parallel distributed group’ [29]. An important property 
of MLPs is backpropagation learning algorithm, and by 
the learning algorithm a variety problem could be solved 
including  linear separability problem that were 
impossible to solve with perceptrons. Unlike other 
statistical method MLPs do not need assumptions about 
data distribution so that they are good when we don’t 
have much statistical knowledge about data.  There are 
many cases that report successful application of MLPs 
[30, 31] as well as hardware implementation [32]. A MLP 
is a combination of perceptrons that have simple structure 
like Fig. 1. The output y of a perceptron is weighted sum 
of its inputs. 
 
  y = f(∑i=0~m wixi - θ) where is θ threshold for output.  (1) 

 
where f is an activation function. There are three 
representative activation functions; step function, sign 
function, and sigmoid function. In general, sigmoid 
functions are widely used. An example of sigmoid 
function is 1/(1 + e-x). Fig. 2 shows the graph of the 
sigmoid function. 
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Fig. 1 Schematic view of perceptron 

     

 

Fig. 2 Sigmoid function 

A multilayer perceptron has multiple hidden layers so 
that it has more power in predictability than perceptrons.  
Fig. 3 shows a schmetic view of a simple multilayer 
perceptron where the number of hidden layer is one. 

  

Fig.3 Schematic view of MLP  

The task of forecasting with MLP can be stated as a 
function approximation problem. 

      Given a set x of samples (xi, yi) such that f(xi) = yi for 
i = 1, ..., n, where n is the sample size and xi is the input 
vector.  We want to find an unknown function f’ that 
minimize the error, E(f, f’) where f is a prior function that 
predicts outcome exactly. So, f can be written as follows: 
 

f: I �  O                                 (2) 
 

where I is the domain of input and O is the domain of 
output. A MLP  has similar activation mechanism with 
that of perceptrons, but the two are different in the sense 
that MLPs can have multiple hidden layers and weights 
are adjusted by backpropagation learning algorithms 
[33]. 
 
 
3.2 Radial basis function networks 
Radial basis function networks or RBF networks were 
also introduced in late 80’s. There are many cases that 
report successful application of RBF networks [34, 35, 36, 
37]. The function of RBF networks is based on the 
function of actual neurons like visual cortices that have 
the property  of being sensitive to some particular visual 
characteristics [38].   

The task of forecasting with RBF network is a 
classification or regression problem, so the problem can 
be stated as a function approximation problem like 
equation (2). 

Because in real world situation it is very common  to 
have incomplete traing input data set, error estimation is 
necessary and usually done by the sum of square of errors 
E’: 

 
E’ = ∑i=1~n  (yi – f’(xi))

2                   (3) 
 

So, RBF network is a function f’(x) having a linear 
combination of hidden radial function hj(x). So the RBF 
network can be written as follows: 

 
f’( x) = ∑j=1~m wjhj(x)                      (4) 

 
where hj(x) is the radial function in hidden node j and wj 
is the weight between function hj(x) and output node. 
     While multilayer perceptrons use sigmoid functions 
for activation functions, RBF networks use radial basis 
functions at hidden layer. Fig. 4 shows a schematic view 
of a RBF network. 
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Fig. 4 Schematic view of RBF network 

Because radial basis function makes an 
approximation based on the training data, one should 
choose a basis function that can represent the target 
domain well. There can be a variety of radial basis 
functions, for example, Gaussian, multiquadric, cauchy, 
etc.   

Center point and radius are two parameters for a 
radial function. The center of the radial function indicates 
the central position, and the radius determines how the 
function spreads around its center. If we use Gaussian as 
a basis function, mean is the center and variance is the 
radius.  

In order to train RBF networks first we should find 
appropriate centre and radius of radial basis function. For 
this task, we may use some unsupervised learning 
algorthms like K-means clustering. After deciding the 
centers and radiuses the weigts can be trained. 

 
 

3.3 Sampling method 
 
3.3.1 Arithmetic sampling 
In arithmetic sampling sample size is increased 
arithmetically, so the sequence of sample sizes is in 
arithmetical progression. We can define the sample size 
Si in arithmetic sampling with the following equation: 
 

Si = S0 + i × K                             (5) 
 

Here, S0 is the initial sample size, i is an iteration number, 
and K is a constant for increment. 

So, we can have an arithmetical progression of 
sample sizes like, S0, S1 = S0 + 1K, S2 = S0 + 2K, S3 = S0 + 
3K, and so on. For example, if S0 = 200 and K = 100, then 
S1 = 300, S2 = 400, S3 = 500, and so on.  

Therefore, if we use arithmetic sampling with some 
proper K value, we can trace the accuracy of neural 
networks throughly. On the other hand this property may 
become a drawback of the arithmetic sampling scheme, 
because we may need a lot of repeated sampling, if K is 
small. For example, let’s assume we have 1,000,000 
records in a data set, and we start from 100,000 records as 
an initial sample size and the constant K value is 1,000. 
We have to do sampling 500 times to reach to the half of 
the target data set. Because most target data sets for data 
mining contain lots of data, it is highly possible that 
arithmetic sampling alone cannot be used efficiently. 
 
3.3.2 Geometric sampling  
In geometric sampling method sample size is increased 
geometrically so that the sequence of sample sizes are in 
geometrical progression. We can define sample size Si for 
sample i in geometric sampling with the following 
equation: 
 

Si = S0 × Ki                                 (6) 
 

Here, S0 is the initial sample size and K is a constant for 
increment. 

So, we can have a geometrical progression of 
samples in size, S0, S1 = S0⋅K, S2 = S0⋅K2, S3 = S0⋅K3, and 
so on. For example, if S0 = 2,000 and K = 2, then S1 = 
4,000, S2 = 8,000, S3 = 16,000, and so on. As we can see 
from the example, if we use geometric sampling, sooner 
or later we can see very big sample sizes. So, the target 
data set may be exhausted within a few rounds.  

As an example, let’s assume that we have 1,000,000 
records in a data set as before, and we start from 2,000 
records as an initial sample size and the constant K value 
is 2. So, the sequence of sample size becomes like 2,000, 
4,000, 8,000, 16,000, 32,000, 64,000, 128,000, 256,000, 
512,000. It takes only 9 rounds to reach to the half of the 
target data set.  

Another noticeable fact in geometric sampling is 
that the sample size values are very sparse at the later 
stage of the sampling. So, geometric sampling cannot be 
a good sampling strategy, if used data mining algorithms 
do not have the tendency of monotonic increase in 
accuracy. Let’s assume that we have a learning curve that 
have some sudden peaks in accuracy as the training size 
grows. Because geometric sampling method has very 
sparse sampling interval with respect to sample size at the 
later stage of  the sampling schedule, we might miss the 
points. Please look at Fig. 5 that depicts learning curve 
for some induction algorithm that have ocillating 
accuracy as the sample size gorws. Because there some 
sudden peaks in accuracy, sparseness in sample sizes like 
1,000, 2,000, 4,000, 8,000, 16,000 may not detect the 
good points like sample sizes, 12,000, 14,000. In the 
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figure X axis represents sample size and Y axis represents 
prediction accuracy. 

 

 

Fig. 5 Learning curve in accuracy for 
some possible data mining algorithm 

 

 
3.4 The method 
It is not easy to determine an appropriate sample size that 
is the best for MLPs with target data set. So, in order to 
overcome this problem we resort to repeated sampling 
scheme for RBF networks that considers various sizes of 
samples.  

We do the sampling until the sample size is less than 
or almost the half of the target data set, because we 
assume that we have some large target data set that is 
common in data mining domain and we want to have 
enough test data also. Because we use RBF networks in 
our method, as a first step we should determine what 
radial basis function we will use. For this task we should 
be careful about selecting the radial function that can 
accomodate the target data well, because it may affect 
final result much. The following is a brief description of 
the procedure of the sampling scheme. It has two steps. 
------------------------------------------------------------------- 
 [Step 1] 
INPUT : a data set for data mining,  

k: the number of random sampling for each sample 
size,  

s: initial sample size. 
OUTPUT: S, A, V, I, D.  
/* S: set of sample size, 

A: set of accuracy, 
    V: set of average accuracy, 
     I: set of average improvement 
    D: set of difference in max and min accuracy */ 
j := 1;  
Do while s < | target data set | / 2 

Do for i = 1 to k /* generate k RBF networks for each 
loop*/  

Do random sampling of size s;  
Train and test a RBF network;  
aij :=  Accuracy of the RBF network; 
Aj := Aj ∪ {aij};  

End for;  
S := S ∪ s; 
A := A ∪ Aj; 
v := the average accuracy in Aj; 
V := V ∪ {v}; /* V: average accuracy values */  
i := (the average accuracy of the RBF networks of 

previous step) – ( the average accuracy of the RBF 
networks); /* average improvement rate */ 

I := I ∪ { i}; /* I: set of i values */   
d := (maximum of accuracy among the trained RBF 

networks) - (minimum of accuracy among the 
trained RBF networks); 

/* d stands for the fluctuation of accuracy values in the 
trained RBF networks */ 

D := D ∪ {d} ; /* D: set of d values */ 
If  s >= mid_limit Then  

s := s + sample_size_increment;  j++; 
Else  
s := s × 2; j++;continue;  /* while loop */  

End if  
End while; 
------------------------------------------------------------------- 
[Step 2] 
Choose a sample size as a starting sample size from Step 
1 for MLPs which satisfies the following conditions: 

1. A sample size that belongs to a group of some 
best accuracies, 

2. A sample size that have smaller value in 
difference of minimum and maximum accuracy, 

3. A sample size that is bigger. 
Repeat  

Train MLPs with the chosen sample sizes like RBF 
networks in step 1;. 
Increment sample size like RBF networks in step 1; 

Until improvement < predefined_limit; 
------------------------------------------------------------------- 

We double the sample size until the size reaches to 
some point, mid_limit, then we increment the sample size 
by some fixed value, because doubling the sample size 
can exhaust the data very soon.  

Even though we do random sampling, because we 
may have some sampling bias and sampling errors, the 
trained RBF networks may be in variety in accuracy. So, 
in order to get rid of the effect of variety in accuracy  we 
sample multiple times whthin a sample size, then we 
average the accuracy values of the trained neural 
networks for each sample size, and this average accuracy 
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with improvement value as well as fluctuation value in 
accuracy is used to determine a proper sample size for 
this purpose. We should set an appropriate value of k for 
resampling.  

Because the accuracy of MLPs have the tendency of 
somewhat monotonic increase as the sample size grows, 
we prefer bigger sample size. By selecting a bigger 
sample size that generates good RBF networks in average 
case with satisfactory accuracy, we can have better  
MLPs for the sample size.  
 
 

4   Experimentation 
Experiments were run with two data sets in UCI machine 
learning repository [39] called ‘adult’ and ‘forest cover 
types’ to see the effect of the method. The adult data set 
[40] is a refined version of ‘census income’ data set. The 
census income data set is census data of 1994. The census 
income data set is originated from the census bureau 
database.  The number of instances in the adult data set is 
48,842. The total number of attributes in the adult data set 
is forteen, and among them six attributes are continuous 
attributes and one attribute is a class attribute where it has 
two classes, yearly income being greater than or equal to 
50,000 and less than 50,000 .  

The ‘forst cover types’ data set [41] includes forest 
information in four wilderness areas found in the 
Roosevelt National Forest of northern Colorado. The 
number of instances in the adult data set is 581,012. It has 
twelve continuous attributes as independent variables, 
while seven major forest cover types were used as a 
dependent variable or a class variable. ‘Adult’ and ‘forest 
cover types’ data sets were selected as representatives of 
business and scientific domains respectively, because the 
origin of ‘adult’ data set is census and it contains a lot of 
nominal values, and ‘forest cover types’ data contains 
continus values only which is common in scientific 
domain. In addition both are relatively very large so that 
they are appropriate for the experiment.  
 
 
4.1 Experiment with adult data set 

We used RBF network using K-means clustering to 
train from various sample sizes of ‘adult’ data set. The 
used basis function is Gaussian, because the ‘adult’ data 
set is originated from census database. The given number 
of clusters for K-means clustering is two which is based 
on the number of classes.  

We also trained MLPs with the same sample sets for 
each different sample sizes. In order to train MLPs the 
given number of hidden layers is also two. Bacause we 
have many nominal values in the data set, we have many 
nodes in input layer, so the given number of hidden layers 

is relatively small. To compansate the small number of 
hidden layer the training time of 10,000 is given. Table 1 
and 2 show the summary of the results. For each sample 
size seven random samples have been selected and seven 
neural networks have been generated for the experiment.  

The initial sample size for training is 200, and the 
size of samples is doubled as the while loop runs. The 
given mid_limit value for sample size is 6,400, and the 
sample size increment from the mid_limit is 3,200. The 
rest of the data set after sampling is used for testing.  

In the table 1 and 2, the third column, 
improvement(%), means the percentage of improvement 
in accuracy compared to the neural networks of previous 
sample size, and the fourth column represents the 
difference of maximum and minimum values of accuracy 
among the neural networks in the given sample size, and 
the last column is for the average computation time in 
second. The used computer is a pentium 4 personal computer 
with 2MB main memory.  

Table  1. RBF networks for ‘adult’ data 
set with various sample sizes 

Samp. 
size 

Average  
Accuracy 
(%)  

Improve 
-ment(%) 

Diff. of  
max & min 
accuracy 
(%) 

Average 
compu. 
time(sec) 

200 82.15153 NA 2.4239 0.04 
400 83.3527 1.20117 1.6907 0.07 
800 82.86174 -0.49096 0.9783 0.14 
1,600 83.13183 0.27009 1.5071 0.76 
3,200 83.64977 0.51794 1.1419 1.50 
6,400 83.38611 -0.26366 2.0288 1.52 
9,600 83.57734 0.19123 0.6345 2.21 
12,800 83.45717 -0.12017 0.6165 3.01 
16,000 83.42126 -0.03591 0.6970 3.82 
192,00 83.52089 0.09963 0.6385 5.53 

 
If we look at table 1, sample size 3,200 has the best 

accuracy, and the second best is sample size 9,600. 
Because accuracy of MLP increase as the sample size 
grow, we may choose sample size 9600 as the training 
point of the MLP. In other words, because the difference 
of accuracy between sample size 3,200 and 9,600 is only 
0.07243%, and the difference of max and min accuracy 
between the two is almost half in sample size 9,600, and 
the sample size is bigger, we choose the sample size of 
9,600. Note that as the sample size increases, accuracy 
does not increase monotonically. Note also that bigger 
sample sizes have less fluctuation in difference of 
maxmum and minimum accuracy values.  
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Table  2. MLP networks for ‘adult’ data 
set  with various sample sizes 

Samp. 
size 

Average  
accuracy(%)  

Improve 
-ment(%) 

Diff. of  
max & min 
accuracy 
(%) 

Average  
compu. 
time(sec) 

200 77.96967 NA 2.6294 91.5 
400 80.27067 2.301 5.5923 186.7 
800 81.41629 1.14562 3.0182 351.9 
1,600 82.36150 0.94521 0.362 673.4 
3,200 82.58996 0.22846 3.6041 1337.3 
6,400 82.99027 0.40031 4.5545 2780.1 
9,600 84.51573 1.52546 0.3899 3977 
12,800 84.55946 0.04373 0.6921 5340.4 
16,000 83.86250 -0.69696 1.1414 6367 
19,200 84.41695 0.55445 1.0521 7666.3 

 
In table 2 the results of sample sizes other than 9,600 

and 12,800 are also presented for reference. If we look at 
table 2, sample size 12,800 has the best average accuracy, 
and the second best is sample size 9,600. Note that even 
with 1.33 times bigger sample size, the accuracy 
improvement is only 0.04373% which is 1.000517 times 
better so that we may stop further iteration. 

Note also that the training of MLPs takes thousands 
of times longer than that of RBF networks so that without 
the help of RBF networks it will take very long time. Fig. 
6 displays the change of prediction accuracies of RBF 
networks (dotted line) and MLPs (solid line) for the  data 
set  more clearly. In the figure X axis represents the 
sample size and Y axis represents average prediction 
accuracy. 

 

 

Fig. 5 Average accuracy of RBF networks 
and MLPs with different sample sizes 

 
4.2 Experiment with forest cover types data set 

We also used RBF network using K-means 
clustering to train from various sample sizes of ‘forest 

cover types’ data set. The used basis function is also 
Gaussian because the data set has several attributes that 
are in Gausian-like distribution. The given number of 
clusters for K-means clustering is two, because average 
class value distribution of the forest cover types data set 
in each sample size is (38%, 48%, 16%) for classes (1, 2, 
3 to 7) respectively. We also trained MLPs with the same 
sample sets for each different sample sizes. In order to 
train MLPs the given number of hidden layers is the half 
of the number of attributes plus the number of classes. 
Because we have relatively large  number of hidden layer, 
the traing time of 500 is given. Table 3 and 4 show the 
summary of the results. For each sample size four random 
samples have been selected and four neural networks 
have been generated for the experiment.  

The initial sample size for training is 200, and the 
size of samples is doubled as the while loop runs. The 
given mid_limit value for sample size is 102,400, and the 
sample size increment from the mid_limit is 51,200. The 
rest of the data set after sampling is used for testing.  

In the table 3 and 4, the third column, 
improvement(%), means the percentage of improvement 
in accuracy compared to the neural networks of previous 
sample size, and the fourth column represents the 
difference of maximum and minimum values of accuracy 
among the neural networks in the given sample size, and 
the last column is for the average computation time in 
second. The used computer is a pentium 4 personal computer 
with 2MB main memory.  

Table  3. RBF networks for ‘forest cover 
types’ data set with various sample sizes 

Samp. 
size 

Average  
Accuracy 
(%)  

Improve 
-ment(%) 

Diff. of  
max & min 
accuracy 
(%) 

Average 
compu. 
time(sec) 

200 62.4881 NA 3.2482 6 
400 64.1559 1.6678 3.2483 10 
800 65.8715 1.7156 1.4655 15 
1,600 67.4969 1.6254 2.1950 23 
3,200 68.0128 0.5159 1.2103 36 
6,400 68.6423 0.6295 0.7520 80 
12,800 69.0365 0.3942 0.5216 173 
25,600 68.9293 -0.1072 0.4598 263 
51,200 69.0065 0.00772 0.6869 504 
102,400 69.2892 0.2827 0.5409 838 
153,600 69.2987 0.0095 0.5868 1021 
204,800 69.2851 -0.0136 0.3491 1882 
256,000 62.7933 -6.4918 0.2313 2796 

 
If we look at table 1, sample size 153,600 has the 

best accuracy, and the second best is sample size 102,400. 
Because accuracy of MLP increase as the sample size 
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grow, we may choose sample size 153,600 as the training 
point of the MLP. In other words, because the difference 
of accuracy between sample size 153,600 and 103,200 is 
only 0.0095%, and the difference of max and min 
accuracy between the two is similar, we choose the 
sample size of 153,600. Note that as the sample size 
increases, accuracy does not increase monotonically in 
RBF networks. Note also that bigger sample sizes have 
less fluctuation in difference of maxmum and minimum 
accuracy values.  

Table  4. MLP networks for ‘forest cover 
types’ data set  with various sample sizes 

Samp. 
size 

Average  
Accuracy 
(%)  

Improve 
-ment(%) 

Diff. of  
max & min 
accuracy 
(%) 

Average 
compu. 
time(sec) 

200 60.9312 NA 4.1225 25 
400 62.2087 1.2775 5.0622 50 
800 66.1581 3.9494 1.2054 101 
1,600 68.1597 2.0016 2.5243 201 
3,200 70.2124 2.0527 2.6439 403 
6,400 72.9120 2.6996 1.5601 807 
12,800 75.4644 2.5524 1.2752 1,652 
25,600 76.9944 1.5300 0.3487 3,250 
51,200 77.9508 0.9564 1.3631 6,616 
102,400 78.7463 0.7955 0.9217 13,521 
153,600 79.3981 0.6518 0.292 20,984 
204,800 79.3237 -0.0744 0.7156 28,807 
256,000 68.0523 -11.2724 0.4502 36,794 

 
In table 4 the results of sample sizes other than 

15,600 and 204,800 are also presented for reference. If 
we look at table 4, sample size 153,600 has the best 
average accuracy, and the second best is sample size 
204,800. Note that even with 1.25 times bigger sample 
size, the accuracy improvement is -0.074% so that we 
may stop further iteration. 

Note also that the training of MLPs takes tens of 
times longer than that of RBF networks so that without 
the help of RBF networks it will take very long time. Fig. 
2 displays the change of prediction accuracies of RBF 
networks (dotted line) and MLPs (solid line) for the  data 
set  more clearly. In the figure X axis represents the 
sample size and Y axis represents average prediction 
accuracy. 

 

 

Fig. 2 Average accuracy of RBF networks 
and MLPs with different sample sizes 

 
 

5   Conclusion 
It is known that neural networks are one of the most 
successful data mining or machine learning tools for 
prediction, so that neural networks are widely accepted 
for the tasks. There are two kinds of neural networks that 
are widely used for classification – multi-layer 
perceptrons (MLPs) and radial basis function (RBF) 
networks. While good points of MLPs their general 
applicability to almost all domain, good points of RBF 
networks is relatively fast training time with good 
predictability. Some drawbacks are high computational 
complexity in MLPs and domain dependency of basis 
function in RBF networks. But, whatever neural 
networks are used, the neural networks may not always 
be the best predictors due to the fact that they are trained 
based on some greedy algorithms with limited data sets 
and the knowledge of human experts. So, some 
improvements may be possible.  

Because the target data sets in data mining tasks 
contain a lot of data, random sampling has been 
considered a standard method to cope with large data sets 
that are very common in data mining task. But, simple 
random sampling might not generate perfect samples that 
are good for the used data mining algorithms, and the task 
of determining a proper sample size is arbitrary so that 
the reliability of the trained data mining models may not 
be good enough to be trusted. Moreover, it takes very 
long computing time to train MLPs so that we have only 
limited chance to do repeated sampling. 

In order to overcome the problem, we propose a 
method that first applies a repeated progressive sampling 
method with various sample sizes for RBF networks to 
decide the best random samples. Then, good sample sizes 
from RBF networks are used to train MLPs. Experiments 
with a real world data set showed very promising results.  
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