
Three Different Designs for Packet Classification

HATAM ABDOLI
Computer Department
Bu-Ali Sina University

Shahid Fahmideh street, Hamadan
IRAN

abdoli@basu.ac.ir http://www.profs.basu.ac.ir/abdoli

Abstract: If we analyze real life filter sets (classifiers) and also packet classification requirements, it seems that
distribution of rule scope is non-uniform and in some sub spaces is denser inside the total space of classifiers.
These features guided us to add "cut point heuristic" to HiCuts, one of the most efficient algorithms and
resulted in two new optimized designs for HiCuts, named B-HiCuts and Hist. Also one of the hardware based
and fast solution for classification is use of TCAM memory to implement classifiers, but TCAMs are
expensive and are not efficient for range fields. The third approach in this paper introduces a hybrid scheme to
do a part of search on prefix fields in TCAM and then to check other fields, the search process will be
traversed to RAM section in the second level. Synthetic classifiers are made by ClassBench and used to
simulate and evaluate performance of proposed designs. The most specifications of proposed methods are
balancing of decision trees and reducing the consumed memory for B-HiCuts and Hist and also solving range
to prefix conversion and multi match classification problems in the last proposed design.

Key-Words: - Balanced tree, HiCuts, Heuristic, Packet classification, Packet filter, Router, TCAM.

1 Introduction
Traditional Internet routers just offered one type of
service in which packets with the same destination
was served identically in a first-come first-served
manner. Modern routers because of quality of
service for different applications should support
mechanisms for services such as admission control,
traffic shaping, security, resource allocation,
queuing [1]. Providing all these requirements is
feasible if routers are capable to classify different
traffic flows base on several fields in packet's
header, called packet classification. We can say that
packet classification is a multi-dimensional form of
IP lookup and finding longest prefix matching, to
provide next-hop in routers.

1.1 Definition of Packet Classification
Problem

Providing different levels of services by ISPs such
as QOS [2], has guided us to a new generation of
routers, named flow-aware routers in which
agreements between users and ISPs express in terms
of rules on incoming packets. The router's rule set is
called policy database or classifier. Each rule
specifies a specific information classification or
flow that every incoming packet may belong to it
based on its header field. For example all packets
with the same destination IP address may define a
flow in the classifier. The classifier may produce by
network administrator or automatically [3].
According to each flow, an action (or actions) is
specified on incoming packet. The incoming packet
may match with more than one rule. Packet
classification is finding the highest priority matched
rule in classifier that specifies the best action on the
incoming packet [1].

1.2 Previous Works

The ability to classify each incoming packet is
called packet classification and is based on an
arbitrary number of packet header fields. The role of
packet classification is important in special services
such as VPNs, firewalls and differentiated services,
and influence wire-speed routing. Since the packet
classification problem is naturally difficult and is
very complicated in the worst case of search time or
the consumed memory, most of the proposed

Algorithms have some weaknesses and limitations.
Besides being fast and memory efficient, algorithms
have to possibly be able to implement in software or
hardware and also be scalable in the number of rules
and dimensions (number of fields).
The simplest usable structure for this problem is a
linked list of rules which have been sorted on
priority. Each incoming packet is sequentially
compared with the rules in the list until the first rule

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1494 Issue 9, Volume 8, September 2009

matching on the fields of packet. Although this
method is easy and makes optimum use of memory,
has in the worst case, the lowest speed of
classification.
The fastest and simplest possible solution for packet
classification is the use of ternary content
addressable memory or TCAM which its complexity
of consumed memory equals to number of rules.
These associative memories in addition to zero and
one are capable to store don't care bits. Yet, this
method has some limitations such as low scalability,
high price, high power consumption, and static
structure. Some optimized algorithms based on
TCAMs have recently been designed, decreasing the
cost of converting range into prefix and solving
multi match classification [4], however the above
limitations haven't solve perfectly. Another
approach proposed in [5] to support IPv6 packets,
but its structure is very complex and expensive and
the algorithm has been evaluated by only small
classifiers.
Some of algorithms have been designed for
classification in two dimensions or have enough
efficiency in this case such as Area-based Quad Tree
(AQT)[6], and grid-of-tries [7]. An improved
version of tuple space search has been proposed to
make faster search and update for two-dimensional
classification. But this approach is not scalable to
more dimensions and also is not practical for IPv6
packets, having 128 bit length IP addresses [8].
A class of algorithms focuses on the specifications
of classifiers resulting to heuristics to solve problem
as a specific case and with the lowest possible cost.
RFC and HiCuts belong to this class of algorithms
which support the required speed [1]. But in contrast
with HiCuts, RFC is costly in consumed memory
and is not scalable with number of classifier rules.
HSM which is a changed kind of RFC, in spite of
the low consumption of memory, has more search
time in average case and worst case compared with
RFC [9]. Cross products [7] and algorithm of
Baboescu and Varghese [10], also are examples of
heuristic algorithms, but all of them have low
scalability or weak behavior in the worst case.
BDDs structure [11] is a fast hardware solution, but
the preprocessing time to build its static structure is
very complicated and time consuming in the worst
case.
HiCuts is one of the most efficient algorithms trying
to decrease the search time by making cuts in
geometric space of the problem. Data structure of

HiCuts is a decision tree which is constructed based
on rules of classifier in the preprocessing stage.
Internal nodes distribute the search space while
leaves contain a limited number of rules
sequentially. So, classification of packet can be done
by traversing the tree and a linear search in the leaf
[1]. The number of cuts for each dimension (nc) is
determined by the heuristic which can balance the
trade off between depth of the tree (search time) and
the consumed memory. The cut dimension is chosen
in a way to minimize finally, maximum number of
colliding rule set of the cuts. Algorithm can tune the
number of cuts and consequently, the consumed
memory with two parameters in a function. One of
them is binth, to set maximum number of rules that
can be searched sequentially in leaves, and the other,
spfac is a factor, specifying the amount of consumed
memory resulted from the cuts.
HyperCuts, A modified version of HiCuts, allows
more than one dimension to be cut in each node to
decrease occupied memory space and memory
accesses [12]. Some solutions show good results in
average case such as Cheng algorithm that uses
cache and interpreting techniques [13].

2. proposed designs
Having mentioned all classification algorithms, it is
clear that HiCuts with specifications such as
scalability, low memory consumption and
reasonable speed, is one of the most efficient. But
choosing suitable point for making cut in the
intended dimension is what that the algorithm
designers haven't worked on. In HiCuts by using a
heuristic, number of cuts (Nump) and using another,
cut dimension are specified and then this dimension
will be divided into equal pieces. Using this method
in HiCuts, in the worst case, when the density of
rules scope is considerable asymmetric and has non-
uniform distribution or in other words the density of
rules in special subspaces is more than other places,
causes the HiCuts tree to grow in a unbalanced
manner, in proportion to rules density. This causes
the depth of tree and search time to increase in more
dense subspaces and also extreme increasing of the
consumed memory. It is obvious that the increasing
of the tree's maximum depth, in the worst case,
resulting to an inefficient hardware pipelined
implementation [14].

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1495 Issue 9, Volume 8, September 2009

Fig.1 example of choosing 3 cut points in one dimension for rules corresponding to a node.

Cuts in HiCuts are equal but suggested cuts are balanced in their colliding rule set.

This happens while classifiers regarding the uses
caused the problem of packet classification, have
basically a non-uniform distribution in the fields of
their own rules scope [15]. So, HiCuts displays a
weak behavior in this condition while the results of
simulations also confirm this claim.

2.1 B-HiCuts1
According to the previous points, besides the
mentioned heuristics for HiCuts, we can add a new
heuristic which specifies cut points to balance the
HiCuts like a multi-way B-tree [16]. This heuristic is
defined as follows:
Cutting points Heuristic: It's a heuristic that the
preprocessing algorithm uses to determine the points
of cuts in a node and consequently its decision tree
will be balanced. For this purpose, we can choose
some points for the cut so that the number of rules in
colliding rule set for each piece, resulted from the
cut, distribute equally or with the least possible
difference [14]. Colliding rule set for each piece are
the ones which have at least one common point with
that piece.
For example, consider fig.1 that indicates one of the
dimensions of a typical node consisting of 8 rules in
range [a, b]. Suppose we want to divide the node
into 4 pieces by heuristic of choosing the number of
cuts. Three cut points of HiCuts for cutting the range
into equal pieces are shown in the figure with dotted

1 Balanced-HiCuts

line. The pieces resulted from the cuts have the
colliding rule set from left to right: {R1, R2, R3},
{R1, R2, R3, R4, R5, R6, R7, R8}, {R6, R8} and
{R6}. As you can see the number of rules in the
colliding rule sets, they are distributed with no
balancing, so that the second piece includes all the
rules of the node. The result of this cutting is
unbalanced growth of the equivalent decision tree
and increasing of its maximum depth.
The proposed cut points in this figure are chosen by
vertical dashed lines. The boldest line between the
other two vertical lines specifies the first cut point.
Based on the proposed method, this point is chosen
in a way that the number of colliding rules in two
resulted pieces be closed enough to each other and
to minimize their maximum, among the examined
points. After this stage two other cut points are
chosen in two resulted ranges from the first cut point
and by the same method. If the number of cuts be
more than 8, we can repeat the above stages
hierarchically for each piece.
If the number of cuts aren't power of 2 (for example
k), we can design the algorithm in a way that it cuts
the node all at once into intended rules while the
colliding rules of each part gets close to n/k, which n
is the total number of colliding rules in the cut
dimension for the node. The colliding rule set for 4
pieces resulted from the proposed cut points of fig.1,
from left to right, are: {R1, R2, R3, R4} and {R1,
R3, R4, R5, R6} and {R1, R3, R4, R5, R6} and
{R1, R5, R6, R7, R8}. The new sets have nearly the
same number of rules and the biggest set consists of

R2

R3
R4

R1

R5

R6

R7

R8

Proposed cutting points

a b

a+(b-a)/4 a+(b-a)/2 a+3*(b-a)/4

Cutting points in HiCuts

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1496 Issue 9, Volume 8, September 2009

5 rules. The result of choosing these cut points is a
balanced decision tree. For finding these suggested
cut points we can use different algorithms. For
example, one way is a binary search in the specified
range from the cut dimension. The other better way
is examination of the start and end points of each
range for every rule in the intended dimension [14].

2.2 Hist Structure
Binary Hist2 decision tree, which is the basic
structure of multi way Hist decision tree, is similar
to kd-tree structure. The structure of binary Hist
algorithm is a binary balanced (or nearly balanced)
tree in which every internal node (not leaf) is cut in
a dimension chosen by the cut point heuristic and is
divided into subtrees resulted from the cut. The cut
point has chosen providing the number of colliding
rules in both side of this point have a better equality
after splitting.
The heuristic of determining the cut dimension
includes finding a dimension in which the maximum
number of rules after splitting becomes minimal in
all dimensions. The structure of Hist algorithm with
multi way decision tree is constructed based on
binary Hist and by compressing the layers of binary
tree. This is done by elimination of pointers in
compressed-layers nodes, to decrease depth of the
tree and number of memory accesses [14].

Table 1. A typical two dimensional classifier.

Y X Rules

001 011 R1

10* 01* R2

0* 11* R3

10* 11* R4

0* 0* R5

000 * R6

For example table 1 is a two dimensional classifier
and fig.2 shows construction of its Hist structure.
Part (A) and (B) of fig.2 indicate X and Y dimension
of classifier's rules and their cut points by dotted
lines. Part (C) is Hist binary tree in which circles
indicate internal nodes and their values are

2 Hierarchical splitting tree

dimension and points of cutting. Rectangles are
leaves that include matching rules based on priority.
Dotted rectangles indicate colliding rule set for each
internal node.
Since the Hist structure is a balanced binary tree, we
can modify it by elimination of some pointers.
Structure of Hist with multi-way decision tree is
constructed on binary Hist by compressing its levels.
Level compression in tree is in fact elimination of
tree pointers corresponding to compressed levels,
and consequently reducing the tree depth and
number of memory accesses. Number of level
compression (LC) can be a constant value or
variable. In the new structure every node has 2LC
children, 2LC-1 cutting points in multiple
dimensions. In the last level we have our previous
leaves or null nodes. For example the constant LC=3
means that three levels of binary Hist will be
compressed and every node has 8 children and 23-1
or 7 cutting points.

Fig.3 indicates level compression for binary Hist of
fig.2 and constructing multi-way Hist with LC=2.
The dotted rectangle shows the compressed nodes,
resulted in the root of multi-way tree. It is clear that
this structure will be useful if its binary tree is
balanced such a complete or nearly complete binary
tree.

2.3 A hybrid scheme
Before describing the hybrid approach, it is
necessary to dig deeper into TCAM and its use
in packet classification.
When a search key is given to TCAM, it should
be compared with all entries simultaneously and
return back first match, so entries should be
filled according to their priority. Nowadays, we
have TCAMs with 133 million searches per
second in 144 bit entries, while the total
capacity can be extended to 128K entries. But
using TCAMs in packet classification has some
limitations such as high power consumption,
expensive price, and Multi Match Classification
problem in applications which several or all the
matched rules should be specified, because
normally TCAMs only return rule with the most
priority. New approaches have been proposed to
solve this problem [17].

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1497 Issue 9, Volume 8, September 2009

Fig.2 Hist tree for classifier of table 1. A) Rules and cut points in X dimension B) Rules and
cut points in Y dimension C) Hist binary tree

Fig.3 Level compression for binary Hist tree of fig.2. A) Binary Hist B) Multi-way Hist

The most important problem for TCAMs is
rules with range fields should be converted to
prefixes before storing in entries, resulting in
increasing TCAM entries linearly, while
percentage of range fields in classifiers are
growing up[17]. In spite of some solutions [17,
18, 19], this problem yet has redundancy,
reducing algorithm efficiency.
The basic idea in the hybrid scheme is using of
TCAMs in part of matching which the fields are
prefix type(such as source and destination IP
address) and continuing the search for the

remained fields in second level. So, we are not
facing to converting of ranges to prefixes,
which is the main problem of using TCAMs in
classification. The global structure of proposed
design is shown in fig.4. According to this
approach, at first all the prefix fields of
classifier will be searched in TCAM and based
on the matched entry, a pointer will be used in
the second level algorithm, to continue
searching on the remained fields (non-prefix),
resulting to find best matched rule.

R4

R3

R5
R2
R1

R6

R4

R2
R3

R1

R5

R6

(A)

(B)

X,4

R5
R6

R4 R3
R6

R2 R1
R5

(R1, R2, R3, R4, R5, R6)

Y,0 Y,4

Y,4

(R1, R2, R5, R6) (R3, R4, R6)

(R1, R2, R5)

(C)

0 8

0 8

X,4

R5
R6

R4 R3
R6

R2 R1
R5

Y,0 Y,4

Y,4

R5
R6

R2 R1
R5

Y,4

X,4

Y,0 | Y,4

R3
R6

R4

(A) (B)

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1498 Issue 9, Volume 8, September 2009

Fig.4 Proposed hybrid scheme for packet

classification

Based on this model, if number of rules or fields
increase in the future, we can support updates by
reconstruction of decision trees in the second level
according to new conditions. An interesting feature
of this hybrid solution is flexibility to select all
algorithms which use decision tree such as HiCuts,
B-HiCuts or FIS structure. In this research we have
selected B-HiCuts as the second level algorithm.
To know more details about the operation, a five
dimensional classifier has been shown in table 2,
having destination IP, source IP, source port,
destination port, and protocol fields.

Table 2. A typical 5-dimensional classifier
Action Protocol Dest.

Port
Sourc
e Port

Dest.
IP

Source IP Rule

A1 TCP >1024 80 x.x.x.x 228.2.12.x R1

A2 * 80 * x.x.x.x 228.2.12.x R2

A5 * * * x.x.x.x x.x.x.x R3

Fig.5 shows the proposed hybrid scheme for
classifier in table 2. all of the non-prefix fields F1,
F2, and F5 of rules have stored in TCAM entries.
Based on these fields of header, parallel search will
be done in TCAM and the matched row with the
highest priority will determine the pointer for next
level of classification.
The pointer in the proposed design points to root of
a B-HiCuts decision tree. There is a tradeoff
between memory consumption and depth of tree by
choosing proper children of nodes and colliding rule
set. If searching in the average case is acceptable in
our application, a bit (bit F in figure) can be used to
specify the matched rules which can be determined
only by F1,F2,F5 fields and are not depended to
other fields. For example if F=0, it means end of
classification and the other bits in RAM specify the
appropriate action, else the classification should be
continued in a decision tree which is pointed by

other bits of RAM. In fig.5 a packet with source IP
address 228.2.12.1 and destination IP 200.200.200.1
is pointing to a root of a tree which has been cut on
field F4 and point 1024. because the value of field
F4 of incoming packet is 100 and is less than 1024,
so we traverse through upper branch and then we
can continue classification process by a sequential
search on rules R2 and R3 to find the most prior
rule, which is R2 in this example. Notice that binth
parameter is 2 in this example.
If we use TCAM with wider entry (for example the
available 288 bit wide TCAMs), it is possible to put
128 bit wide IP addresses and extend the model to
support IPv6.

Fig.5. The proposed hybrid scheme for table 2. first

part of search is in TCAM and it will continue in
RAM on non-prefix fields by B-HiCuts.

3. PERFORMANCE EVALUATION
Since the proposed algorithms are based on HiCuts
algorithm, we chose the simulation results for this
algorithm as the criterion of comparison with our
consequences. All synthetic classifiers used for
evaluation of algorithms have five dimensions and
each rule has five IPv4 fields including: source IP
address, destination IP address, source port,
destination port and type of protocol. The method of
producing each rule of synthetic classifiers is based
on the features in reference [15]. Values are used for
ClassBench parameters to make a non-uniform
synthetic classifier. So, 0.6 has been selected for
skew and number of dimensions is five.
The hybrid design has been evaluated separately by
comparing with HiCuts and B-HiCuts.
In this paper we just consider two more important
criteria, search time and the consumed memory in
algorithms. Simulations are carried out in C
language on windows XP system.

228.2.12.x x.x.x.x TCP F4,
1024

R2

R3

R1

R3

F

TCAM RAM

228.2.12.1 | 200.200.200.1 | 80 |100 |TCP

Incoming packet

RAM

1

Action

Packet header

First level
searching
(prefix)

 Se
co

nd
 le

ve
l

se
ar

ch
in

g
(n

on
-p

re
fix

)

TCAM RAM

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1499 Issue 9, Volume 8, September 2009

3.1 Search Time Evaluation
The results of simulations show that for classifiers
with non-uniform distribution, B-HiCuts and Hist
have the lower depth comparing with HiCuts. That's
because HiCuts has no heuristic for choosing a
proper cut point and therefore, cuts go on blindly.
Since the real search time is a function of memory
access, therefore the depth of the tree is not a
suitable criterion for the real search time. Results of
simulation show that in classifiers with uniform
distribution, the maximum number of access to Hist
structure has no big difference with HiCuts
structure. But on non-uniform classifiers, the
suggested structures, especially Hist, in the worst
case, have better efficiency in the number of
memory accesses and consequently in the maximum
of search time.
Fig.6 indicates maximum total number of memory
access on classifiers with non-uniform distribution
that simulated for band width equal to 4 bytes. To
show the role of parameter "binth" (refer to section
1-2), two small classifiers have been simulated for
binth=16 and for two bigger classifiers binth is 32.
In fig.7 search time of proposed hybrid algorithm
has been compared with HiCuts in the number of
memory access criteria. It is clear that search time of
proposed algorithm is less than TCAM (which needs
only one memory access) and is more than HiCuts.
The overall access time is the numbers in fig.7 plus
one access in TCAM.

Fig.6 Maximum total number of memory
access

3.2 Consumed Memory Evaluation
Comparing the results, shows that the structure of
Hist has the lowest amount of consumed memory for
both kinds of classifiers, especially on those with
non-uniform distribution (see Fig.8).

This is because of the correct choice of cut points
and the decreasing of internal nodes and leaves in
Hist data structure.
B-HiCuts has generally less memory on the
classifiers with non-uniform distribution than
HiCuts [14]. Consider that the vertical axis of Fig.8,
which shows the memory, has a logarithmic scale.
Memory consumption is shown in Fig.9 between
hybrid scheme, HiCuts and TCAM. Because both
TCAM and RAM memory have been used in the
hybrid scheme, all of them have shown separately to
make a better comparison for each type of memory.
Having shown in this figure, the consumed RAM in
hybrid scheme is less than HiCuts and the consumed
TCAM in hybrid design is also less than a
completely implementation of packet classification
in TCAM memory.

Fig 7. Maximum number of

memory access for W=4 byte.

3.3 Evaluation of computational complexity
The complexity of computations is one of the
criteria to evaluate efficiency of search algorithms in
implementation phase. This criteria may include
different parameters such as: arithmetic operations
(multiplication, addition, …) logical operations (
AND, OR, Shift, …), and conditional instructions.
All of these can help us to choose a good platform in
implementation, such as: hardware based, software
based, FPGA based, ASIC based, parallel, or
pipelined implementations. So, type and number of
different processing is used in search operation in
every algorithm are shown in table 3 and table 4,
which specify above computations in internal nodes
and leaves, respectively. W describes memory width
in byte unit.

Maximum number of memory access for W=4

0

50

100

150

200

250

1000 1000 50000 100000
Number of rules

M
em

or
y

A
cc

es
s

Hicuts
B-Hicuts

Hist

(Maximum number of memory access for W=4

0

50

100

150

200

250

300

350

400

450

1000 2500 5000 10000
Number of rules

Hicuts
hybrid

M
em

or
y

A
cc

es
s

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1500 Issue 9, Volume 8, September 2009

According to the tables, with an equal binth
parameter, the amount of computations in leaves is
equal in all algorithms. In Hist and B-HiCuts only

memory access and conditional instructions are
necessary.

Table3. Type and number of operations for search in internal nodes of algorithms.

 Hicuts B-Hicuts Hist algorithm /

Type of

processing

 W/14

 W/)4)*1)SpltNo((log2(++

 W/22

Number of

memory

accesses

2 __ __ Addition &

subtractio

n

3 2) + SpltNo(5 If

2 __ __ Division

Table 4. Type and number of operations for searching in leaves of algorithms.

Hicuts

B-Hicuts

Hist

algorithm /

Type of

processing

 W) /binth*24(

 W/) binth*24(

 W) /binth*24(

Number of

memory

accesses
binth*4 Binth*4 binth*4 shift

binth binth binth If

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1501 Issue 9, Volume 8, September 2009

Fig.8. Consumed memory in three algorithms with binth=16. The vertical axis has logarithmic scale.

Memory Requirements

100

700

11000

10

17
0 70

0 28
00

11
0 32

0 10
97 21

00

12

47

13
9 28

6

64000

1

10

100

1000

10000

100000

1000 2500 5000 ــوانین10000 تعداد ق

یت
 با

یلو
ک

TCAM TCAM of Proposed HiCuts RAM of Proposed

Fig. 9. A comparison between RAM of proposed hybrid scheme and RAM of HiCuts and also
between TCAM of hybrid design and complete TCAM implementation.

4. CONCLUSION
Comparing the proposed algorithms indicates that
HiCuts is one of the most efficient ones, but in the
worst case and with real-life classifiers has an
unbalanced decision tree leading to a large
maximum depth. In this paper by defining the
heuristic of cut point selection, two designs were
suggested for improvement of HiCuts algorithm and
balancing the decision tree. Since the Hist structure
is binary and balanced, therefore we can eliminate
the tree pointers and combine nodes of several levels
as a compressed static structure which nodes have
multi dimensional cut points in.

Proposed designs like HiCuts are extendable to
IPv6. Because the trees of new designs are balanced
and have a lower depth than HiCuts, their pipelined
implementation, are more efficient and have lower
delay. The main weakness of proposed approaches
is long preprocessing (and update) time.
Also in this paper a new hybrid scheme has been
defined based on using TCAM for prefix fields and
another structure for other fields. Some
specifications of this design according to simulation
results are high speed, low complexity, convergence
in producing data structures, acceptable memory
consumption, and flexibility in choosing algorithms

Consumed memory

1

10

100

1000

10000

1000 10000 50000 100000

Number of Rules

K
ilo

 B
yt

es

Hicuts
B-Hicuts
Hist

K
ilo

 B
yt

es

Number of Rules

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1502 Issue 9, Volume 8, September 2009

in the second part of hybrid design. In the hybrid
design the problem of converting range to prefix and

also multi match classification problem have been
solved and it can be easily extended to IPv6.

References:
[1] P. Gupta, Algorithms for Routing Lookups and

Packet Classification. Ph.D. Thesis, Stanford
University, December 2000.

[2] R. Chen, and Y. Tsai, and K.C. Yeh, and H.Y.
Chen, Using policy-based MPLS management
architecture to improve QOS on IP network,
WSEAS Transaction on computers, Vol. 7, No. 5,
2008, pp. 341-350.

[3] H. Haitao and others, Traffic classification using
en-semble learning and co-training, In WSEAS
Proceedings of the 8th conference on Applied
informatics and communications, Rhodes,
Greece, 2008.

[4] L. Karthik, and R. Anand, and V. Srinivasan,
Algorithms for advanced packet classification
with ternary CAMs. ACM Sigcomm, 2005.

[5] X. Zhang, and B. Liu, IPv6-oriented 4*OC768
Packet Classification Scheme with Deriving-
Merging Partition and Field-Variable Encoding
Algorithm, IEEE INFOCOM, 2006.

[6] M. Buddhikot, and S. Suri, and M. Waldvogel,
Space decomposition techniques for fast layer-4
switching. In Proceedings of Protocols for High
Speed Networks, August 1999.

[7] V. Srinivasan, and S. Suri, and G. Varghese, Fast
and scalable layer four switching. In Proceedings
of ACM Sigcomm, September 1998.

[8] L. Xing, and J. Zhen-Zhen, and L. Wei-Chen,
Hardware Based High Speed Two-dimensional
Packet Classification, WSEAS Transaction on
computers, Vol. 5, No. 2, 2006, pp. 301-305.

[9] B. Xu, D. Jiang, J. Li, HSM: A Fast Packet
Classification Algorithm. In Proceedings of
IEEE 19th International Conference on
Advanced Information Networking and
Applications (AINA), Taiwan, 2005.

[10] F. Baboescu, and G. Varghese, Scalable packet

classification. ACM Sigcomm’01, 2001.
[11] A. Prakash, and A. Aziz, OC-3072 Packet

Classification Using BDDs and Pipelined
SRAMs. In Hot Interconnects, Stanford
University, CA, August 2001.

[12] F. Baboescu and G. Varghese, Packet
Classification Using Multidimensional Cutting,
In Proceeding Of ACM SIGCOMM, 2003.

[13] H. Cheng, Z. Chen, Scalable Packet
Classification using interpreting a cross-platform
multi-core solution, 13th ACM SIGPLAN , 2008.

[14] H. Abdoli, Review and design of packet
classification algorithms. MS thesis, Isfahan
University of Technology, September 2003.

[15] D. E. Taylor and J. S. Turner, “ClassBench: a
packet classification benchmark,” IEEE/ACM
Transactions on Networking, vol. 15, no. 3, pp.
499–511, 2007.

[16] A. Sleit, On using B-Tree for efficient
processing for the boundary neighborhood
problem, WSEAS Transaction on systems, Vol. 7,
No. 7, 2008, pp. 711-720.

[17]Lakshminarayanan, K. and Rangarajan, A. and
Venkatachary S., "Algorithms for advanced packet
classification with Ternary CAMs", In ACM
SIGCOMM, 2005.
[18] Spitznagel, E. and Taylor, D. and Turner, J.,
"Packet Classification Using Extended TCAMs",
In Proc. of ICNP, 2003.
[19] Zheng, K. and Wang, Z. and Liu, B. "TCAM-
based Distributed Parallel Packet Classification
Algorithm with Range-Matching Solution", in
Proceedings of IEEE INFOCOM'2005, March
2005.

WSEAS TRANSACTIONS on COMPUTERS Hatam Abdoli

ISSN: 1109-2750 1503 Issue 9, Volume 8, September 2009

