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Abstract: If we analyze real life filter sets (classifiers) and also packet classification requirements, it seems that 
distribution of rule scope is non-uniform and in some sub spaces is denser inside the total space of classifiers. 
These features guided us to add "cut point heuristic" to HiCuts, one of the most efficient algorithms and 
resulted in two new optimized designs for HiCuts, named B-HiCuts and Hist. Also one of the hardware based 
and fast solution for classification is use of TCAM memory to implement classifiers, but TCAMs are 
expensive and are not efficient for range fields. The third approach in this paper introduces a hybrid scheme to 
do a part of search on prefix fields in TCAM and then to check other fields, the search process will be 
traversed to RAM section in the second level. Synthetic classifiers are made by ClassBench and used to 
simulate and evaluate performance of proposed designs. The most specifications of proposed methods are 
balancing of decision trees and reducing the consumed memory for B-HiCuts and Hist and also solving range 
to prefix conversion and multi match classification problems in the last proposed design. 
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1   Introduction  
Traditional Internet routers just offered one type of 
service in which packets with the same destination 
was served identically in a first-come first-served 
manner. Modern routers because of quality of 
service for different applications should support 
mechanisms for services such as admission control, 
traffic shaping, security, resource allocation, 
queuing [1]. Providing all these requirements is 
feasible if routers are capable to classify different 
traffic flows base on several fields in packet's 
header, called packet classification. We can say that 
packet classification is a multi-dimensional form of 
IP lookup and finding longest prefix matching, to 
provide next-hop in routers. 
 
1.1 Definition of Packet Classification 
Problem 

Providing different levels of services by ISPs such 
as QOS [2], has guided us to a new generation of 
routers, named flow-aware routers in which 
agreements between users and ISPs express in terms 
of rules on incoming packets. The router's rule set is 
called policy database or classifier. Each rule 
specifies a specific information classification or 
flow that every incoming packet may belong to it 
based on its header field. For example all packets 
with the same destination IP address may define a 
flow in the classifier. The classifier may produce by 
network administrator or automatically [3].  
According to each flow, an action (or actions) is 
specified on incoming packet. The incoming packet 
may match with more than one rule. Packet 
classification is finding the highest priority matched 
rule in classifier that specifies the best action on the 
incoming packet [1]. 
 
1.2  Previous Works  

The ability to classify each incoming packet is 
called packet classification and is based on an 
arbitrary number of packet header fields. The role of 
packet classification is important in special services 
such as VPNs, firewalls and differentiated services, 
and influence wire-speed routing. Since the packet 
classification problem is naturally difficult and is 
very complicated in the worst case of search time or 
the consumed memory, most of the proposed 

Algorithms have some weaknesses and limitations. 
Besides being fast and memory efficient, algorithms 
have to possibly be able to implement in software or 
hardware and also be scalable in the number of rules 
and dimensions (number of fields). 
The simplest usable structure for this problem is a 
linked list of rules which have been sorted on 
priority. Each incoming packet is sequentially 
compared with the rules in the list until the first rule 
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matching on the fields of packet. Although this 
method is easy and makes optimum use of memory, 
has in the worst case, the lowest speed of 
classification. 
The fastest and simplest possible solution for packet 
classification is the use of ternary content 
addressable memory or TCAM which its complexity 
of consumed memory equals to number of rules. 
These associative memories in addition to zero and 
one are capable to store don't care bits. Yet, this 
method has some limitations such as low scalability, 
high price, high power consumption, and static 
structure. Some optimized algorithms based on 
TCAMs have recently been designed, decreasing the 
cost of converting range into prefix and solving 
multi match classification [4], however the above 
limitations haven't solve perfectly. Another 
approach proposed in [5] to support IPv6 packets, 
but its structure is very complex and expensive and 
the algorithm has been evaluated by only small 
classifiers. 
Some of algorithms have been designed for 
classification in two dimensions or have enough 
efficiency in this case such as Area-based Quad Tree 
(AQT)[6], and grid-of-tries [7]. An improved 
version of tuple space search has been proposed to 
make faster search and update for two-dimensional 
classification. But this approach is not scalable to 
more dimensions and also is not practical for IPv6 
packets, having 128 bit length IP addresses [8]. 
A class of algorithms focuses on the specifications 
of classifiers resulting to heuristics to solve problem 
as a specific case and with the lowest possible cost. 
RFC and HiCuts belong to this class of algorithms 
which support the required speed [1]. But in contrast 
with HiCuts, RFC is costly in consumed memory 
and is not scalable with number of classifier rules. 
HSM which is a changed kind of RFC, in spite of 
the low consumption of memory, has more search 
time in average case and worst case compared with 
RFC [9]. Cross products [7] and algorithm of 
Baboescu and Varghese [10], also are examples of 
heuristic algorithms, but all of them have low 
scalability or weak behavior in the worst case. 
BDDs structure [11] is a fast hardware solution, but 
the preprocessing time to build its static structure is 
very complicated and time consuming in the worst 
case. 
HiCuts is one of the most efficient algorithms trying 
to decrease the search time by making cuts in 
geometric space of the problem. Data structure of 

HiCuts is a decision tree which is constructed based 
on rules of classifier in the preprocessing stage. 
Internal nodes  distribute the search space while 
leaves contain a limited number of rules 
sequentially. So, classification of packet can be done 
by traversing the tree and a linear search in the leaf 
[1]. The number of cuts for each dimension (nc) is 
determined by the heuristic which can balance the 
trade off between depth of the tree (search time) and 
the consumed memory. The cut dimension is chosen 
in a way to minimize finally, maximum number of 
colliding rule set of the cuts. Algorithm can tune the 
number of cuts and consequently, the consumed 
memory with two parameters in a function. One of 
them is binth, to set maximum number of rules that 
can be searched sequentially in leaves, and the other, 
spfac is a factor, specifying the amount of consumed 
memory resulted from the cuts.  
HyperCuts, A modified version of HiCuts, allows 
more than one dimension to be cut in each node to 
decrease occupied memory space and memory 
accesses [12]. Some solutions show good results in 
average case such as Cheng algorithm that uses 
cache and interpreting techniques [13]. 
 
2. proposed designs 
Having mentioned all classification algorithms, it is 
clear that HiCuts with specifications such as 
scalability, low memory consumption and 
reasonable speed, is one of the most efficient. But 
choosing suitable point for making cut in the 
intended dimension is what that the algorithm 
designers haven't worked on. In HiCuts by using a 
heuristic, number of cuts (Nump) and using another, 
cut dimension are specified and then this dimension 
will be divided into equal pieces. Using this method 
in HiCuts, in the worst case, when the density of 
rules scope is considerable asymmetric and has non-
uniform distribution or in other words the density of 
rules in special subspaces is more than other places, 
causes the HiCuts tree to grow in a unbalanced 
manner, in proportion to rules density. This causes 
the depth of tree and search time to increase in more 
dense subspaces and also extreme increasing of the 
consumed memory.  It is obvious that the increasing 
of the tree's maximum depth, in the worst case, 
resulting to an inefficient hardware pipelined 
implementation [14]. 
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Fig.1  example of choosing 3 cut points in one dimension for rules corresponding to a node. 

Cuts in HiCuts are equal but suggested cuts are balanced in their colliding rule set. 

 
This happens while classifiers regarding the uses 
caused the problem of packet classification, have 
basically a non-uniform distribution in the fields of 
their own rules scope [15]. So, HiCuts displays a 
weak behavior in this condition while the results of 
simulations also confirm this claim. 
 
2.1 B-HiCuts1 
According to the previous points, besides the 
mentioned heuristics for HiCuts, we can add a new 
heuristic which specifies cut points to balance the 
HiCuts like a multi-way B-tree [16]. This heuristic is 
defined as follows: 
Cutting points Heuristic: It's a heuristic that the 
preprocessing algorithm uses to determine the points 
of cuts in a node and consequently its decision tree 
will be balanced. For this purpose, we can choose 
some points for the cut so that the number of rules in 
colliding rule set for each piece, resulted from the 
cut, distribute equally or with the least possible 
difference [14]. Colliding rule set for each piece are 
the ones which have at least one common point with 
that piece. 
For example, consider fig.1 that indicates one of the 
dimensions of a typical node consisting of 8 rules in 
range [a, b]. Suppose we want to divide the node 
into 4 pieces by heuristic of choosing the number of 
cuts. Three cut points of HiCuts for cutting the range 
into equal pieces are shown in the figure with dotted 

                                                                 
1 Balanced-HiCuts 

line. The pieces resulted from the cuts have the 
colliding rule set from left to right: {R1, R2, R3}, 
{R1, R2, R3, R4, R5, R6, R7, R8}, {R6, R8} and 
{R6}. As you can see the number of rules in the 
colliding rule sets, they are distributed with no 
balancing, so that the second piece includes all the 
rules of the node. The result of this cutting is 
unbalanced growth of the equivalent decision tree 
and increasing of its maximum depth. 
The proposed cut points in this figure are chosen by 
vertical dashed lines. The boldest line between the 
other two vertical lines specifies the first cut point. 
Based on the proposed method, this point is chosen 
in a way that the number of colliding rules in two 
resulted pieces be closed enough to each other and 
to minimize their maximum, among the examined 
points. After this stage two other cut points are 
chosen in two resulted ranges from the first cut point 
and by the same method. If the number of cuts be 
more than 8, we can repeat the above stages 
hierarchically for each piece. 
If the number of cuts aren't power of 2 (for example 
k), we can design the algorithm in a way that it cuts 
the node all at once into intended rules while the 
colliding rules of each part gets close to n/k, which n 
is the total number of colliding rules in the cut 
dimension for the node. The colliding rule set for 4 
pieces resulted from the proposed cut points of fig.1, 
from left to right, are: {R1, R2, R3, R4} and {R1, 
R3, R4, R5, R6} and {R1, R3, R4, R5, R6} and 
{R1, R5, R6, R7, R8}. The new sets have nearly the 
same number of rules and the biggest set consists of 

R2 

R3
R4 

R1 

R5 

R6 

R7

R8

Proposed cutting points 

a b 

a+(b-a)/4 a+(b-a)/2 a+3*(b-a)/4

Cutting points in HiCuts
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5 rules. The result of choosing these cut points is a 
balanced decision tree. For finding these suggested 
cut points we can use different algorithms. For 
example, one way is a binary search in the specified 
range from the cut dimension. The other better way 
is examination of the start and end points of each 
range for every rule in the intended dimension [14].  

 

2.2 Hist Structure 
Binary Hist2 decision tree, which is the basic 
structure of multi way Hist decision tree, is similar 
to kd-tree structure. The structure of binary Hist 
algorithm is a binary balanced (or nearly balanced) 
tree in which every internal node (not leaf) is cut in 
a dimension chosen by the cut point heuristic and is 
divided into subtrees resulted from the cut. The cut 
point has chosen providing the number of colliding 
rules in both side of this point have a better equality 
after splitting. 
The heuristic of determining the cut dimension 
includes finding a dimension in which the maximum 
number of rules after splitting becomes minimal in 
all dimensions. The structure of Hist algorithm with 
multi way decision tree is constructed based on 
binary Hist and by compressing the layers of binary 
tree. This is done by elimination of pointers in 
compressed-layers nodes, to decrease depth of the 
tree and number of memory accesses [14]. 
 

Table 1. A typical two dimensional classifier. 

Y  X  Rules 

001 011 R1 

10* 01* R2 

0* 11* R3 

10* 11* R4 

0* 0* R5 

000 * R6 
 
For example table 1 is a two dimensional classifier 
and fig.2 shows construction of its Hist structure. 
Part (A) and (B) of fig.2 indicate X and Y dimension 
of classifier's rules and their cut points by dotted 
lines. Part (C) is Hist binary tree in which circles 
indicate internal nodes and their values are 

                                                                 
2 Hierarchical splitting tree 

dimension and points of cutting. Rectangles are 
leaves that include matching rules based on priority. 
Dotted rectangles indicate colliding rule set for each 
internal node. 
Since the Hist structure is a balanced binary tree, we 
can modify it by elimination of some pointers. 
Structure of Hist with multi-way decision tree is 
constructed on binary Hist by compressing its levels. 
Level compression in tree is in fact elimination of 
tree pointers corresponding to compressed levels, 
and consequently reducing the tree depth and 
number of memory accesses. Number of level 
compression (LC) can be a constant value or 
variable. In the new structure every node has 2LC 
children, 2LC-1 cutting points in multiple 
dimensions. In the last level we have our previous 
leaves or null nodes. For example the constant LC=3 
means that three levels of binary Hist will be 
compressed and every node has 8 children and 23-1 
or 7 cutting points. 
 
Fig.3 indicates level compression for binary Hist of 
fig.2 and constructing multi-way Hist with LC=2. 
The dotted rectangle shows the compressed nodes, 
resulted in the root of multi-way tree. It is clear that 
this structure will be useful if its binary tree is 
balanced such a complete or nearly complete binary 
tree. 
 
2.3 A hybrid scheme 
Before describing the hybrid approach, it is 
necessary to dig deeper into TCAM and its use 
in packet classification. 
When a search key is given to TCAM, it should 
be compared with all entries simultaneously and 
return back first match, so entries should be 
filled according to their priority. Nowadays, we 
have TCAMs with 133 million searches per 
second in 144 bit entries, while the total 
capacity can be extended to 128K entries. But  
using TCAMs in packet classification has some 
limitations such as high power consumption, 
expensive price, and Multi Match Classification 
problem in applications which several or all the 
matched rules should be specified, because 
normally TCAMs only return rule with the most 
priority. New approaches have been proposed to 
solve this problem [17].  
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Fig.2  Hist tree for classifier of table 1.  A) Rules and cut points in X dimension  B) Rules and 
cut points in Y dimension  C) Hist binary tree 

Fig.3 Level compression for binary Hist tree of fig.2.  A) Binary Hist  B) Multi-way Hist 

The most important problem for TCAMs is 
rules with range fields should be converted to 
prefixes before storing in entries, resulting in 
increasing TCAM entries linearly, while 
percentage of range fields in classifiers are 
growing up[17]. In spite of some solutions [17, 
18, 19], this problem yet has redundancy, 
reducing algorithm efficiency.  
The basic idea in the hybrid scheme is using of 
TCAMs in part of matching which the fields are 
prefix type(such as source and destination IP 
address) and continuing the search for the 

remained fields in second level. So, we are not 
facing to converting of ranges to prefixes, 
which is the main problem of using TCAMs in 
classification. The global structure of proposed 
design is shown in fig.4. According to this 
approach, at first all the prefix fields of 
classifier will be searched in TCAM and based 
on the matched entry, a pointer will be used in 
the second level algorithm, to continue 
searching on the remained fields (non-prefix), 
resulting to find best matched rule. 
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Fig.4 Proposed hybrid scheme for packet 

classification 
 
Based on this model, if number of rules or fields 
increase in the future, we can support updates by 
reconstruction of decision trees in the second level 
according to new conditions. An interesting feature 
of this hybrid solution is flexibility to select all 
algorithms which use decision tree such as HiCuts, 
B-HiCuts or FIS structure. In this research we have 
selected B-HiCuts as the second level algorithm. 
To know more details about the operation, a five 
dimensional classifier has been shown in table 2, 
having destination IP, source IP, source port, 
destination port, and protocol fields. 
 

Table 2. A typical 5-dimensional classifier 
Action Protocol Dest. 

Port 
Sourc
e Port 

Dest. 
IP 

Source IP Rule 

A1 TCP >1024 80 x.x.x.x 228.2.12.x R1 

A2 * 80 * x.x.x.x 228.2.12.x R2 

A5 * * * x.x.x.x x.x.x.x R3 

 
Fig.5 shows the proposed hybrid scheme for 
classifier in table 2. all of the non-prefix fields F1, 
F2, and F5 of rules have stored in TCAM entries. 
Based on these fields of header, parallel search will 
be done in TCAM and the matched row with the 
highest priority will determine the pointer for next 
level of classification. 
The pointer in the proposed design points to root of 
a B-HiCuts decision tree. There is a tradeoff 
between memory consumption and depth of tree by 
choosing proper children of nodes and colliding rule 
set. If searching in the average case is acceptable in 
our application, a bit (bit F in figure) can be used to 
specify the matched rules which can be determined 
only by F1,F2,F5 fields and are not depended to 
other fields. For example if F=0, it means end of 
classification and the other bits in RAM specify the 
appropriate action, else the classification should be 
continued in a decision tree which is pointed by 

other bits of RAM. In fig.5 a packet with source IP 
address 228.2.12.1 and destination IP 200.200.200.1 
is pointing to a root of a tree which has been cut on 
field F4 and point 1024. because the value of field 
F4 of incoming packet is 100 and is less than 1024, 
so we traverse through upper branch  and then we 
can continue classification process by a sequential 
search on rules R2 and R3 to find the most prior 
rule, which is R2 in this example. Notice that binth 
parameter is 2 in this example. 
If we use TCAM  with wider entry (for example the 
available 288 bit wide TCAMs), it is possible to put 
128 bit wide IP addresses and extend the model to 
support IPv6. 
 

 
Fig.5. The proposed hybrid scheme for table 2. first 

part of search is in TCAM and it will continue in 
RAM on non-prefix fields by B-HiCuts. 

 
3. PERFORMANCE EVALUATION 
Since the proposed algorithms are based on HiCuts 
algorithm, we chose the simulation results for this 
algorithm as the criterion of comparison with our 
consequences. All synthetic classifiers used for 
evaluation of algorithms have five dimensions and 
each rule has five IPv4 fields including: source IP 
address, destination IP address, source port, 
destination port and type of protocol. The method of 
producing each rule of synthetic classifiers is based 
on the features in reference [15]. Values are used for 
ClassBench parameters to make a non-uniform 
synthetic classifier. So, 0.6 has been selected for 
skew and number of dimensions is five. 
The hybrid design has been evaluated separately by 
comparing with HiCuts and B-HiCuts.  
In this paper we just consider two more important 
criteria, search time and the consumed memory in 
algorithms. Simulations are carried out in C 
language on windows XP system. 
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3.1 Search Time Evaluation 
The results of simulations show that for classifiers 
with non-uniform distribution, B-HiCuts and Hist 
have the lower depth comparing with HiCuts. That's 
because HiCuts has no heuristic for choosing a 
proper cut point and therefore, cuts go on blindly. 
Since the real search time is a function of memory 
access, therefore the depth of the tree is not a 
suitable criterion for the real search time. Results of 
simulation show that in classifiers with uniform 
distribution, the maximum number of access to Hist 
structure has no big difference with HiCuts 
structure. But on non-uniform classifiers, the 
suggested structures, especially Hist, in the worst 
case, have better efficiency in the number of 
memory accesses and consequently in the maximum 
of search time. 
Fig.6 indicates maximum total number of memory 
access on classifiers with non-uniform distribution 
that simulated for band width equal to 4 bytes. To 
show the role of parameter "binth" (refer to section 
1-2), two small classifiers have been simulated for 
binth=16 and for two bigger classifiers binth is 32. 
In fig.7 search time of proposed hybrid algorithm 
has been compared with HiCuts in the number of 
memory access criteria. It is clear that search time of 
proposed algorithm is less than TCAM (which needs 
only one memory access) and is more than HiCuts. 
The overall access time is the numbers in fig.7  plus 
one access in TCAM. 

Fig.6  Maximum total number of memory 
access 

 
3.2 Consumed Memory Evaluation 
Comparing the results, shows that the structure of 
Hist has the lowest amount of consumed memory for 
both kinds of classifiers, especially on those with 
non-uniform distribution (see Fig.8). 

This is because of the correct choice of cut points 
and the decreasing of internal nodes and leaves in 
Hist data structure.  
B-HiCuts has generally less memory on the 
classifiers with non-uniform distribution than 
HiCuts [14]. Consider that the vertical axis of Fig.8, 
which shows the memory, has a logarithmic scale. 
Memory consumption is shown in Fig.9  between 
hybrid scheme, HiCuts and TCAM. Because both 
TCAM and RAM memory have been used in the 
hybrid scheme, all of them have shown separately to 
make a better comparison for each type of memory. 
Having shown in this figure, the consumed RAM in 
hybrid scheme is less than HiCuts and the consumed 
TCAM in hybrid design is also less than a 
completely implementation of packet classification 
in TCAM memory.  

 

 
Fig 7. Maximum number of 

memory access for W=4 byte. 

 
3.3 Evaluation of computational complexity  
The complexity of computations is one of the 
criteria to evaluate efficiency of search algorithms in 
implementation phase. This criteria may include 
different parameters such as: arithmetic operations 
(multiplication, addition, …) logical operations ( 
AND, OR, Shift, …), and conditional instructions. 
All of these can help us to choose a good platform in 
implementation, such as: hardware based, software 
based, FPGA based, ASIC based, parallel, or 
pipelined implementations. So, type and number of 
different processing is used in search operation in 
every algorithm are shown in table 3 and table 4, 
which specify above computations in internal nodes 
and leaves, respectively. W describes memory width 
in byte unit. 
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According to the tables, with an equal binth 
parameter, the amount of computations in leaves is 
equal in all algorithms. In Hist and B-HiCuts only 

memory access and conditional instructions are 
necessary.  
 
 

 

Table3. Type and number of operations for search in internal nodes of algorithms.
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Table 4. Type and number of operations for searching in leaves of algorithms.
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Fig.8. Consumed memory in three algorithms with binth=16. The vertical axis has logarithmic scale. 
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Fig. 9. A comparison between RAM of proposed hybrid scheme and RAM of HiCuts and also 
between TCAM of hybrid design and complete TCAM implementation. 

 
 

4. CONCLUSION 
Comparing the proposed algorithms indicates that 
HiCuts is one of the most efficient ones, but in the 
worst case and with real-life classifiers has an 
unbalanced decision tree leading to a large 
maximum depth. In this paper by defining the 
heuristic of cut point selection, two designs were 
suggested for improvement of HiCuts algorithm and 
balancing the decision tree. Since the Hist structure 
is binary and balanced, therefore we can eliminate 
the tree pointers and combine nodes of several levels 
as a compressed static structure which nodes have 
multi dimensional cut points in. 

Proposed designs like HiCuts are extendable to 
IPv6. Because the trees of new designs are balanced 
and have a lower depth than HiCuts, their pipelined 
implementation, are more efficient and have lower 
delay. The main weakness of proposed approaches 
is long preprocessing (and update) time. 
Also in this paper a new hybrid scheme has been 
defined based on using TCAM for prefix fields and 
another structure for other fields. Some 
specifications of this design according to simulation 
results are high speed, low complexity, convergence 
in producing data structures, acceptable memory 
consumption, and flexibility in choosing algorithms 
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in the second part of hybrid design. In the hybrid 
design the problem of converting range to prefix and 

also multi match classification problem have been 
solved and it can be easily extended to IPv6. 
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