
A Program that acquires how to execute sentences

MACHIKO FUJIWARA, KENZO IWAMA
Engicom Corporation

2-16-6 Higashi Jujo Kita-ku Tokyo, 114-0001
JAPAN

m-fujiwara@engicom.co.jp, k-iwama@engicom.co.jp

Abstract:- One writes example sequences of sentences so that one sequence solves an instance of a problem,
and writes how each example runs on a computer. For instance, the one writes a sentence “From 1 to 10,
repeat Body”, and also writes how the sentence Body repeats its execution on the computer. Then the one
gives them to a program, pI, and lets the initial program generalize how the example sequences run and
generate a procedure, pg. When the program, pI, gets a new example sequence to solve a new instance of the
problem, the program, pI, executes the procedure, pG. For instance, the one writes a sentence “From 5 to 8,
repeat Body”, and then the procedure, pG, repeats the sentence Body four times. As a result of generating a
procedure, pG, the program, pI, acquires implicitly rules of a grammar that produce sentences. Since the
generated procedures, pG’s, describe how to execute sentences of conditional branches, varying number of
repetitions, and varying depth of recursive calls, this paper argues our program, pI, acquires a grammar of a
language that is equivalent to that used in a conventional programming language.

Key-Words:- Generation of procedures from examples, Acquiring how to execute sentences from examples,
Acquisition of a language grammar.

1 Introduction
Philosophers have argued that the meaning of a
sentence is a procedure of computing the truth or
the falsity of the sentence (e.g., [11], [6]. In [4]
Fujiwara and Iwama argue that meaning of a
sentence “Is 7 a prime number” is a procedure to
check if 7 is a prime number, and explains a
program that acquires how to check it. Their
program gets example sequences of sentences to
solve instances of a mathematical problem and
generates a procedure to solve the instances of the
mathematical problem. In our case, meaning of a
sentence is a procedure of how the sentence runs on
a computer. Our problem is to develop a program
that conducts the following: one writes example
sentences to solve a problem (e.g., Fig. 1) and
sentences describing how the sentences run on a
computer (e.g., Fig. 2). The one gives them to our
program and lets the program transform the
sentences to form a procedure (e.g., Fig. 3). Later

the program, given new sentences, executes the
generated procedure (e.g., Fig. 3) to get results of
the new sentences.

Acquiring meanings of words and sentences have
been a focus in various fields including linguistics,
psychology, cognitive science, and artificial
intelligence. Researchers have studied inductive
methods (e.g., [10], [15]). Cross situation is a key to
acquire word-to-meaning mappings.

Researchers in artificial intelligence studied
much of inductive methods. Logic programming
and a model of inductive processes are integrated
into a framework of inductive logic programming
([12]). It is applied to modeling acquisition of
vocabulary by children (e.g., [5]). After its
formulation of ILP, studies on inductive synthesis
of programs have been revived ([3]). Within a
limited domain, [9] and [14] in Inductive Learning
represent meanings conveyed in example pairs of

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1348 Issue 8, Volume 8, August 2009

mailto:m-fujiwara@engicom.co.jp
mailto:k-iwama@engicom.co.jp

inputs and outputs by synthesizing programs.
Although their inputs are limited to data structures,
their synthesized programs correctly guess what
outputs would be, given inputs new to the
programs.

A work by Gold, [7], shows that no algorithm
correctly guesses a grammar of a language by only
positive examples if the language has infinite
members. A positive example is a member of the
language. If positive and negative examples are
given to the algorithm, it identifies the grammar of
the language. This result and observation on language
acquisition by children support a hypothesis that a
human has a universal grammar, [2], from the time of
his birth.

Researchers have developed algorithms to learn a
regular grammar and/or a context free grammar
either by giving the algorithm positive and negative
examples or by giving more information (e.g., [1],
[13]). Competition has been held to show how fast
a new algorithm acquires a language grammar.

Fig. 1: Example sentences of “From to”. Besides an
example shown in the figure, one may give “From 1
to 10, …”, “From 3 to 8, …”, and others to our
program. Here, it is assumed that the one has
already given the program how “Body of From 1 to
4, …” run on a computer.

The next section describes a new approach to
acquiring how to execute sentences as well as
learning a language grammar. Taking the approach,
we develop our program, which Section 3 explains.

2 Approach
This section first explains when one can say that a
program has acquired how to execute sentences.

Then it explains an approach to constructing such a
program.

EL

L

EL

Execute “From 1 to 4, repeat Body”.

From 1 to 4, repeat Body starts.
 Body of From 1 to 4, repeat Body.
From 1 to 4, repeat Body ends.

The first of From 1 to 4 is 1.
Execute Body of From 1 to 4, repeat Body.
Is 1 4?
No.
The next of 1 From 1 to 4 is 2.
Execute Body of From 1 to 4, repeat Body.
Is 2 4?
No.
The next of 2 From 1 to 4 is 3.
Execute Body of From 1 to 4, repeat Body.
Is 3 4?
No.
The next of 3 From 1 to 4 is 4.
Execute Body of From 1 to 4, repeat Body.
Is 4 4?
Yes.

L
From 1 to 4, repeat Body starts.
Body of From 1 to 4, repeat Body.

From 1 to 4, repeat Body ends.

Fig. 2: An example of sentences. The sentences in
(EL) describe how the sentences, “From to” in Fig.
1 run on a computer.

2.1 When one can say a program acquires

how to execute sentences
At the beginning, a program does not know how to
execute sentences; for instance, it does not know
how to execute a sentence “From 1 to 4, repeat
Body”. One writes example sentences as in (L) of
Fig. 1. The one also writes how the example
sentences run on a computer as in (EL) of Fig. 2.
After getting examples as shown in Fig. 1 and 2, the
program transforms the example sentences to
generate a procedure (e.g., see Fig. 3). The program,
given a new example of sentences, puts specific
values in the generated procedure, and executes the
generated procedure. For instance, given “From 5 to
8, …”, the program puts specific values 5 and 8 in

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1349 Issue 8, Volume 8, August 2009

C1 and C2 of the procedure, and repeats its
execution from 5 till 8 (see Fig. 4). Then one can
say the program acquires how to execute sentences
“From to” followed by “Body”. Fig. 5 is another
example of sentences, “while”, and shows an
explanation of how “while” sentences run on a
computer.

Fig 3: A generated procedure. GPS, GPR, and GPT
are subsequences generated by our program. “C1”,
“C2”, “Cm”, and “Cn” are internal variables
introduced by the program. Arrows in the figure
indicate relationships “same” among numerals
(some are omitted).

2.2 Construction of a program
One writes example sequences of sentences that
solve a problem (e.g., Fig. 1), and inputs them to a
program. A way of writing examples is how a
computer executes sentences (e.g., Fig. 2), and is
similar to explanation of how statements run on the

computer in a class of programming language for
beginners. The one constructs the program that
memorizes example sequences of sentences and
transforms them to generate a procedure of
executing a new example as shown in Fig.3 and 4.

From 5 to 8, repeat Body start.
 Body of From 5 to 8, repeat Body. N
From 5 to 8, repeat Body ends.

Execute From 5 to 8, repeat Body.

From 5 to 8, repeat Body starts.
 Body of From 5 to 8, repeat Body.
From 5 to 8, repeat Body ends.

The first of From 5 to 8 is 5.
Execute Body of From 5 to 8, repeat Body.
Is 5 8?

No.
The next of 5 From 5 to 8 is 6.
Execute Body of From 5 to 8, repeat Body.
Is 6 8?

No.
The next of 6 From 5 to 8 is 7.
Execute Body of From 5 to 8, repeat Body.
Is 7 8?

No.
The next of 7 From 5 to 8 is 8.
Execute Body of From 5 to 8, repeat Body.
Is 8 8?

Yes.

G

GE

L

GPS

GPR

GPT

Execute From C1 to C2, repeat Body.

The first of From C1 to C2 is C1.

Execute Body of From C1 to C2, repeat Body.

Is C1 C2?

No.

The next of Cm From C1 to C2 is Cn.

Execute Body of From C1 to C2, repeat Body.

Is Cn C2?

Yes.

From C1 to C2, repeat Body starts.
 Body of From C1 to C2, repeat Body.
From C1 to C2, repeat Body ends.

Fig. 4: Execution of a procedure. Our program,
given sentences as in (N) of this figure, determines
values of internal variables, Ci’s of the procedure as
shown in Fig. 3, and executes sentences of the
procedure as described in (G) of this figure.

One also takes partiality of examples into
consideration when the one constructs the program
since the examples selected do not often cover all

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1350 Issue 8, Volume 8, August 2009

the cases of a problem. The one makes the program
to, given new examples, reorganize a generated
procedure so that the reorganized procedure can
execute all the examples given to the program.

Fig. 5: An example of sentences, EL, to explain
how sentences of “while”, L, run on a computer.

3 Explanation of our program
3.1 Six key functions
The program has six key functions: 1) Finding
relations “same” among words in a sequence of
sentences. See Fig. 6. 2) Finding repeating
sentences and forming a subsequence out of the
repeating sentences. See Fig. 7. 3) Finding branches
among subsequences and connect them. See Fig. 7.
4) Folding repeating subsequences and generalize
them. See Fig. 8. 5) Generalizing sequences of

sentences across examples, generate a procedure,
and store it in a long term memory. See Fig. 9, and
10. 6) Given a new instance, retrieving a procedure
that matches the new instance, putting specific
values of the new instance into sentences of the
procedure, and execute the procedure. See Fig. 4.

Execute While Cnt is less than 4, repeat Body with
Cnt 1.

Fig. 6: Finding relations “same” among numerals.

3.2 Function of reorganizing a procedure
When one gives examples to a program, the
examples may not cover all the cases of solving a
problem. Later the one may give the program new
examples that cover the remaining cases of the
problem. The program then reorganizes the
generated procedure so that the program solves the
cases both the old and the new examples cover.

Our program finds repetitions within new
examples and replaces specific values by internal
variables. It locates a place till that the new example
sentences are the same as those already generated as
a procedure. Remove the sentences that match the
generated already, and make the rest sentences a
branch from the place where the sentences differ.
For instance, if one gives sentences, “From 9 to
5, ..”, “The previous of 9 is 8”, and so on, the

While Cnt is less than 4, repeat Body starts.
 Body, of while Cnt is less than 4, repeat Body.
While Cnt is less than 4, repeat Body ends.

L

EL

Firstly Cnt is 1.

Initially Cnt is 1.
Evaluate Cnt is less than 4 with Cnt 1.
True.
Execute Body of ….
Set Cnt be Cnt +1 with Cnt 1.
Cnt 2.
Evaluate Cnt is less than 4, with Cnt 2.
True.
Execute Body of
Set Cnt be Cnt +1 with Cnt 2.
Cnt 3.
Evaluate Cnt is less than 4, with Cnt 2.
True
Execute Body of ….
Set Cnt be Cnt +1 with Cnt 3.
Cnt 4.
Evaluate Cnt is less than 4, with Cnt 4.
False.

Evaluate Cnt is less than 4 with Cnt 1.

True.

Execute Body of ….

Set Cnt be Cnt + 1 with Cnt 1.

Cnt 2.

Evaluate Cnt is less than 4 with Cnt 2.

True.

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1351 Issue 8, Volume 8, August 2009

program forms new subsequences, and adds a
branch of the new subsequences to the procedure
shown in Fig. 3 to make a new procedure shown as
in Fig. 11.

3.3 Outline of our initial program
Our program gets example sequences of sentences,
one by one, and stores them in a temporary memory.
It compares a sentence (e.g., “if 10 is larger than 5”)
in a sequence with that in another sequence, and
stores the sequence if they are different. After the
program stores more than certain number of
example sequences, it generalizes them to form a
procedure and stores the procedure in its long term
memory. Given a sequence of sentences, it takes
one procedure after another from the long term
memory to compare the sentence with a head
sentence of the procedure. If match, it executes the
procedure on values in the given sentence. Fig. 12
illustrates an outline of our program.

The program compares numerical values in one
input sequence and finds relations “same” among
the numerical values. For example, see Fig. 6. The
program tries to find consecutive sentences that
repeat in the sequence; firstly it finds a sentence
that can be executed by a procedure already
generated, and it appends sentences preceding the
sentence. See Fig. 7. If the program finds
repetitions of the sentences, the program forms a
subsequence out of the sentences and tries to find if
the subsequence appears repeatedly. If so, the
program folds the subsequences and conducts
generalization on the subsequences. See Fig. 8.

 One subsequence formed can become a branch
from other subsequences. For example, a sentence
“Cnt is less than 4” produces “Yes.” or “No.”
depending on the value of Cnt. Sentences following
“Yes.” become a subsequence, and those following
“No.” become another sub step.

After forming subsequences, the program
compares sentences of a subsequence of one
example and those of another example. The

program introduces internal variables and replaces
numerals different in the subsequences by the
internal variables. The program also compares
relations “same” among words of the sentences, and
removes a relation “same” when only one example
has it. If only one example has the relation “same”,
that must happen to hold accidently in the example.

 Firstly Cnt is 1.
 Evaluate Cnt is less than 4
 with Cnt 1.

Fig. 7: Finding sentences that repeat in a sequence,
and finding branch conditions.

Fig. 8: Subsequences folded. Repeating sentences
in a sequence, found as in Fig. 7, are formed as a
subsequence. If subsequences appear more than
once, they are folded and generalized.

True.
Execute Body.
Set Cnt be Cnt + 1 with Cnt 1.
Cnt 2.
Evaluate Cnt is less than 4

 with Cnt 2.
True.
Execute Body.
Set Cnt be Cnt + 1 with Cnt 2.
Cnt 3.
Evaluate Cnt is less than 4

with Cnt 3.
True.
Execute Body.
Set Cnt be Cnt + 1 with Cnt 3.
Cnt 4.
Evaluate Cnt is less than 4

 with Cnt 4.
False.

A sentence that uses a

procedure already

generated may

become a repeating

sentence. With

sentences preceding

the sentence, check if

they repeat in the

sequence.

Return values may

become branch

conditions among

repeating sentences.

True.
Execute Body.
Set Cnt be Cnt+1 with Cnt C1.
Evaluate Cnt is less than 4 with Cnt C1.

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1352 Issue 8, Volume 8, August 2009

Fig. 9: Generalization of sentences across
examples.

Fig. 10: A procedure generated to run “while”
sentences.

Execute From C1 to C2,

 …..

The first of From C1 to
C2 is C1.
Execute …
Is C1 C2?

No.
The next of Cm From
C1 to C2 is Cn.
Execute …
Is Cn C2?

No.
The previous of Cm
From C1 to C2 is Cn.
Execute …
Is Cn C2?

Yes. Yes.

GP

GPP

Firstly Cnt is 1.
Evaluate Cnt is less
than 4 with Cnt 1.

True.
Execute Body.
Set Cnt be Cnt+1
with Cnt C1.
Evaluate Cnt is less
than 4 with Cnt C1.

Firstly Cnt is 10.
Evaluate Cnt is less
than 15 with Cnt 10.

True.
Execute Body.
Set Cnt be Cnt+1
with Cnt C1.
Evaluate Cnt is less
than 10 with Cnt C1.

Firstly Cnt is C2.
Evaluate Cnt is less
than C3 with Cnt C2.

True.
Execute Body.
Set Cnt be Cnt+1
with Cnt C1.
Evaluate Cnt is less
than C3 with Cnt C1.

Example 1 Example 2

Fig. 11: A branch of “From to”. Generated
subsequences, GPP, become a branch of a
procedure already generated, GP.

 Input of an example

Diff

Fig. 12: A flow of generating a procedure and its
execution.

Then the program locates words different across
examples but the other words and the relations are
the same in the sentences. Replace the words by
internal variables with relations “same” among the
words, actually explicit variables.

 False.

Firstly Cnt is S.
Evaluate Cnt is less than N

with Cnt T.

each box indicates a
subsequence.

True.
Execute Body.
Set Cnt be Cnt + 1 with Cnt K.
Cnt is J.
Evaluate Cnt is less than N with
Cnt J.

erent from that already

input NO

YES

NO

Compare examples

Generate a procedure

Finish

Save the example sequence

YES

YES

NO YES

NO

More than a certain number of

examples are stored

Is it executable ?

Get new example?

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1353 Issue 8, Volume 8, August 2009

Fig. 13: A dynamic structure of executing a
procedure generated by our program.

When the program gets a new sentence, it takes a
procedure, one after another, out of its long term
memory to compare the new sentence with a head
sentence of the procedure. Trying to match, the
program replaces numerical values in the sentence
by any where the head sentence has internal
variables. The program also replaces words by any
where the head sentence has internal word variables.
If the two match, the program executes the
procedure.

During the execution of a procedure, another
procedure may be invoked and be executed. If a
sentence of the procedure matches that of a head
sentence of the procedure, the procedure is invoked.
Fig. 13 illustrates how the execution of
subsequences of the procedure and another
procedure proceed. If the procedure invoked uses
itself, namely recursively use it, the depth of
recursive usages is determined dynamically. Fig. 14
shows a recursive usage of Body sentences.

3.4 Assumptions
One is required to keep two rules: the first is the
following: Suppose sentences, Se, use a procedure
that can be generated by example sequences of
sentences, Sa. Then one gives our program the set
of the sentences, Sa, first, and let the program
acquire how to execute them, Sa and then the one

gives the sentences, Se. As a result of this, the
program forms hierarchical structures of using
procedures (e.g., see Fig. 14). The second is that the
one uses same words with the same word orders to
write sentences of the same meaning.

Subseq. 0

Subseq. 1

 …

Subseq. n.

Other

procedures

Results

Sentences Sentences

End Branch

Sentences
of initial
settings

Find a subsequence

that can be executed.

Execute From to
The first …
Body of …

The next …
Body of …

Execute Body of …
Sentence
Sentence

Sentence
Sentence

 …
Execute From to …

Fig. 14: A hierarchical structure of using procedures.
Sentences “Execute From to ..” use “Execute Body
of …”, and sentences “Execute Body …” use
another sentences “Execute Body …”.

From the beginning, our program is assumed to
have functions of inputs, outputs, and some
calculation using the inputs as well as using
calculation results. 1) The program has functions of
counting, and basic arithmetic operations such as
addition of two numerical values. It is possible to
construct procedures from examples to do
arithmetic operations such as addition1. Complexity
of generated procedures grows much unless the
program is assumed to have functionality of a
certain level. 2) The program has string functions:
matching strings, adding sub strings to make a
string, and deleting a sub string from a string to
make a string that does not have the sub string.
Sentences are given as strings and are stored in
memory, and are picked up one by one. 3) The
program has functions of using memory space.

1 Iwama [8] explains a program that generates a
program of counting numbers from examples.

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1354 Issue 8, Volume 8, August 2009

There are a large number of memory locations that
keep values in them. It is assumed the program has
functions of getting memory space, labeling the
space, putting a value in a labeled space, getting the
value from the labeled space, and releasing the
memory space when the space are not used any
longer.

4. Examples
4.1 Evaluation of expressions
This section describes example sentences that one
uses to let our program acquire how to evaluate
expressions. Such an example is “5 is smaller than
7”. Suppose that the program has acquired how to
count and how to get “the next of a given number”,
or has functions of counting as its innate functions.
Then, the one gives the program sentences as
follows: “Execute Evaluate 5 is smaller than 7. Is 5
8? No. The next of 5 is 6. Is 6 8? No. The next of 6
is 7. Is 7 7? Yes. Repetitions of the next reach 7.
True”. When the one gives the program a sentence
evaluating an expression, “Evaluate 6 is larger than
4”, example sentences are the following: “Execute
Evaluate 6 is larger than 4. Is 6 4? No. The previous
of 6 is 5. Is 5 4? The previous of 5 is 4. Is 4 4? Yes.
Repetitions of the previous reach 4. True”.

One may need to give the program another
concept before the one gives the program examples
such as “8 is smaller than 5”. The other concept is
the number of digits; for instance, “12 has 2 digits”,
and “400 has 3 digits”. Suppose the one has given
the program the concept of the number of the digits.
Then the one can give the following to the program:
“8 is smaller than 5. Is 8 5? No. 5 has 1 digit and 8
has 1 digit? Yes. The next of 8 is 9. Is 9 5? No. 5
has 1 digit and 9 has 1 digit? Yes. The next of 9 is
10. Is 10 5? No. 5 has 1 digit 10 has 1 digit? No.
False” 2.

 2 For a practical purpose, it is required to introduce

a mechanism to get interruption by people when it
takes too much time to evaluate an expression; for
example, “10000 is smaller 9000”, “the next of

4.2 Conditional branches
One writes example sequences of sentences of how
conditional sentences run on a computer as follows:
“Execute if 8 is smaller than 10, Body of if 8 is
smaller than 10, else Body of else. Execute
Evaluate 8 is smaller than 10. True. Execute Body
of if 8 is smaller than 10.” “Execute if 7 is smaller
than 4, Body of if 7 is smaller than 4, else Body of
else. Execute Evaluate 7 is smaller than 4. False.
Execute Body of else.” Then our program generates
a procedure as shown in Fig. 15.

Fig. 15: A procedure generated to run “if else”
sentences.

4.3 Recursive usage of sentences
After one lets our initial program acquire how to
execute a set of sentences, the one can write
recursive usages of the set. For instance, the one
writes sentences “Body of if …” and a sentence in
them uses “Body of if …” as shown in Fig. 16.
Then the sentences “Body of if …” use themselves
recursively. Note that the number of recursion is
determined at the time of execution, depending on a
way of writing sentences.

4.4 Character strings
Although it is assumed that our program has
acquired string functions from the beginning, it is
possible to let the program acquire how to deal with
character strings. Fig. 18 shows example sentences
of saving a string in a table space. Using a
procedure of saving strings in tables, one can write

10000 is 10001”, “the next of 10001 is 10002”, and
so on. While “the next of … is …” continues,
people may make an interruption.

False
Body, of else A > N,

 with A K

Evaluate A > N with A K

True
Body, of if A > N,

 with A K

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1355 Issue 8, Volume 8, August 2009

sentences of adding two strings.
4.5 Simple applications
After one has let the program acquire how to
execute sentences of repetitions, conditional
branches, and using tables, the one is able to give
the program example sequences of sentences used
for simple business applications. A simple
application may be “Output names of products that
sell more than 100”. The application uses sentences
as shown in Fig. 17. The one becomes able to write
a new application, “Output names of products that
sell less than 200”, without changing sentences that
the application uses.

5. Discussion
This paper explains a program, pI, that transforms
example sequences of sentences to generate a
procedure, pG. Since the program, pI, with the
procedure, pG becomes able to execute a new
example, one can say it has acquired knowledge of
how to execute the new example that follows the
same rules as the examples given before from the
point of their execution. The program, pI, has also
acquired a language grammar in a sense that it can
execute the new example. The language grammar
includes orders of words that specify conditional
branches, varying number of repetitions, and
varying depth of using other sentences or
themselves. Therefore the program, pI, implicitly
acquires a grammar equivalent to that of a
conventional programming language by getting
positive examples only. But the one is required to
give the program much more information than the
case of learning only a grammar. The one is also
required to give the program sentences, Sa, before
sentences, Se, if some of the sentences, Se, use a
procedure exemplified by the sentences, Sa.

Future work includes the following: One is to
develop a set of better techniques than those
explained in this paper. Another is to explore its
feasibility of our approach to developing a library
of procedures for business applications.

References:
[1] D. Angluin, Learning regular sets from queries

and counterexamples, Information and
computation, vol. 75, 1987, pp. 87-106.

[2] N. Chomsky and H. Lasnik, The theory of
Principles and Parameters, In J. Jacobs, A. von
Stechow, W. Sternfield, and T. Vennemann (Eds.),
Syntax: An International Handbook of
Contemporary Research, Berlin: de Gruyter,
1993.

[3] P. Flener and S. Yilmaz, Inductive synthesis of
recursive logic programs: Achievements and
prospects, Journal of Logic Programming, Vol.
41, No. 2–3, 1999, pp.141–195.

[4] M. Fujiwara and K. Iwama, A program that
acquires meanings of sentences in mathematics,
Submitted for publication, 2009.

[5] K. Furukawa, I. Kobayashi, T, Ozaki, and M.
Imai, A Model of Children’s Vocabulary
Acquisition Using Inductive Logic Programming,
LNCS Vol. 1721. Springer Berlin, 1999.

[6] N. Gierasimczuk, The problem of learning the
semantics of quantifiers, LNAI, Vol. 4363/2007,
2007, pp. 117-126. Springer.

[7] E. M. Gold, Language identification in the limit,
Information and control, Vol. 10, 1967, pp.
447-474.

[8] K. Iwama, A robotic program that acquires
concepts and begins introspection,
NueroQuantology, Vol. 4, No. 4, 2006, pp.
321-328.

[9] E. Kitzelmann, And U. Schmid, Inductive
synthesis of functional programs: an explanation
based generalization approach, J. Machine
learning research, Vol. 7, 2006, pp. 429-454.

[10] E. Margolis and S. Laurence, How to learn the
natural numbers: Inductive inference and the
acquisition of number concepts, Cognition, Vol.
106, 2008, pp. 924-939.

[11] Y. Moschovakis, Sense and denotation as
algorithm and value, In J. Oikkonen, and J.
Väänänen, (Eds.), Lecture notes in logic, Vol. 2,
1990, pp. 210-249, Springer.

[12] S. Muggleton and L. De Raedt, Inductive logic
programming: Theory and methods, J. Logic

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1356 Issue 8, Volume 8, August 2009

programming, Vol. 19, No. 20, 1994, pp.
629-679.

[13] Y. Sakakibara, Learning context-free grammars
from structural data in polynomial time.
Theoretical computer science, vol. 75, 1990, pp.
223-242.

[14] U. Schmit, Inductive synthesis of functional
programs. LNAI, Vol. 2654, Springer, 2003.

[15] J. M. Siskind, A computational study of
cross-situational techniques for learning
word-to-meaning mapping. In M. R. Brent, (Ed.),
Computational approaches to language
acquisition, MIT Press, 1997.

Fig. 16: An example of recursive usage of
sentences.

Fig. 17: A simple application (details are ommited
in the figure). A sentence “Output names …” uses
sentences of “Body” to output product names.

Fig. 18: Example sentences of storing a string in a
table.

If …

Body of

Body of .

If ..

Body of .

Else

End

Body of .

If ..

Body of .

Else

End.

Body of .

If ..

Body of .

Else

End.

Execute Save a string, “abc”, in table, T1.

Save a string, “abc”, in table, T1 starts.
Save a string, “abc”, in table, T1 ends.

Location of table, T1, is.
500.
Set llocation be 1.
Letter in a string, “abc”, at llocation 1 is.
a.
Is a NIL?
No.
Store a in table, T1, at Location 500.
Set Location be Location+1.
Location 501.
Set llocation be llocation+1.
llocation 2.
Letter in a string, “abc”, at llocation 2 is.
b.
Is b NIL?
No.
Store b in table, T1, at Location 501.
Set Location be Location+1.
Location 502.
Set llocation be llocation+1.
llocation 3.
Letter in a string, “abc”, at llocation 3 is.
c.
Is c NIL?
No.
Store c in table, T1, at Location 502.
Set Location be Location+1.
Location 503.
Set llocation be llocation+1.
llocation 4.
Letter is a string, “abc”, at llocation 4 is.
NIL.
Is NIL NIL?
Yes.

Execute Output names of products that sell more than 100.

Output names of products that sell more than 100 starts.
From rowS to rowE, repeat the following.

Output names of products that sell more than 100 ends.

Execute From rows to rowE, repeat the following.

From rows to rowE, repeat the following starts.
 Body of From rows to rowE, repeat the following.
From rows to rowE, repeat the following ends.

 …
If Numb is larger than 100 then
 A value of table at location Row and ColumnN is.
 Name.
 Print Name.

uses

uses

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1357 Issue 8, Volume 8, August 2009

