
A program that acquires how to solve problems in mathematics

MACHIKO FUJIWARA, KENZO IWAMA
Engicom Corporation

2-16-6 Higashi Jujo Kita-ku Tokyo 114-0001
JAPAN

m-fujiwara@engicom.co.jp, k-iwama@engicom.co.jp

Abstract:- In mathematics, a sequence of sentences describes how to solve a problem; for instance,
sentences, “Calculate the least common multiple of 10 and 15. Firstly divide 10 and 15 by 2. Results are ‘5’
and ‘cannot divide’. ‘5’ and ‘cannot divide’ are not 1 and 1. Divide 5 and 15 by 2. Results are ‘cannot divide’
and ‘cannot divide’.” and so on, describe how to calculate the least common multiple of 10 and 15. While
example sequences of sentences are given to our program, the program transforms the example sequences to
generate a procedure, pG, to solve a problem. For instance, a generated procedure, pGp, checks if a given
number is a prime number, another procedure, pGc, calculates the least common multiple of any two
numbers, and another procedure, pGf, adds given two fractions. This paper explains our program that
generates procedures, one after another, each of which solves one mathematical problem. The paper also
argues, as a result of generating a procedure, pG, the meaning of a sentence (or sentences) is represented in
the generated procedure, pG.

Key-words:- Acquisition of how to solve problems, Generation of programs from examples, Meaning of a
sentence.

1 Introduction
Philosophers have argued that the meaning of
natural language construction can be identified with
a representation of its denotation (e.g., [2]). In [4],
the author states “their thought has been developed
in the direction of identifying the meaning of an
expression with a procedure for finding its
extension”. The meaning of a sentence is a
procedure of computing the truth or the falsity of
the sentence (e.g., [10]).

In psychology, linguistics, and cognitive science,
acquiring word meanings inductively has been
studied much (e.g., [8]), and inductive methods
have been developed and applied for acquiring
meanings of words in [13]. Cross situation is a key
to acquire word-to-meaning mappings.

Studies in machine learning have developed
frameworks for learning and various techniques to

make a machine acquire concepts. The learnability
in [15] has shown a learning machine that uses a
protocol to get inputs, members of a concept, and
applies a deduction procedure to have a program
that recognizes the concept. The procedure deduces
a program (logical expression) from a general
program in a way that the truth of the expression is
the same as that of a member taken from the
concept during a learning period. After the leaning,
the truth of the logical expression becomes the
same as that of a member taken from the concept.
In a decision tree model, a tree node has a logical
expression, and the value of the expression on an
input decides which branch the input should go.
General logical expressions at nodes are set specific
so that inputs go down branches as the inputs
specify during learning period (e.g., [10]). After the
learning, the tree with the logical expressions is
used as a decision tree (or a classification tree).
These classical studies have been applied in various
machine learning programs (see [9]). For instance,

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1337 Issue 8, Volume 8, August 2009

mailto:m-fujiwara@engicom.co.jp
mailto:k-iwama@engicom.co.jp

behavioral cloning aims at inducing a model
mapping inputs to outputs from pairs of inputs and
outputs given by a person (e.g., [1]). Through
procedural learning [16] forms a model of percepts
and actions, and to make a machine imitate human
skills, and [7] describes a method of learning
control programs.

Inductive logic programming by [11] integrates a
model of inductive processes into a framework of
logic programming. Applying the framework, [3]
proposes a model of vocabulary acquisition by
children. After its formulation of ILP, studies on
inductive synthesis of programs have been revived.
Within a limited domain, [6] and [12] in Inductive
Learning represent meanings conveyed in example
pairs of inputs and outputs by synthesizing
programs. Although their inputs are limited to data
structures, their synthesized programs correctly
guess what outputs would be, given inputs new to
the programs. Synthesizing, namely combination
and serialization, of initial programs is a way of
acquiring meanings conveyed in the examples.

To the knowledge of the authors no study has
been conducted to develop a program that generates
procedures to check the truth or the falsity of
expressions and sentences in mathematics. A reason
behind this seems that it is simple for a human to
write procedures, in a conventional programming
language, to check the truth of each sentence such
as “7 is a prime number”.

However, it seems worth developing a program
that generates procedures to check the truth of a
sentence: “7 is a prime number”, “60 is the least
common multiple of 15 and 20”, “1 / 3 + 1 / 5 = 8 /
15”, “3 x (5 – 2) – 4 = 5”, “100X + 50 = 350 and X
= 3”, and others. Inputs to the program are example
sentences, and the sentences are similar to those
that a teacher gives students at school. Fig. 1 shows
samples of inputs. Techniques for developing such a
program may be useful for representing denotation
of a mathematical sentence, and for constructing an
intelligent machine. Researchers may get hints how
students develop denotation of a mathematical

sentence. The next section describes our approach
to developing the program and assumptions on
which the program1 is developed.

2 Approach
2.1 Example sequences and a program
One writes example sequences of sentences that
describe how to solve a mathematical problem, and
gives them to our program. A way of writing the
example sequences is similar to those a teacher
explains to children how to solve the mathematical
problem.

Is 6 a prime number?
Firstly divide 6 by 2.
The result is 3.
No, 6 is not a prime
number.

Is 7 a prime number?
Firstly divide 7 by 2.
Cannot be divided.
The next of 2 is 3.
3 is the same as 7.
No.
Divide 7 by 3.
Cannot be divided.
The next of 3 is 4.
4 is the same as 7.
No.
Divide 7 by 4.
Cannot be divided.

(omitted.)

The next of 6 is 7.
7 is the same as 7.
Yes.
7 is a prime number.

Fig. 1: Example sequences of checking if a given
number is a prime number.

 The one is required to consider orders of giving
example sentences to a program. For instance the
one gives the program examples of adding two

1 On request for a program, the authors will send a
source program of their trial to the requester.

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1338 Issue 8, Volume 8, August 2009

fractions after the one has let the program acquire
how to calculate the least common multiple of two
integers since the addition of the two fractions uses
the calculation of the least common multiple.

The one develops a program, pI, that generates a
procedure, pG, by generalizing example sequences
of sentences. Given an instance of the problem new
to the program, pI, the program uses the generated
procedure, pG, and solves the instance of the
problem. Fig. 2 illustrates a procedure generated by
the program that checks if a given number is a
prime number.

Fig. 2: A procedure generated by our program that

checks if a given number is a prime number.

2.2 Assumptions
We assume the following when one gives example
sentences to our program:
 1) Example sentences use the same words in the

same word orders. The sentences are separated
by new lines, and the words are separated by
blanks when one gives the program example

sentences.
 2) The program has already acquired how to solve

some basic problems for the sake of practicality.
For example, the program is assumed to have
procedures of counting, basic arithmetic
operations such as addition of integers, and of
distinguishing numerals from other words2.

 3) The program has acquired how to use memos;
storing calculated values temporarily and
retrieving them later from the memos.

4) The program has acquired string functions such
as string matching, inserting, and deleting.

5) The program has acquired how to detect explicit
variables such as “x” in a sentence “100x + 50
= 350”.

Is N a prime
number?
Firstly divide N
by 2.

The result is L.
No, N is not a
prime number.

Cannot be
divided.
The next of K is
J.
J is the same as
N.

2.3 Example sequences of sentences
One writes test sets of example sequences and gives
the program, one test after another, to see how the
program works. The following is a list of problems
without using explicit variables:

No.
Divide M by J.

Yes.
N is a prime
number.

1) Is 7 a prime number?
2) The next prime number of 3 is.
3) Factorize 12.
4) Least common multiple of 10 and 15 is.
5) 3 / 16 + 7 / 12 is.
6) 2 x (5 – 3) – 3 is.
7) Greatest common factor of 16 and 24 is.
8) Find 2 / 3 of 57.
9) Change 11 / 4 to a mixed number.
10) Cancel down 9 / 12 to its lowest terms.
11) What percent of 39 is 9?
12) 30% of what number is 15?
13) How much 4 apple and 1 basket is when 1

piece of apple is 100 and 1 piece of basket is
150. (Ignore plural s and articles).

The following is a list of problems with using

2 Iwama [5] explains how a program acquires a
concept of counting from examples. Our program
may start with acquiring counting instead of
assuming that the program has the procedure of
counting. But the complexity will grow if we start
with acquiring counting.

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1339 Issue 8, Volume 8, August 2009

explicit variables:

1) 100x + 50 = 350. x is.
2) Apply a distributive law to x(x + y).
3) How much N apple and 1 basket is when 1

piece of apple is 100 and 1 piece of basket is
150. (Ignore plural s and articles.)

4) 3X + 4X = 7X.

 It is difficult that one explains how to solve a
geometric problem in a sequence of sentences
without drawing lines or circles. It is also difficult
to explain addition and multiplication of two
matrices without writing visually arranged rows and
columns of numerals and/or variables. Thus the one
puts such mathematical problems out of the scope
of the current article that require 2D and/or 3D
writings and drawings for their explanation by
examples.

3 Explanation of our program
3.1 Key functions
Our program has six key functions:

(1) One is finding relations “same” among words
in an example sequence (see Fig. 3).

(2) The second is finding sentences that repeat in
the example sequence and forming
subsequences each of which has sentences
repeating in the sequence (see Fig. 4).

Fig. 3: Relations “same” in a sequence.

(3) The third is finding branches among
subsequences (see Fig. 4 and Fig. 5).

(4) The forth is connecting the subsequences by
using branch conditions so that a subsequence
can be selected and executed when the
subsequence holds the branch conditions (see
Fig. 8).

(5) The fifth is generalizing sequences, which
consist of subsequences with branches, across
examples (see Fig. 7).

(6) The sixth is finding a procedure already
generated by matching a sentence in a current
input sequence and a head sentence of the
procedure. If match, execute the procedure.
Check if a sentence of the executed procedure
matches a head sentence of another procedure.
If match, execute it. (See Fig. 8 and Fig. 9).

Cannot be divided.

Is a prime number?

Firstly divide by .

Cannot be divided.

The next of is .

Divide by .

2

2

35

35

35

3

same

same same

same

3

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1340 Issue 8, Volume 8, August 2009

Fig. 4: Finding repetitions and branch conditions.

3.2 Explanation of our program
Our program gets example sequences, one by one,
and stores them in its temporary memory. It
compares a sentence of words (e.g., “divide 9 by
2”) in an input with those of a sentence already
stored in the memory. If they are not the same, the
program stores the input sequence as a new
example. The program also compares the sentence
in the input and a head sentence of a procedure
already generated. If match, it remembers that the
sentence is the head sentence of the procedure and
uses it later. When the program stores more than a
certain number of example sequences, it generates a
procedure out of the examples. See Fig. 6.

Our program compares numerical values in an
input sequence of sentences and finds relations
“same” among the numerical values (see Fig. 3).
The relations “same” have mathematical meaning in
the sequence, but some relations happen to hold.
Later generalization, across examples, removes the
relations “same” that happen to hold.

The program tries to find sentences that repeat in
an input sequence by starting with a sentence that
can be executed by a procedure already generated.
For instance, “Divide 35 by 3” is such a sentence,
and the program replaces 35 and 3 by internal
variables to find the same sentence, “Divide N by
J”, appear in the sequence. If it repeats, the program
appends sentences preceding the sentence, and
checks if the sentences repeat in the sequence. Then
the program forms a subsequence out of the
repeating sentences (see Fig. 4).

 After finding repeating sentences in the input
sequence, the program folds the repeating sentences
to make a subsequence of the sentences. For
instance, sentences, “Cannot be divided”, “The next
of J is K”, and “Divide N by K”, repeat in the
sequence, and a subsequence of these sentences is
formed. See Fig. 5. Here “J”, “K”, and “N” are
internal variables introduced by the program.

Sentences that appear only once are also formed
as a subsequence. For instance, sentences “The
result is 7” and “No, 35 is not a prime number”, do
not repeat in a sequence, and the program makes a
subsequence out of the sentences.

Fig. 5: Folding of repeating sentences with

branches.

Is 35 a prime number?
Firstly divide 35 by 2.

Cannot be divided.
The next of J is K.
Divide 35 by K?

The result is 7.
No, 35 is not a prime
number.

Sentences that use a
procedure already
generated produce
more than one
results: “Cannot
be ..” and “The result
is ..”.

A return value of a
procedure like
“Cannot ..” can be
a branch condition.

Sentences, “Divide
35 ..” and “The
next ..” are
candidates of
repetitive
sentences.

Is 35 a prime number?
Firstly divide 35 by 2.

Cannot be divided.

The next of 2 is 3.

Divide 35 by 3.

Cannot be divided.

The next of 3 is 4.

Divide 35 by 4.

Cannot be divided.

 (continued)

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1341 Issue 8, Volume 8, August 2009

Fig. 6: A flow of generating a procedure.

A subsequence can be a branch of another
subsequence, and return values from a procedure
already generated can be branch conditions of
subsequences. For instance, return values, “Cannot
be divided” and “The result is 7” can be branch
conditions of a subsequence ending with a sentence
“Divide N by J”. Our program gets the possible
return values of a procedure, puts subsequences in
parallel that have different return values, and
connects them to the subsequence ending with the
sentence producing branch conditions. See Fig. 5.

After forming subsequences with branches, the
program compares subsequences of one example
and those of another example. The program forms a
general procedure by replacing different numerical
values by internal variables. See Fig. 7. Values “7”,
“8” and others are replaced by internal variables.
The program removes relations “same” if they do
not appear across examples since the relations that
appear only in one example happen to occur. The
program keeps them with the procedure when they
appear across the examples.

Fig. 7: Generalizing folded subsequences across

examples.
Then the program locates words different across

examples but the other words and the relations are
the same in the sequences. Replace the words by
internal word variables with relations “same”
among the words. The program also finds relations
“same” among explicit variables.

 When the program gets a new sentence, it takes a
procedure, one after another, out of its long term
memory to compare the new sentence with a head
sentence of the procedure. Trying to match, the
program replaces numerical values in the sentence
by any where the head sentence has internal
variables. The program also replaces words by any
where the head sentence has internal word variables.

Is N a prime
number?
Firstly divide N by
2.

The result is R.
No, N is not a prime
number.

No.
The next of J is K.
Divide N by K.

Is 7 a prime number? Is 8 a prime number?Input of an example

Different from that already
input NO

YES

NO

Compare examples
Generate a procedure

Finish

Store the example sentences

YES

YES

NO YES

NO

More than a certain number
of examples are stored

Is it executable ?

Get new example?

Firstly divide 7 by 2. Firstly divide 8 by 2.

The result is 4.
No, 8 is not a prime
number.

Cannot be divided.
The next of J is K.
Divide 7 by K.

same

same
same

same

same

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1342 Issue 8, Volume 8, August 2009

If the two match, the program executes the
procedure.

Fig. 8: A dynamic structure when a procedure is
executed.

A generated procedure has usually more than one

subsequence, and one subsequence may start its
execution after another subsequence. The procedure
may include sentences that use some other
procedures already generated (see Fig. 8). To find
the procedure in its memory, the program replaces
numerical values in the sentence by any where the
head sentence of the procedure have internal
variables. The program also replaces words by any
where the head sentence has internal word variables.
If it finds the procedure, the program executes the
procedure. See Fig. 8 and Fig. 9.

Fig. 9: An example of executing programs. When

our program gets “4/15 + 7/35“, it uses procedures,
such as the least common multiple of 15 and 35,

that the program has already generated.
Subseq. 0

Subseq. 1

 …

Subseq. n

Another

procedure

Results

Sentences Sentences

End Branch off

Initial

settings

Find a subsequence
that can be
executed.

 At the time of executing a procedure, our
program sets specific values to internal variables by
applying one of the following:

1) An input value determines the value of an
internal variable.

2) A relation “same” determines the value of an
internal variable.

3) A return value from a procedure determines
the value of an internal variable.

 For instance, one gives a sentence of adding two
fractions, 4 / 15 + 7 / 35, to the program. It retrieves
a procedure of adding two fractions, and puts input
values, 4, 15, 7, and 35 in internal variables of the
first sentence of the procedure. Relations “same”
determine internal variables of the next sentence,
which becomes “the least common multiple of 15
and 35”. A procedure, the least common multiple, is
retrieved from its memory, and is executed to
produce 105, the least common multiple of 15 and
35. The value, 105, determines the value of an
internal variable of the third sentence. See Fig. 14.

3.3 Example procedures generated
 by our program
As described in Subsection 2.4, one prepares
example sequences of sentences to test our program.
Appendix illustrates example sentences of prime
factorization, calculating the least common multiple,
and addition of two fractions. The appendix also
shows a procedure of prime factorization, and a
procedure of adding two fractions. These
procedures are generated by our program. We have
confirmed that the program uses procedures and
makes correct outputs to given instances of a
problem listed in Subsection 2.3.

A procedure uses other procedures already generated.

The least

common

multiple

Addition

of

fractions

The next

prime

number

Is a prime

number ?

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1343 Issue 8, Volume 8, August 2009

4 Discussion
Our program, pI, has generated a procedure of
checking the truth of a sentence in mathematics (or
solving a mathematical problem), and has
represented denotation of the sentence. The
sentence may be “the least common multiple of 10
and 15 is 30”. The program, pI, has no procedure of
checking it (or solving it) at the beginning, and one
has not written a computer program to check it (or
solve it). The program, pI, generates a procedure to
check the truth of a given sentence after the
program has received example sequences to check
it, and the example sequences are similar to those
used for explaining to students at school. Therefore
the program, pI, has formed by itself a
representation of meaning of a mathematical
sentence, e.g., “the least common multiple of N1
and N2 is N3”. Here N1, N2, and N3 are any
integers.

Future works include investigation of what types
of problems a current program is able to acquire
how to solve. We are currently writing a series of
example sequences of sentences to let the program
acquire methods of mathematical induction to prove
formula from examples. To use the program at
school, an intelligent interface needs to be
developed so that one can give example sentences
to the program through the interface as a teacher
writes examples on a blackboard.

It is difficult that one explains how to solve a
geometric problem in a sequence of sentences
without drawing lines and circles. The one usually
relies on spatial relations between the lines and/or
circles to explain the geometric problem. It is also
difficult to explain addition and multiplication of
two matrices without writing visually arranged
rows and columns of numerals and/or variables.
Thus a serious issue is to introduce methods of
extracting and generalizing spatial relations among
geometric elements such as lines and circles.

References:

[1] M. Bain, and C. Sammute, A framework for
behavioral cloning, In K. Furukawa, D. Michie,
and S. Muggleton, (Eds.), Machine Intelligence
15, Intelligent Agents, pp. 103-129. Oxford Univ.
Press, 1999.

[2] G. Frege, Über Sinn und Bedeutung. Zeitschrift
fur Philosophie und Philosophishe Kritik, Vol.
100, 1892, pp. 25-50.

[3] K. Furukawa, I. Kobayashi, T, Ozaki, and M.
Imai, A Model of Children’s Vocabulary,
Acquisition Using Inductive Logic Programming.
LNCS Vol. 1721. Springer, 1999.

[4] N. Gierasimczuk, The problem of learning the
semantics of quantifiers, LNAI, Vol. 4363/2007,
pp. 117-126. Springer, 2007.

[5] K. Iwama, A robotic program that acquires
concepts and begins introspection,
NueroQuantology, Vol. 4, No. 4, 2006, pp.
321-328.

[6] E. Kitzelmann, and U. Schmid, Inductive
synthesis of functional programs: an explanation
based generalization approach, J. Machine
learning research, Vol. 7, 2006, pp. 429-454.

[7] P. Langley, and D. Choi, Learning recursive
control programs from problem solving, J.
Machine Learning Research, Vol. 7. 2006, pp.
493-518.

[8] E. Margolis, and S. Laurence, How to learn
natural numbers: inductive inference and the
acquisition of number concepts, Cognition, Vol.
106, Issue 2, 2008, pp. 924-939.

[9] R. S. Michalski, J. G. Carbonell, and M. T.
Mitchell, Machine Learning: An artificial
intelligence approach, Vol. II. Morgan Kaufmann,
1986.

[10] Y. Moschovakis, Sense and denotation as
algorithm and value, In J. Oikkonen, and J.
Väänänen, (Eds.), Lecture notes in logic, Vol. 2,
pp. 210-249, Springer, 1990.

[11] S. Muggleton, and L. De Raedt, L. Inductive
logic programming: Theory and methods, J.
Logic programming, Vol. 19, No. 20, 1994, pp.
629-679.

[12] U. Schmit, Inductive systhesis of functional
programs, LNAI, Vol. 2654, Springer, 2003.

[13] J. M. Siskind, A computational study of

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1344 Issue 8, Volume 8, August 2009

cross-situational techniques for learning
word-to-meaning mappings, Cognition, Vol. 61,
1996, pp. 39-91.

[14] J. R. Quinlan, Programs for machine learning,
Morgan Kaufman, 1993.

[15] L. G. Valiant, L. G. A theory of the learnable,
CACM, Vol 27, No. 11, 1984, pp. 1134-1142.

[16] M. van Lent, and J. E. Laird, Learning
procedural knowledge through observation, First
Int’l conf. on Knowledge Capture, 2001, pp.
179-186.

Appendix: Example sentences and
procedures generated

Fig. 10 shows example sequences of sentences that
describe prime factorization, and Fig. 11 illustrates a
procedure generated by our program to factorize a
given integer.

 Fig. 12 illustrates an example sequence that
calculates the least common multiple of two
integers, and Fig. 13 shows an example sequence of
adding two fractions. Fig. 14 shows a procedure of
adding two fractions, the figure also illustrates how
internal variables have specific values to conduct its
calculation.

Fig. 10: Example sequences of factorizing an

integer.

Fig. 11: A procedure of factorizing an integer.

Factorize N.
Firstly divide N by 2.

The result is M.
Put K in memory.
Is M 1?

Yes.

(Output values in
memory)

No.
The next prime
number of J is K.
Divide M by K.

No.
Divide M by K.

Factorize 12. Factorize 15.
Firstly divide 12 by 2. Firstly divide 15 by 2.
The result is 6. Cannot be divided.
Put 2 in memory. The next prime number of

2 is 3. Is 6 1?
No. Divide 15 by 3.
Divide 6 by 2 The result is 5.
The result is 3. Put 3 in memory
Put 2 in memory. Is 5 1?
Is 3 1? No.
No. Divide 5 by 3
Divide 3 by 2. Cannot be divided.
Cannot be divided. The next prime number of

3 is 5. The next prime number of
2 is 3. Divide 5 by 5
Divide 3 by 3. The result is 1.
The result is 1. Put 5 in memory.
Put 3 in memory Is 1 1?

Yes. Is 1 1?
Yes.

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1345 Issue 8, Volume 8, August 2009

Least common multiple of
10 and 15.
The first to divide 10 and
15 is 2.
Divide 10 and 15 by 2.
Results are 5 and No.
Put 2 in memory.
5 and No are 1 and 1.
No.
Divide 5 and 15 by 2.
Results are No and No.
The next prime number of
2 is 3.
Divide 5 and 15 by 3
Results are No and 5.
Put 3 in memory
No and 5 are 1 and 1.
No.

Divide 5 and 5 by 3.
Results are No and No.
The next prime number of
3 is 5.
Divide 5 and 5 by 5.
Results are 1 and 1
Put 5 in memory.
1 and 1 are 1 and 1.
Yes.

(Output values in memory)

 5 / 12 + 8 / 27
 The least common multiple of 12 and 27 is
 108
 How many times of 12 is 108
 9
 5 / 12 = 5 x 9 / 12 x 9
 = 45 / 108
 How many times of 27 is 108
 4
 8 / 27 = 8 x 4 / 27 x 4
 = 32 / 108
 5 / 12 + 8 / 27
 = 45 / 108 + 32 / 108
 45 + 32 = 77
 77 / 108

Fig. 13: An example of adding two fractions.

 Fig. 12: An example sequence to calculate the least

common multiple of two integers.

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1346 Issue 8, Volume 8, August 2009

d1 / n1 + d2 / n2

 The least common multiple of n1 and n2

nc

Fig. 14: A procedure of adding two fractions.

A generated procedure of
adding two fractions:
Relations “same” are shown
by arrows in the figure.

At a time of execution, values in inputs determine the values of d1, d2, n1, and n2. In the
figure, 4, 15, 7, and 35 are the input values. Then values of the next sentence are determined
by relations “same”. Procedure, “the least common multiple”, is used, and a value 105 is
returned from the procedure, which determines the value of the third sentence.

The least common multiple of 15

105

and 35

4 / 15 + 7 / 35

ncHow many times of n1 is

m1

ncHow many times of n2 is

m2

d1 / n1 = d1 x m1

= d3 / nc

d2 / n2 = d2 x m2

= d4 / nc

/ n1 x m1

/ n2 x m2

d1 / n1 + d2 / n2 =

d3 / nc + d4 / nc =

d3 + d4 = d5

d5 / nc

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1347 Issue 8, Volume 8, August 2009

