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Abstract:- In mathematics, a sequence of sentences describes how to solve a problem; for instance, 
sentences, “Calculate the least common multiple of 10 and 15. Firstly divide 10 and 15 by 2. Results are ‘5’ 
and ‘cannot divide’. ‘5’ and ‘cannot divide’ are not 1 and 1. Divide 5 and 15 by 2. Results are ‘cannot divide’ 
and ‘cannot divide’.” and so on, describe how to calculate the least common multiple of 10 and 15. While 
example sequences of sentences are given to our program, the program transforms the example sequences to 
generate a procedure, pG, to solve a problem. For instance, a generated procedure, pGp, checks if a given 
number is a prime number, another procedure, pGc, calculates the least common multiple of any two 
numbers, and another procedure, pGf, adds given two fractions. This paper explains our program that 
generates procedures, one after another, each of which solves one mathematical problem. The paper also 
argues, as a result of generating a procedure, pG, the meaning of a sentence (or sentences) is represented in 
the generated procedure, pG. 
 
Key-words:- Acquisition of how to solve problems, Generation of programs from examples, Meaning of a 
sentence. 
 

1   Introduction 
Philosophers have argued that the meaning of 
natural language construction can be identified with 
a representation of its denotation (e.g., [2]). In [4], 
the author states “their thought has been developed 
in the direction of identifying the meaning of an 
expression with a procedure for finding its 
extension”. The meaning of a sentence is a 
procedure of computing the truth or the falsity of 
the sentence (e.g., [10]). 
 

In psychology, linguistics, and cognitive science, 
acquiring word meanings inductively has been 
studied much (e.g., [8]), and inductive methods 
have been developed and applied for acquiring 
meanings of words in [13]. Cross situation is a key 
to acquire word-to-meaning mappings. 
 

Studies in machine learning have developed 
frameworks for learning and various techniques to 

make a machine acquire concepts. The learnability 
in [15] has shown a learning machine that uses a 
protocol to get inputs, members of a concept, and 
applies a deduction procedure to have a program 
that recognizes the concept. The procedure deduces 
a program (logical expression) from a general 
program in a way that the truth of the expression is 
the same as that of a member taken from the 
concept during a learning period. After the leaning, 
the truth of the logical expression becomes the 
same as that of a member taken from the concept. 
In a decision tree model, a tree node has a logical 
expression, and the value of the expression on an 
input decides which branch the input should go. 
General logical expressions at nodes are set specific 
so that inputs go down branches as the inputs 
specify during learning period (e.g., [10]). After the 
learning, the tree with the logical expressions is 
used as a decision tree (or a classification tree). 
These classical studies have been applied in various 
machine learning programs (see [9]). For instance, 

WSEAS TRANSACTIONS on COMPUTERS Machiko Fujiwara, Kenzo Iwama

ISSN: 1109-2750 1337 Issue 8, Volume 8, August 2009

mailto:m-fujiwara@engicom.co.jp
mailto:k-iwama@engicom.co.jp


behavioral cloning aims at inducing a model 
mapping inputs to outputs from pairs of inputs and 
outputs given by a person (e.g., [1]). Through 
procedural learning [16] forms a model of percepts 
and actions, and to make a machine imitate human 
skills, and [7] describes a method of learning 
control programs. 
 

Inductive logic programming by [11] integrates a 
model of inductive processes into a framework of 
logic programming. Applying the framework, [3] 
proposes a model of vocabulary acquisition by 
children. After its formulation of ILP, studies on 
inductive synthesis of programs have been revived. 
Within a limited domain, [6] and [12] in Inductive 
Learning represent meanings conveyed in example 
pairs of inputs and outputs by synthesizing 
programs. Although their inputs are limited to data 
structures, their synthesized programs correctly 
guess what outputs would be, given inputs new to 
the programs. Synthesizing, namely combination 
and serialization, of initial programs is a way of 
acquiring meanings conveyed in the examples. 
 

To the knowledge of the authors no study has 
been conducted to develop a program that generates 
procedures to check the truth or the falsity of 
expressions and sentences in mathematics. A reason 
behind this seems that it is simple for a human to 
write procedures, in a conventional programming 
language, to check the truth of each sentence such 
as “7 is a prime number”. 
 

However, it seems worth developing a program 
that generates procedures to check the truth of a 
sentence: “7 is a prime number”, “60 is the least 
common multiple of 15 and 20”, “1 / 3 + 1 / 5 = 8 / 
15”, “3 x (5 – 2) – 4 = 5”, “100X + 50 = 350 and X 
= 3”, and others. Inputs to the program are example 
sentences, and the sentences are similar to those 
that a teacher gives students at school. Fig. 1 shows 
samples of inputs. Techniques for developing such a 
program may be useful for representing denotation 
of a mathematical sentence, and for constructing an 
intelligent machine. Researchers may get hints how 
students develop denotation of a mathematical 

sentence. The next section describes our approach 
to developing the program and assumptions on 
which the program1 is developed. 
 

2   Approach 
2.1 Example sequences and a program 
One writes example sequences of sentences that 
describe how to solve a mathematical problem, and 
gives them to our program. A way of writing the 
example sequences is similar to those a teacher 
explains to children how to solve the mathematical 
problem. 
 
 

Is 6 a prime number?
Firstly divide 6 by 2. 
The result is 3. 
No, 6 is not a prime 
number. 

Is 7 a prime number? 
Firstly divide 7 by 2. 
Cannot be divided. 
The next of 2 is 3. 
3 is the same as 7. 
No. 
Divide 7 by 3. 
Cannot be divided. 
The next of 3 is 4. 
4 is the same as 7. 
No. 
Divide 7 by 4. 
Cannot be divided. 
 
( omitted. ) 
 
The next of 6 is 7. 
7 is the same as 7. 
Yes. 
7 is a prime number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Example sequences of checking if a given 
number is a prime number. 

 
 
  The one is required to consider orders of giving 
example sentences to a program. For instance the 
one gives the program examples of adding two 

                                                        
1 On request for a program, the authors will send a 
source program of their trial to the requester. 
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fractions after the one has let the program acquire 
how to calculate the least common multiple of two 
integers since the addition of the two fractions uses 
the calculation of the least common multiple. 
 

The one develops a program, pI, that generates a 
procedure, pG, by generalizing example sequences 
of sentences. Given an instance of the problem new 
to the program, pI, the program uses the generated 
procedure, pG, and solves the instance of the 
problem. Fig. 2 illustrates a procedure generated by 
the program that checks if a given number is a 
prime number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: A procedure generated by our program that 

checks if a given number is a prime number. 
 
 
2.2 Assumptions 
We assume the following when one gives example 
sentences to our program: 
 1) Example sentences use the same words in the 

same word orders. The sentences are separated 
by new lines, and the words are separated by 
blanks when one gives the program example 

sentences. 
 2) The program has already acquired how to solve 

some basic problems for the sake of practicality. 
For example, the program is assumed to have 
procedures of counting, basic arithmetic 
operations such as addition of integers, and of 
distinguishing numerals from other words2. 

 3) The program has acquired how to use memos; 
storing calculated values temporarily and 
retrieving them later from the memos. 

4) The program has acquired string functions such 
as string matching, inserting, and deleting. 

5) The program has acquired how to detect explicit 
variables such as “x” in a sentence “100x + 50 
= 350”. 

Is N a prime 
number? 
Firstly divide N 
by 2. 
 

The result is L. 
No, N is not a 
prime number. 

Cannot be
divided. 
The next of K is
J. 
J is the same as
N. 

 
2.3 Example sequences of sentences 
One writes test sets of example sequences and gives 
the program, one test after another, to see how the 
program works. The following is a list of problems 
without using explicit variables: 
 

 

 

 

No. 
Divide M by J. 
 

Yes. 
N is a prime
number. 

 

1) Is 7 a prime number? 
2) The next prime number of 3 is. 
3) Factorize 12. 
4) Least common multiple of 10 and 15 is. 
5) 3 / 16 + 7 / 12 is. 
6) 2 x (5 – 3) – 3 is. 
7) Greatest common factor of 16 and 24 is. 
8) Find 2 / 3 of 57. 
9) Change 11 / 4 to a mixed number. 
10) Cancel down 9 / 12 to its lowest terms. 
11) What percent of 39 is 9? 
12) 30% of what number is 15? 
13) How much 4 apple and 1 basket is when 1 

piece of apple is 100 and 1 piece of basket is 
150. (Ignore plural s and articles). 

 
The following is a list of problems with using 

                                                        
2 Iwama [5] explains how a program acquires a 
concept of counting from examples. Our program 
may start with acquiring counting instead of 
assuming that the program has the procedure of 
counting. But the complexity will grow if we start 
with acquiring counting. 
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explicit variables: 
 

1) 100x + 50 = 350. x is. 
2) Apply a distributive law to x(x + y). 
3) How much N apple and 1 basket is when 1 

piece of apple is 100 and 1 piece of basket is 
150. (Ignore plural s and articles.) 

4) 3X + 4X = 7X. 
 
  It is difficult that one explains how to solve a 
geometric problem in a sequence of sentences 
without drawing lines or circles. It is also difficult 
to explain addition and multiplication of two 
matrices without writing visually arranged rows and 
columns of numerals and/or variables. Thus the one 
puts such mathematical problems out of the scope 
of the current article that require 2D and/or 3D 
writings and drawings for their explanation by 
examples. 
 

3   Explanation of our program 
3.1 Key functions 
Our program has six key functions: 

(1) One is finding relations “same” among words 
in an example sequence (see Fig. 3). 

(2) The second is finding sentences that repeat in 
the example sequence and forming 
subsequences each of which has sentences 
repeating in the sequence (see Fig. 4). 

 

 
Fig. 3: Relations “same” in a sequence. 

(3) The third is finding branches among 
subsequences (see Fig. 4 and Fig. 5). 

(4) The forth is connecting the subsequences by 
using branch conditions so that a subsequence 
can be selected and executed when the 
subsequence holds the branch conditions (see 
Fig. 8). 

(5) The fifth is generalizing sequences, which 
consist of subsequences with branches, across 
examples (see Fig. 7). 

(6) The sixth is finding a procedure already 
generated by matching a sentence in a current 
input sequence and a head sentence of the 
procedure. If match, execute the procedure. 
Check if a sentence of the executed procedure 
matches a head sentence of another procedure. 
If match, execute it. (See Fig. 8 and Fig. 9). 

 
 

Cannot be divided. 

Is    a prime number?    

Firstly divide      by    .   

Cannot be divided. 

The next of     is   .    

Divide      by    .     

2

2 

35 

35 

35

3 

same 

same     same 

same 

3 
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Fig. 4: Finding repetitions and branch conditions. 

 
 
3.2 Explanation of our program 
Our program gets example sequences, one by one, 
and stores them in its temporary memory. It 
compares a sentence of words (e.g., “divide 9 by 
2”) in an input with those of a sentence already 
stored in the memory. If they are not the same, the 
program stores the input sequence as a new 
example. The program also compares the sentence 
in the input and a head sentence of a procedure 
already generated. If match, it remembers that the 
sentence is the head sentence of the procedure and 
uses it later. When the program stores more than a 
certain number of example sequences, it generates a 
procedure out of the examples. See Fig. 6. 
 

Our program compares numerical values in an 
input sequence of sentences and finds relations 
“same” among the numerical values (see Fig. 3). 
The relations “same” have mathematical meaning in 
the sequence, but some relations happen to hold. 
Later generalization, across examples, removes the 
relations “same” that happen to hold. 
 

The program tries to find sentences that repeat in 
an input sequence by starting with a sentence that 
can be executed by a procedure already generated. 
For instance, “Divide 35 by 3” is such a sentence, 
and the program replaces 35 and 3 by internal 
variables to find the same sentence, “Divide N by 
J”, appear in the sequence. If it repeats, the program 
appends sentences preceding the sentence, and 
checks if the sentences repeat in the sequence. Then 
the program forms a subsequence out of the 
repeating sentences (see Fig. 4). 
 
  After finding repeating sentences in the input 
sequence, the program folds the repeating sentences 
to make a subsequence of the sentences. For 
instance, sentences, “Cannot be divided”, “The next 
of J is K”, and “Divide N by K”, repeat in the 
sequence, and a subsequence of these sentences is 
formed. See Fig. 5. Here “J”, “K”, and “N” are 
internal variables introduced by the program. 
 

Sentences that appear only once are also formed 
as a subsequence. For instance, sentences “The 
result is 7” and “No, 35 is not a prime number”, do 
not repeat in a sequence, and the program makes a 
subsequence out of the sentences. 
 

 
Fig. 5: Folding of repeating sentences with 

branches. 
 
 

Is 35 a prime number?
Firstly divide 35 by 2. 

Cannot be divided. 
The next of J is K. 
Divide 35 by K? 

The result is 7. 
No, 35 is not a prime 
number. 

Sentences that use a 
procedure already 
generated produce 
more than one 
results: “Cannot 
be ..” and “The result 
is ..”. 

A return value of a 
procedure like 
“Cannot ..” can be 
a branch condition. 

Sentences, “Divide 
35 ..” and “The 
next ..” are 
candidates of 
repetitive 
sentences. 

Is 35 a prime number? 
Firstly divide 35 by 2. 
 
Cannot be divided. 
 
The next of 2 is 3.  
 
Divide 35 by 3. 
 
Cannot be divided. 
 
The next of 3 is 4. 
 
Divide 35 by 4. 
 
Cannot be divided. 
 
      ( continued ) 
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Fig. 6: A flow of generating a procedure. 
 

A subsequence can be a branch of another 
subsequence, and return values from a procedure 
already generated can be branch conditions of 
subsequences. For instance, return values, “Cannot 
be divided” and “The result is 7” can be branch 
conditions of a subsequence ending with a sentence 
“Divide N by J”. Our program gets the possible 
return values of a procedure, puts subsequences in 
parallel that have different return values, and 
connects them to the subsequence ending with the 
sentence producing branch conditions. See Fig. 5. 
 

After forming subsequences with branches, the 
program compares subsequences of one example 
and those of another example. The program forms a 
general procedure by replacing different numerical 
values by internal variables. See Fig. 7. Values “7”, 
“8” and others are replaced by internal variables. 
The program removes relations “same” if they do 
not appear across examples since the relations that 
appear only in one example happen to occur. The 
program keeps them with the procedure when they 
appear across the examples. 
 
 

 
Fig. 7: Generalizing folded subsequences across 

examples. 
Then the program locates words different across 

examples but the other words and the relations are 
the same in the sequences. Replace the words by 
internal word variables with relations “same” 
among the words. The program also finds relations 
“same” among explicit variables. 
 
  When the program gets a new sentence, it takes a 
procedure, one after another, out of its long term 
memory to compare the new sentence with a head 
sentence of the procedure. Trying to match, the 
program replaces numerical values in the sentence 
by any where the head sentence has internal 
variables. The program also replaces words by any 
where the head sentence has internal word variables. 

Is N a prime 
number? 
Firstly divide N by 
2. 

The result is R. 
No, N is not a prime 
number. 

No. 
The next of J is K. 
Divide N by K. 

Is 7 a prime number? Is 8 a prime number?Input of an example 

Different from that already 
input NO 

YES 

NO 

Compare examples 
Generate a procedure 

Finish 

Store the example sentences 

YES 

YES 

NO YES 

NO 

More than a certain number 
of examples  are stored 

Is it executable ? 

Get new example? 

Firstly divide 7 by 2. Firstly divide 8 by 2.

The result is 4. 
No, 8 is not a prime 
number. 

Cannot be divided. 
The next of J is K. 
Divide 7 by K. 

same 
 
 
same 
same 
 
same 
 
same 
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If the two match, the program executes the 
procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: A dynamic structure when a procedure is 
executed. 

 
A generated procedure has usually more than one 

subsequence, and one subsequence may start its 
execution after another subsequence. The procedure 
may include sentences that use some other 
procedures already generated (see Fig. 8). To find 
the procedure in its memory, the program replaces 
numerical values in the sentence by any where the 
head sentence of the procedure have internal 
variables. The program also replaces words by any 
where the head sentence has internal word variables. 
If it finds the procedure, the program executes the 
procedure. See Fig. 8 and Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: An example of executing programs. When 

our program gets “4/15 + 7/35“, it uses procedures, 
such as the least common multiple of 15 and 35, 

that the program has already generated. 
Subseq. 0 

 

 

Subseq. 1 

 

 

 … 

Subseq. n 

Another 

procedure 

Results 

Sentences Sentences 

End Branch off 

Initial 

settings 

Find a subsequence 
that can be 
executed. 

 
 
  At the time of executing a procedure, our 
program sets specific values to internal variables by 
applying one of the following: 
 

1) An input value determines the value of an 
internal variable. 

2) A relation “same” determines the value of an 
internal variable. 

3) A return value from a procedure determines 
the value of an internal variable. 

 
  For instance, one gives a sentence of adding two 
fractions, 4 / 15 + 7 / 35, to the program. It retrieves 
a procedure of adding two fractions, and puts input 
values, 4, 15, 7, and 35 in internal variables of the 
first sentence of the procedure. Relations “same” 
determine internal variables of the next sentence, 
which becomes “the least common multiple of 15 
and 35”. A procedure, the least common multiple, is 
retrieved from its memory, and is executed to 
produce 105, the least common multiple of 15 and 
35. The value, 105, determines the value of an 
internal variable of the third sentence. See Fig. 14. 
 
3.3 Example procedures generated 
   by our program 
As described in Subsection 2.4, one prepares 
example sequences of sentences to test our program. 
Appendix illustrates example sentences of prime 
factorization, calculating the least common multiple, 
and addition of two fractions. The appendix also 
shows a procedure of prime factorization, and a 
procedure of adding two fractions. These 
procedures are generated by our program. We have 
confirmed that the program uses procedures and 
makes correct outputs to given instances of a 
problem listed in Subsection 2.3. 

A procedure uses other procedures already generated. 

 

The least 

common 

multiple 

Addition 

of 

fractions 

The next 

prime 

number 

Is a prime 

number ? 
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4   Discussion 
Our program, pI, has generated a procedure of 
checking the truth of a sentence in mathematics (or 
solving a mathematical problem), and has 
represented denotation of the sentence. The 
sentence may be “the least common multiple of 10 
and 15 is 30”. The program, pI, has no procedure of 
checking it (or solving it) at the beginning, and one 
has not written a computer program to check it (or 
solve it). The program, pI, generates a procedure to 
check the truth of a given sentence after the 
program has received example sequences to check 
it, and the example sequences are similar to those 
used for explaining to students at school. Therefore 
the program, pI, has formed by itself a 
representation of meaning of a mathematical 
sentence, e.g., “the least common multiple of N1 
and N2 is N3”. Here N1, N2, and N3 are any 
integers. 
 

Future works include investigation of what types 
of problems a current program is able to acquire 
how to solve. We are currently writing a series of 
example sequences of sentences to let the program 
acquire methods of mathematical induction to prove 
formula from examples. To use the program at 
school, an intelligent interface needs to be 
developed so that one can give example sentences 
to the program through the interface as a teacher 
writes examples on a blackboard. 
 

It is difficult that one explains how to solve a 
geometric problem in a sequence of sentences 
without drawing lines and circles. The one usually 
relies on spatial relations between the lines and/or 
circles to explain the geometric problem. It is also 
difficult to explain addition and multiplication of 
two matrices without writing visually arranged 
rows and columns of numerals and/or variables. 
Thus a serious issue is to introduce methods of 
extracting and generalizing spatial relations among 
geometric elements such as lines and circles. 
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Appendix: Example sentences and 
procedures generated 

Fig. 10 shows example sequences of sentences that 
describe prime factorization, and Fig. 11 illustrates a 
procedure generated by our program to factorize a 
given integer. 
 
  Fig. 12 illustrates an example sequence that 
calculates the least common multiple of two 
integers, and Fig. 13 shows an example sequence of 
adding two fractions. Fig. 14 shows a procedure of 
adding two fractions, the figure also illustrates how 
internal variables have specific values to conduct its 
calculation. 
 
 

 
Fig. 10: Example sequences of factorizing an 

integer. 
 
 

 

Fig. 11: A procedure of factorizing an integer. 

Factorize N. 
Firstly divide N by 2.

The result is M. 
Put K in memory. 
Is M 1? 

Yes. 
 
(Output values in 
memory) 

No. 
The next prime 
number of J is K. 
Divide M by K. 

No. 
Divide M by K. 

Factorize 12. Factorize 15. 
Firstly divide 12 by 2. Firstly divide 15 by 2. 
The result is 6. Cannot be divided. 
Put 2 in memory. The next prime number of 

2 is 3. Is 6 1? 
No. Divide 15 by 3. 
Divide 6 by 2 The result is 5. 
The result is 3. Put 3 in memory 
Put 2 in memory. Is 5 1? 
Is 3 1? No. 
No. Divide 5 by 3 
Divide 3 by 2. Cannot be divided. 
Cannot be divided. The next prime number of 

3 is 5. The next prime number of 
2 is 3. Divide 5 by 5 
Divide 3 by 3. The result is 1. 
The result is 1. Put 5 in memory. 
Put 3 in memory Is 1 1? 

Yes. Is 1 1? 
Yes. 
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Least common multiple of 
10 and 15. 
The first to divide 10 and 
15 is 2. 
Divide 10 and 15 by 2. 
Results are 5 and No. 
Put 2 in memory. 
5 and No are 1 and 1. 
No. 
Divide 5 and 15 by 2. 
Results are No and No. 
The next prime number of 
2 is 3. 
Divide 5 and 15 by 3 
Results are No and 5. 
Put 3 in memory 
No and 5 are 1 and 1. 
No. 

Divide 5 and 5 by 3. 
Results are No and No. 
The next prime number of 
3 is 5. 
Divide 5 and 5 by 5. 
Results are 1 and 1 
Put 5 in memory. 
1 and 1 are 1 and 1. 
Yes. 
 
(Output values in memory) 

 5 / 12 + 8 / 27 
 The least common multiple of 12 and 27 is 
 108 
 How many times of 12 is 108 
 9 
 5 / 12 = 5 x 9 / 12 x 9 
 = 45 / 108 
 How many times of 27 is 108 
 4 
 8 / 27 = 8 x 4 / 27 x 4 
 = 32 / 108 
 5 / 12 + 8 / 27 
 = 45 / 108 + 32 / 108 
 45 + 32 = 77 
 77 / 108 
 
  

Fig. 13: An example of adding two fractions.  
  
 Fig. 12: An example sequence to calculate the least 

common multiple of two integers. 
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d1 / n1 + d2 / n2 

 The least common multiple of n1 and n2

 
nc 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14: A procedure of adding two fractions. 
 

A generated procedure of 
adding two fractions: 
Relations “same” are shown 
by arrows in the figure. 

At a time of execution, values in inputs determine the values of d1, d2, n1, and n2. In the 
figure, 4, 15, 7, and 35 are the input values. Then values of the next sentence are determined 
by relations “same”. Procedure, “the least common multiple”, is used, and a value 105 is 
returned from the procedure, which determines the value of the third sentence. 

The least common multiple of 15

105

and 35

4 / 15 + 7 / 35

ncHow many times of n1 is

m1

ncHow many times of n2 is

m2

d1 / n1 = d1 x m1

= d3 / nc

d2 / n2 = d2 x m2

= d4 / nc

/ n1 x m1

/ n2 x m2

d1 / n1 + d2 / n2 =

d3 / nc + d4 / nc =

d3 + d4 = d5

d5 / nc
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