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1 Introduction

From a theoretical point of view, flows are well under-
stood as far as the basic questions, such as finding a
maximum flow from a given source to a given sink or
characterizing the size of such a flow, are concerned.
However, the topic is still a very active research field
and these are challenging open problems.

The computation of a flow in a network has been
an important and well studied problem, both in the
field of computer science and operations research.

Many efficient algorithms have been developed to
solve the maximum flow problem, see [1], [12], [13],
[16], [17], [18], [19]. The computation of a minimum
flow in a network has been investigated by Ciurea
and Ciupala, see, e.g., [4], [5]. By improving the
running times of Ciurea and Ciupala the algorithms
[4][5], Ciurea, Ciupala and Georgescu have developed
the first specializations of minimum flow algorithms
for bipartite netwrks [2], [3], [6] and [7]. Ciurea and
Georgescu [8] showed that Ciurea and Ciupala algo-
rithms solve the minimum flow problem in unit ca-
pacity networks inO(minfn2=3m;m3=2g), wheren
is the number of nodes andm is the number of arcs
of the network. Other papers on the minimum flow
problem are [9], [10], [14], [15].

Combining an algorithm for minimum flow in bi-
partite networks with an algorithm for minimum flow
in unit capacity networks we obtain an efficient al-
gorithm for minimum flow in bipartite networks with
unit capacities.

The brief outline of the paper is as follows: in
Section 2 we discuss some basic notions and results

used in the rest of the paper. Section 3 deals with
minimum flows in bipartite networks. In Section 4 we
present the minimum flows in unit capacity networks.
In section 5 we present the applications of the mini-
mum flows in bipartite networks with unit capacities.

In the next presentation we assume familiarity
with preflow algorithms and we omit many details,
since they are straightforward modifications of known
results. The reader interested in further details is
urged to consult the book [1] for maximum flow prob-
lem and the paper [4] for minimum flow problem.

2 Terminology and Preliminaries

In this section we discuss some basic notations and
results used in the rest of the paper.

We consider a capacitated networkG =(N;A; l; 
; s; t) with a nonnegative capacity
(x; y)
and with a nonnegative lower boundsl(x; y) associ-
ated with each arc(x; y) 2 A. We distinguish two
special nodes in the networkG: a source nodes and a
sink nodet.

For a given pair of not necessarily disjoint subsetsX, Y of the nodes setN of a networkG we use the
notation:(X;Y ) = f(x; y)j(x; y) 2 A; x 2 X; y 2 Y g
and for a given functionf on arcs setA we use the
notation:
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f(X;Y ) = X(X;Y ) f(x; y)
A flow is a functionf : A ! R+ satisfying the

next conditions:f(x;N)� f(N;x) = 8<: v; if x = s0; if x 6= s; t�v; if x = t (1.a)l(x; y) � f(x; y) � 
(x; y);8(x; y) 2 A; (1.b)

for somev � 0. We refer tov as thevalue of the flow
f.

The minimum flow problemis to determine a flowf for which v is minimized.
A cut is a partition of the nodes setN into two

subsetsS andT = N -S. We represent this cut using
notation[S; T ℄. We refer to a cut[S; T ℄ as ans-t cut
if s 2 S and t 2 T . We refer to an arc(x; y) withx 2 S andy 2 T as aforward arcof the cut and an
arc (x; y) with x 2 T andy 2 S as abackward arc
of the cut. Let(S; T ) denote the set of forward arcs in
the cut and let(T; S) denote the set of backward arcs.
We denote also:[S; T ℄ = (S; T ) [ (T; S)

For the minimum flow problem, we define theca-
pacityb
[S; T ℄ of ans-t cut [S; T ℄ asb
[S; T ℄ = l(S; T )� 
(T; S): (2)

We refer to ans-t cut whose capacitŷ
[S; T ℄ is
the maximum among alls-t cuts as amaximum cut.

The minimum flow problem in a networkG =(N;A; l; 
; s; t) can be solved in two phases:

(P1) establish a feasible flowf , if it exists;
(P2) from a given feasible flowf , establish the

minimum flow bf .

The problem of determining a feasible flow con-
sists in finding a functionf : A ! R+ that sat-
isfies the previous conditions (1.a) and (1.b). First,
we transform this problem into a circulation problem
by adding an arc(t; s) of infinite capacity and zero
lower bound. This arc carries the flow sent from the
source nodes to the sink nodet back to the source
nodes. Clearly, the minimum flow problem admits
a feasible flow if and only if the circulation problem
admits a feasible flow. Because these two problems
are equivalent, we focus on finding a feasible circu-
lation if it exists in the transformed networkG1 =(N1; A1; l1; 
1; s; t), where

N1 = NA = A [ f(t; s)g;l1(x; y) = l(x; y), for each arc(x; y) 2 A;l1(t; s) = 0;
1(x; y) = 
(x; y), for each arc(x; y) 2 A;
1(t; s) =1:
The feasible circulation problem is to identify a

flow f1 satisfying the following constraints:f1(x;N1)� f1(N1; x) = 0; for each nodex 2 N;l1(x; y) � f1(x; y) � 
1(x; y);8(x; y) 2 A1:
By replacingf1(x; y) = f2(x; y) + l1(x; y)
and 
1(x; y) = 
2(x; y) + l1(x; y)
we obtain the following transformed problem:f2(x;N1)�f2(N1; x) = b2(x); for each nodex 2 N;0 � f2(x; y) � 
2(x; y); for each arc(x; y) 2 A1;
whereb2(x) = l1(N;x)� l1(x;N); for each nodex 2 N:
Clearly, XN b2(x) = 0:
We can solve this supply and demand problem by

solving a maximum flow problem defined in the net-
workG2 = (N2; A2; 
2; s2; t2), whereN2 = N1 [ fs2; t2g;A2 = ~A02 [ ~A002 [ ~A0002 ;A02 = f(s2; x)jx 2 N1; b2(x) > 0g;A002 = A1;A0002 = f(x; t2)jx 2 N1; b2(x) < 0g;
2(s2; x) = b2(x); (s2; x) 2 A02;
2(x; y) = 
1(x; y); (x; y) 2 A002;
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2(x; t2) = �b2(x); (x; t2) 2 A0002 :
If the maximum flowf2 in this transformed net-

work G2 saturates all the source and the sink arcs
(f2(s2; x) = 
2(s2; x);8(s2; x) 2 A02 andf2(x; t2) =
2(x; t2);8(x; t2) 2 A0002 ), then the initial problem has
a feasible solutionf , which is the restriction function
of f1 = f2 + l1 for the set of arcsA.

We present the following two theorems (see [2]
and [3]):

Theorem 1 Let G = (N;A; l; 
; s; t) be a network,[S; T ℄ an s-t cut andf a feasible flow with valuev.
Then v = f [S; T ℄ = f(S; T )� f(T; S) (3.a)

and therefore, in particular,b
[S; T ℄ � v (3.b)

Theorem 2 Let G = (N;A; l; 
; s; t) be a network,[bS; bT ℄ a maximums-t cut andbv the value of the mini-
mum flowbf . Then bv = b
[bS; bT ℄ (4)

A preflowf for the minimum flow problem is a
functionf : A! R+ that satisfies (1.b) andf(x;N)� f(N;x) � 0;8x 2 N � fs; tg (5)

For any preflowf we define thedeficitof nodex
as be(x) = f(x;N)� f(N;x);8x 2 N: (6)

We refer to a nodex with be(x) = 0 asbalanced.
A preflow f satisfying the conditionbe(x) = 0, 8x 2N � fs; tg is aflow. Thus, a flow is a particular case
of preflow.

For the minimum flow problem, theresidual ca-
pacitybr(x; y) of any arc(x; y) 2 A, with respect to a
given flow/preflowf , is given bybr(x; y) = 
(y; x)� f(y; x) + f(x; y)� l(x; y)

By convention, if(x; y) 2 A and (y; x) =2 A
then we add arc(y; x) to the set of arcsA and we
set l(y; x) = 0 and 
(y; x) = 0. The networkbG = (N; bA) consisting only of the arcs with positive
residual capacity is referred to as theresidual network.

The arcs of the residual network̂G have a nat-
ural interpretation. If(x; y) 2 A and l(x; y) = 2,f(x; y) = 5 and 
(x; y) = 7, then we may decrisef(x; y) by up to two units on the arc(x; y) and we
can also choose to increasef(x; y) by up to 3 units

along the arc(x; y). Note that an increase of flow
along the arc(x; y) may also be thought of as send-
ing flow in the opposite direction along the residual
arc(y; x) and then canceling out.

In the residual networkbG = (N; bA), thedistance
function is a function bd : N ! N. We say that a
distance function isvalid if it satisfies the following
conditions: bd(s) = 0 (7.a)

and bd(y) � bd(x) + 1;8(x; y) 2 bA (7.b)

We refer to bd(x) as thedistance label of nodex and to an arc(x; y) 2 bA as anadmissiblearc ifbd(y) = bd(x) + 1; otherwise it isinadmissible. A di-
rected path from nodes to nodet in the residual net-
work bG consisting entirely of admissible arcs is said
to be an admissible directed path. We refer to a path
in G from the source nodes to the sink nodet as a
decreasing pathif it consists only of arcs with posi-
tive residual capacity. Clearly, there is an one to one
correspondence between set of decreasing paths inG
and the set of directed paths froms to t in bG.

We define thelayered networkbG0 = (N; bA0; br)
as follows: the nodes setN is partitioned into lay-
ersN0; : : : ; Nk, where layerNi contains the nodesx
whose exact distance labels equali, so thatbd(x) =i;8i 2 f0; 1; :::; kg. Furthermore, for each arc(x; y)
in the layerd network,x 2 Ni andy 2 Ni+1 for somei. We say thatbf 0 is ablocking flowif the layered net-
work bG0 contains no decreasing directed path.

There are three approaches for solving the mini-
mum flow problem:(1) using decreasing directed path algorithms
from source nodes to sink nodet in residual network;(2) using preflow-pull algorithms from sink nodet to source nodes in the residual network;(3) using the augmentation directed path algo-
rithms from sink nodet to source nodes or using
preflow-push algorithms starting fromt in the resid-
ual network ~G (residual network for maximum flow).

We present the generic decreasing directed path
algorithm. This algorithm is based on decreasing path
theorem (see [4]). The algorithm begins with a fea-
sible flow and proceeds by identifying decreasing di-
rected paths and decreasing flows on these paths until
the residual network̂G contains no such directed path.
The generic decreasing directed path algorithm is the
following:

WSEAS TRANSACTIONS on COMPUTERS Eleonor Ciurea, Adrian Deaconu

ISSN: 1109-2750 1319 Issue 8, Volume 8, August 2009



(1)PROGRAM GDDP(2)BEGIN(3) Let f be a feasible flow in the networkG;(4) Determine the resiudal network̂G;(5) WHILE Ĝ contains a directed patĥP from
the source nodes to the sink nodet DO(6) BEGIN(7) Identify a decreasing patĥP from the
source nodes to the sink nodet;(8) r̂(P̂ ) = minfr(x; y)j(x; y) 2 P̂g;(9) Decreasêr(P̂ ) units of the flow alongP̂ ;(10) Update the residual network̂G;(11) END;(12)END.

All the algorithms from the figure 1 are decreas-
ing path algorithms, i.e., algorithms which determine
decreasing directed path from source nodes to sink
nodet (by different rules) in the residual network and
then decreasing the flow along the coresponding path
in G (the approache (1)). We haven = jN j, m = jAj
and�
 = maxf
(x; y)j(x; y) 2 Ag.

Decreasing directed path
algorithms

Running
time

1 Generic decreasing path al-
gorithm

O(nm�
)
2 Ford-Fulkerson labeling al-

gorithm
O(nm�
)

3 Gabow bit scaling algorithm O(nm � log�
)
4 Ahuja-Orlin maximum scal-

ing algorithm
O(nm � log�
)

5 Edmonds-Karp shortest path
algorithm

O(nm2)
6 Ahuja-Orlin shortest path al-

gorithm
O(n2m)

7 Dinic layered networks al-
gorithm

O(n2m
8 Ahuja-Orlin layered net-

works algorithm
O(n2m)

Figure 1: The running time of eight algorithms

Now we shall present the generic preflow-pull al-
gorithm. This algorithm begins with a feasible flow
and sends back as much flow as it is possible from
the sink nodet to the source nodes. Because the al-
gorithm decreases the flow on individual arcs, it does
not satisfy the mass balance constraint (1.a) at inter-
mediate stages. In fact, it is possible that the flow
entering in a node exceeds the flow leaving from it.

The basic operation of this algorithm is to select an
active node and to send the flow entering in it back,
closer to the source nodes. For measuring closerness,
we will use the distance labelŝd(x). Let y be a node
with strictly negative deficit. If there exists an admis-
sible arc(x; y), we pull the flow on this arc, otherwise
we relabel the nodey so that we create at least one
admissible arc. The generic preflow-pull algorithm is
the following:(1)PROGRAM GPP(2)BEGIN(3)PREPROCESS;(4)WHILE the residual network̂G contains

an active node DO(5) BEGIN(6) Select an active nodey;(7) PULL/RELABEL(y);(8) END;(9)END.(1)PROCEDURE PREPROCESS;(2)BEGIN(3)Let f be a feasible flow in the networkG;(4)Determine the residual network̂G;(5)Compute the exact distance functiond̂ by(6) breadth first search froms to t in Ĝ;(7)Pull r̂(x; t) units of flow on arc(x; t) 2 Ê�(t);(8)d̂(t) := n;(9)END;(1)PROCEDURE PULL/RELABEL(y);(2)BEGIN(3)IF the networkĜ contains an admisible arc(x; y)(4) THEN(5) Pull r̂1 = minf�ê(y); r̂(x; y)g;
units fromy to x;(6) ELSE(7) d̂(y) := minfd̂(x) + 1j(x; y) 2 Ê�(y)g;(8)END;

A pull of r̂1 units from nodey to nodex decreases
bothê(x) andr̂(x; y) by r̂1 units of flow and increases
both ê(y) andr̂1(y; x) by r̂ units of flow. We refer to
the process of increasing the distance label of nodey,d̂(y) = minfd̂(x) + 1j(x; y) 2 Ê�(y)g as a relabel
operation. In this algorithm we haveÊ�(y) = f(x; y)j(x; y) 2 Ag;
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for each nodey 2 N .
All the algorithms from the figure 2 are preflow-

pull algorithms from sink nodet to source nodes in
the residual network̂G (the approach (2)).

Preflow-pull algo-
r ithms

Running time

1 Generic preflow-pull
algorithm

O(n2m)

2 Karzanov preflow-pull
algorithm

O(n3)
3 FIFO preflow-pull al-

gorithm
O(n3)

4 Higherst label
preflow-pull algo-
rithm

O(n2m1=2)
5 Deficit scaling

preflow-pull algorithm
O(nm+ n2log(�
))

Figure 2: The running time of five algorithms

Actually, any algorithm terminates with optimal
residual capacities. From these residual capacities we
can determine a minimum flow by following expres-
sion:bf(x; y) = l(x; y)+maxfbr(x; y)�
(y; x)+l(y; x); 0g
3 Minimum flows in bipartite net-

works
In this section we shall present some minimum flow
algorithms for bipartite networks.

A bipartite network is a network G =(N;A; l; 
; s; t) with a node setN partitioned into two
subsetsN1 andN2 so that for each arc(x; y) 2 A, ei-
ther x 2 N1 andy 2 N2 or x 2 N2 andy 2 N1.
We often represent a bipartite network using the no-
tationG = (N1 [ N2; A; l; 
; s; t). Let n1=jN1j andn2=jN2j. Without any loss of generality, we assume
that n2 � n1. We also assume thats 2 N2 andt 2 N1. A bipartite network is calledunbalancedifn2 << n1 andbalancedotherwise. We assume that
the bipartite network is unbalanced. There are many
applications of unbalanced networks.

The computation of a minimum flow in a bipartite
network has been investigated in [2], [3], [6] and [7].

The time bound for several minimum flow algo-
rithms automatically improves when the algorithms
are applied without modification to unbalanced net-
works. A careful analyse of the running times of these
algorithms reveals that the worst case bound depends

on the number of arcs in the longest vertex simple path
of the network. We denote this length byp. For gen-
eral network,p � n � 1 and for a bipartite networkp � 2n2+1. Hence, for unbalanced bipartite networkp << n.

For example, we consider Dinic’s algorithm for
the minimum flow problem. This algorithm constructs
the layered network inO(p) time and finds a blocking
flow each time. Each blocking flow computation per-
formsO(m) decreases and each decrease takesO(p)
time. Therefore, the running time of Dinic’s algorithm
is O(p2m). Consequently, when Dinic’s algorithm is
applied to unbalanced networks the running time im-
proves fromO(n2m) toO(n22m).

Figure 3 summarizes the improvements obtained
for several algorithms using this approach (see [6],
[7]).

Original
algo-
rithms

Running time,
general network

Running time, bi-
partite network

1 Dinic O(n2m) O(n22m)
2 Karzanov O(n3) O(n22n)
3 FIFO

preflow
O(n3) O(n22n)

4 Highest
label
preflow

O(n2m1=2) O(n2nm1=2)
5 Deficit

scaling
O(nm+n2 log �
) O(n2m+n2n log �
)

Figure 3: The running time for five algorithms

Specialization algorithm for minimum flow in bi-
partite network is a preflow algorithm and it is called
bipartite preflow algorithm. The basic idea behind the
bipartite preflow algorithm is to perform bipull from
nodesN2. A bipull is a pull over two consecutive ad-
missible arcs(x; y) and (u; x), wherex 2 N1 andy; u 2 N2. It moves deficit from a nodey 2 N2 to
another nodeu 2 N2. This approach ensures that no
node inN1 ever has any deficit. The bipartite preflow
algorithm is a simple generalization of the generic
preflow algorithm. The modification stems from the
observation that any directed path in the residual net-
work can have at most2n2 arcs since every alternate
node in the directed path must be inN2 (because the
residual network is also bipartite) and no directed path
can repeat a node inN2.

In the procedure PREPROCESS from the pro-
gram GPP we replacebd(t) := n with bd(t) := 2n2 +1. The PROCEDURE PULL/RELABEL is replaced
with the PROCEDURE BIPULL/RELABEL, as fol-
lows:
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(1)PROCEDURE BIPULL/RELABEL(y);(2)BEGIN(3) IF network bG contains an admissible arc(x; y)(4) THEN
IF network bG contains an admissible arc(u; x)(5) THEN pull br1 := minf�be(y); br(x; y); br(u; x)g
units of flow over back path(y; x; u)(6) ELSEbd(x) := minfbd(u) + 1j(u; x) 2 bE�(x)g(7) ELSEbd(y) := minfbd(x) + 1j(x; y) 2 bE�(y)g;(8)END;

We call a pull ofbr1 units on the back path(y; x; u)
a bipull. The bipull issaturatedif br1 = br(x; y) orbr1 = br(u; x) and unsaturatedotherwise. Note that
an unsaturated bipull reduces the deficit at vertexy to
zero.

The idea of bipartite preflow algorithm we con-
sider also apply in a straight forward manner to the
Karzanov, FIFO preflow, highest label preflow and
deficit scaling algorithms and yield algorithm im-
proved worst case complexity.

Figure 4 summarizes the improvements obtained
using this approach.

Speciali-
zation
algo-
rithms

Running time,
general network

Running time,
bipartite net-
work

1 Generic
preflow

O(n2m) O(n22m)
2 Karzanov O(n3) O(n2m+ n32)
3 FIFO

preflow
O(n3) O(n2m+ n32)

4 Highest
label
preflow

O(n2m1=2) O(n2m)
5 Deficit

scaling
O(nm+n2 log �
) O(n2m+n22 log �
)

Figure 4: The running time for five algorithms

The reader interested in further details is urged to
consult the papers [6], [7].

4 Minimum flows in unit capacity
networks

We present two algorithms for finding the minimum
flows in unit capacity networks.

An unit capacity networkis a networkG =(N;A; l; 
; s; t) so thatl(x; y) = 0 or 1 and
(x; y) =

1 for all arcs(x; y) 2 A. The computation of a mini-
mum flow in a bipartite network bas been investigated
in [8].

In a unit capacity network, the Ford-Fulkerson la-
beling algorithm determines a minimum flow withinn decreasion steps that requiresO(nm) time, because
 = 1. The Ahuja-Orlin shortest path algorithm also
solves this problem inO(nm) time since its bottle-
neck operation, which is a decreasion step, requiresO(nm) time.

The first unit capacity minimum flow algorithm is
a two-phase algorithm. Letbd� = minfl2n2=3m ; lm1=2mg

(P1) The algorithm applies the Ahuja-Orlin short-
est path algorithm; this phase terminates whenever
the distance label of the nodet satisfies the conditionbd(t) � bd�.

(P2) The algorithm applies the Ford-Fulkerson la-
beling algorithm to convert the flow obtained in first
phase into a minimum flow.

In the first phase the algorithm might terminate
with a nonoptimal solution, the solution is probably
nearly-optimal (its value is withind� of the optimal
flow value). The Ford-Fulkerson labeling algorithm
converts this near-optimal flow into a minimum flow
far more quickly than the Ahuja-Orlin shortest path
algorithm.

The second unit capacity minimum flow al-
gorithm is obtained by modifying the procedure
BLOCKFLOW in Dinic layered network algorithm.
Let bG0 = (N; bA0) be the Dinic layered network andbE0(x) = f(x; y)j(x; y) 2 bA0g

We present now the new procedure in Dinic lay-
ered network algorithm.(1)PROCEDURE BLOCKFLOWUNIT( bG0; bf 0);(2)BEGIN(3) L := �;(4) FORx 2 N DO b�0i(x) := 0;(5) FOR(x; y) 2 bA0 DO(6) BEGIN(7) bf 0(x; y) := 0; b�0i(y) := b�0i(y) + 1;(8) END;(9) REPEAT(10) y := t;(11) FORi := bd� DOWNTO1 DO(12) BEGIN(13) choose an arc(x; y) 2 bA0;(14) remove the arc(x; y) from bA0;
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(15) b�0i(y) := b�0i(y)� 1; bf 0(x; y) := 1;(16) IF b�0i(y) = 0 THEN(17) BEGIN(18) appendy toL;(19) WHILE L 6= � DO(20) BEGIN(21) remove the first nodeu from L;(22) FOR(u; v) 2 bE0(u) DO(23) BEGIN(24) remove(u; v) from bA0;(25) b�0i(v) := b�0i(v) � 1;(26) IF b�0i(v) = 0(27) THEN appendv toL;(28) END;(29) END;(30) END;(32) y := x;(31) END;(33) UNTIL b�0i(t) = 0;(34) END.

Each unit capacity minimum flow algorithm
solves a minimum flow problem on unit capacity net-
works inO(minfn2=3m;m3=2g) time (see [8]).

5 Minimum flows in bipartite net-
works with unit capacities

In this section we consider a special case of networks
which ocurrs in applications and for which, due to
their special structure, one can obtain a faster algo-
rithm for finding a minimum flow.

Let G = (N1 [ N2; A; l; 
; s; t) an unbalanced
(n2 << n1) bipartite network withl(x; y) = 0 or1 and 
(x; y) = 1 for all arcs (x; y) 2 A. There
are many applications of bipartite networks with unit
capacities.

For computation of a minimum flow in an unbal-
anced bipartite network with unit capacities we use
the Dinic layered networks algorithm from section 3
with procedure BLOCKFLOWUNIT from section 4.
We present now this algorithm (f0 is a feasible flow in
the networkG):(1)PROGRAM DLN;(2)BEGIN(3) f := f0;(4) bd(s) := 0;(5) determine the residual networkbG;(6) WHILE bd(s) < n DO

(7) BEGIN(8) LAYEREDNETWORK(bG; bG0; bd);(9) BLOCKFLOWUNIT(bG0; bf 0);(10) DECREASEFLOW(bG; f; bf 0);(11) END;(12)END.(1)PROCEDURE LAYEREDNETWORK(bG; bG0; bd);(2)BEGIN(3) determine the exact distance labelsbd(x) in bG;(4) determine the layered networkbG0;(5)END.(1)PROCEDURE DECREASEFLOW(bG; f; bf 0);(2)BEGIN(3) f := f � bf 0;(4) update the residual networkbG;(5)END.

Theorem 3 The Dinic layered network algorithm for
unbalanced bipartite network with unit capacities
runs inO(minfn2=32 m;m3=2g).

Proof: The Dinic layered network algorithm for
unbalanced bipartite network has a time complexity ofO(n22 �m) (see section 3). The modified Dinic algo-
rithm in unit capcity networks has a time complexity
of O(minfn2=3m;m3=2g) (see section 4). It results
that the Dinic layered network algorithm for unbal-
anced bipartite network with unit capacities runs inO(minfn2=32 m;m3=2g).
6 Applications
In this section we present the scheduling jobs on iden-
tical machines. This problem has many practical ap-
plications, wheremachinesmight be workers, tankers,
airplanes, truks, processors etc. Three of such exam-
ples are treated here as subsections. Another interest-
ing applications are presented in main works.

Let X be a set of jobs which are to be processed
by a set of identical machinesY . Each jobxi 2 X
is processed by one machineyj 2 Y . There is a fix
schedule for the jobs, specifying that the jobxi 2 X
must start at time�(xi) and finish at time� 0(xi). Fur-
thermore, there is a transition time� 00(xi; yj) required
to set up a machine which has just performed the jobxi and will perform the jobyj. The goal is to find a
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feasible schedule for the jobs which requires as few
machines as possible.

We can formulate this problem as a minimum
flow problem in a networkG. This network contains
a node for each jobxi 2 X, i = 1; :::; k. We split
each nodexi into two nodesx0i andx00i and add the arc(x0i; x00i ). We also add a source nodes and a sink nodet. We connect the source nodes to the nodesx0i 2 X,i = 1; :::; k and each nodex00i 2 X, i = 1; :::; k to the
sink node t. If� 0(x0i) + � 00(x00i ; x0j) � �(x0j) then we
also add the arc(x00i ; x0j).

Thus, we can formulate this problem as a mini-
mum flow problem in a networkG = (N;A; l; 
; s; t)
where N = N1 [N2 [N3 [N4;N1 = fsg;N2 = fx0iji = 1; :::; kg;N3 = fx00i ji = 1; :::; kg;N4 = ftg;A = A1 [A2 [A3 [A4;A1 = f(s; x0i)jx0i 2 N2g;A2 = f(x0i; x00i )jx0i 2 N2; x00i 2 N3g;A3 = f(x00i ; x0j)j� 0(x0i) + � 00(x00i ; x0j) � �(x0j)g;A4 = f(x00i ; t)jx00i 2 N3g;l(s; x0i) = 0; 
(s; x0i) = 1 for each(s; x0i) 2 A1;l(x0i; x00i ) = 1; 
(x0i; x00i ) = 1 for each(x0i; x00i ) 2 A2;l(x00i ; x0j) = 0; 
(x00i ; x0j) = 1 for each(x00i ; x0j) 2 A3;l(x00i ; t) = 0; 
(x00i ; t) = 1 for each(x00i ; t) 2 A4:

We present now the airplain scheduling problem.
An airline company has contracted to performk flights between several different origin-destination

pairs. The starting time for flightxi is �(xi) and the
finishing time is� 0(xi). The plane requires� 00(xi; xj)
hours to return from the point of destination of the
flight xi to the point of origin of the flightxj . The air-
line company wants to determine the minimum num-
ber of planes needed to perform these flights.

In order to illustrate a modeling approach for this
problem, we consider an example with five flights. A
plane requires� 00(xi; xj) = � 0(xj)� �(xi)
hours to return from the point of destination of the
flight xi to the point of origin of the flightxj . Each

Flight Origin Destinationi �(i) � 0(i)
1 Airport a1 Airport a3

7.00 9.00
2 Airport a1 Airport a3

10.00 12.15
3 Airport a2 Airport a4

7.30 8.30
4 Airport a2 Airport a4

9.00 12.00
5 Airport a2 Airport a5

12.00 14.15

Figure 5: Characteristic of flights

Figure 6: The airline scheduling network

flight has the characteristics shown in the table in the
figure 5.

Figure 6 shows the corresponding networkG =(N;A; l; 
; s; t).
Figure 7 shows a minimum flowf with v = 3 in

the networkG.
The minimum number of planes to perform the

flights is three. The first plane performs flights 1 and
5, the second plane performs flights 2 and 3 and the
third plane performs flight 4.

A related problem could be a scheduling airplanes
problem. This means that an airport has a certain
number of runways that can be used for landing of
airplanes. How would you schedule airplanes to use
the minimum number of runways (in order to possi-
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Figure 7: The minimum flow for airline scheduling
network

bly have some spare ones permanently ready for emer-
gency landings) if every use of a runway can be deter-
mined as fixed time interval? We can solve this prob-
lem in the same mode as the previous problems.

The machine setup problem is the following. A
job shop needs to performk jobs on a particular day.
It is known the start time�(xi) and the end time� 0(xi)
for each jobxi; i = 1; :::; k. The workers must per-
form these jobs according to this schedule so that ex-
actly one worker performs each job. A worker cannot
work on two jobs at the same time. It is also known
the setup time� 00(xi; xj) required for a worker to go
from job xi to job xj . We wish to find the minimum
number of workers to perform the given jobs.

The tanker scheduling problem is the follow-
ing. A steamship company has contracted to deliver
perishable goods between several different origin-
destination pairs. Since the cargo is perishable, the
customers have specified precise dates (in days) when
the shipments must reach their destinations. The
steamship company wants to determine the minimum
number of ships needed to meet the delivery dates of
the shiploads.

There are many other applications of bipartite net-
works with unit capacities.
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[2] L. Ciupală and E. Ciurea, Sequential and paral-
lel deficit scaling algorithms for minimum flow
in bipartite networks,WSEAS Transactions on
Computers, Issue 10, Vol. 7, 2008, pp. 1545–
1554.
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