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Abstract: We consider the Cutting and Covering problem with guillotine restrictions. In one of our previous works,
we have shown the connection between the connex components of a graph representation for the covering model
and the guillotine cuts. Based on this, in this paper we propose an algorithm which can be used to verify guillotine
restrictions in a two-dimensional covering model.
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1 Introduction
Cutting and Covering problems are common yet diffi-
cult problems, known to be NP-hard or NP-complete.
Also referred to as Cutting and Packing problems,
these problems have many practical applications [22,
21]. A comprehensive classification of such problems
is given in [4]. Furthermore, an arguably more com-
plicated problem called Cutting and Covering [6, 7]
can be derived by cutting a piece of material into small
pieces which are then used to cover a surface without
overlapping or leaving any gaps.

Many variants of the Cutting and Covering prob-
lem were previously considered: one dimensional,
two dimensional and three dimensional with different
types of constrains. For these problems it is also pos-
sible to find the packing order by using a topological
sorting algorithm [18, 19]. A frequent constrain, im-
posed by industrial applications of the two or three di-
mensional problem, is the so-called guillotine restric-
tion which states that the resulting patterns need to
be guillotine cuttable, i.e. the items can be obtained
through a sequence of edge-to-edge cuts parallel to
the edges of the support.

Several techniques that solve the Cutting and
Covering problem have been proposed, such as for-
mulating the problem as a mixed integer problem [10],
heuristics [23], genetic algorithms [11] as well as ap-
proximation algorithms [8, 9]. All these methos re-
sult in a pattern or a set of patterns. However, the
guillotine restrictions are difficult to respect in this
pattern-generation process. It is possible to use an an-
alytic method to verify if the obtained pattern is with
or without guillotine restrictions [15, 16]. Neverthe-

less, this method is rather unpractical since the cutting
pattern is represented as an array model [17], which
implies a large matrix representation.

In [20] we used the graph representation of the
cutting and covering pattern [12, 13] to prove the
connection between guillotine and the connex com-
ponents of the graph. In this paper, we start from
this connection and present an algorithm which can
be used to verify the guillotine restrictions in a two-
dimensional covering model.

2 Problem formulation
Let P , a rectangular plate, characterized by length l
and width w. The plate P is covered with k rectangu-
lar items, Ci , i =1, 2, ..., k, from C without gaps or
overlapping. An item is characterized by length li and
width wi.

Definition 1 A rectangular covering model is an ar-
rangement of the k rectangular items Ci on the sup-
porting plate P , so that P is completely covered by
the components Ci, without gaps or overlapping.

Example 1. Let the covering model from Fig-
ure 1 where P(340x172), C1(96x47), C2(44x123),
C3(51x59), C4(51x62), C5(110x39), C6(110x59),
C7(135x94), C8(72x77), C9(83x77), C10(89x77).

Definition 2 A rectangular covering model has guil-
lotine restrictions if at every moment of the cutting
process the remaining supporting rectangle is sepa-
rated in two new rectangles by a cut from an edge to
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Figure 1: The rectangular covering model

the opposite edge of the rectangle and the cutting line
is parallel with the two remaining edges.

In the set of the rectangles {C1, C2,. . . , Ck} from
the covering model we define a downwards adjacency
relation and a rightwards adjacency relation.

Definition 3 The rectangle Ci is downward adjacent
with rectangle Cj if in the covering model, Cj is to
be found downward Ci and their borders have at least
two common points.

Definition 4 The rectangle Ci is rightward adjacent
with rectangle Cj if in the covering model, Cj is to
be found rightward Ci and their borders have at least
two common points.

Let C = { C1 , C2,..., Ck } and Rd, Rr /∈ C. For
any covering model, we can define a graph of down-
wards adjacency, Gd, and another one of rightwards
adjacency, Gr.

Definition 5 [13] The graph of downward adjacency
Gd = (C∪{Rd}, Γd) has as vertices the rectangles C1,
C2, ..., Ck and a new vertex Rd symbolizing the north-
ern borderline of the supporting plate P.

The Γd is defined as follows:
Γd(Ci) 3 Cj if Ci is downward adjacent

with Cj

Γd(Rd) 3 Ci if Ci touches the North border
OD of the support plate P

Definition 6 [13] The graph of rightward adjacency
Gr = (C∪{Rr}, Γr), where Rr symbolizes the western
border.

The Γr is defined as follows:
Γr(Ci) 3 Cj if Ci is rightward adjacent

with Cj

Γr(Rr) 3 Ci if Ci touches the West border
OA of the support plate P

Figure 2: The graph Gd

Example 2. Let the covering model from Figure
1. The graphs Gd and Gr, are represented in Figure 2
and Figure 3.

We remark that in the graphs Gd and Gr the ver-
tex Rd (respectively Rr) is connected by an arch to
the vertex Ci if and only if Ci touches the northern
(respectively the western) border of the support P .

Definition 7 [13] Let a covering model M and the
graph of downward adjacency Gd. We say that the
rectangle Ci is situated above the rectangle Cj in the
covering modelM if in the graph of downward adja-
cency Gd there is a path from Ci to Cj . Similarly, we
say that the rectangle Ci is situated on the left of the
rectangle Cj in the covering modelM if in the graph
of rightward adjacency Gr there is a path from Ci to
Cj .

Remark 8 From [14] it follows that it is possible to
represent a rectangular covering model with guillo-
tine restrictions using an expression with two opera-
tions:

1. 	 - the line concatenation, an operation for hor-
izontal cuts;

2. � - the column concatenation, an operation for
vertical cuts.

For the rectangular covering model from Example
1 we obtain the following representation:

(C1 	 (C2 � (C3 	 C4)))
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Figure 3: The graph Gr

�
(((C5 	 C6)� C7)	 ((C8 � C9)� C10))

where C1, . . . , C10 are the items from our model.

Remark 9 From the Property 4 of [13] it follows that
for two items Ci and Cj from a covering model there
is only one of the following situations:

1. Ci is situated above Cj (there is a path from Ci

to Cj in the graph Gd);

2. Cj is situated above Ci (there is a path from Cj

to Ci in the graph Gd);

3. Ci is situated on the left of Cj (there is a path
from Ci to Cj in the graph Gr);

4. Cj is situated on the left of Ci (there is a path
from Cj to Ci in the graph Gr);

5. There is no path between Ci and Cj neither in
the graph Gd nor in Gr.

3 Cuts determination

Starting from a rectangular covering model without
gaps and overlapping we intend to find a connection

Figure 4: The subgraphs G′
d extracted from Gd

between guillotine restrictions and the two graphs of
adjacency, Gd and Gr, attached to the covering model.

For this purpose we construct two new subgraphs
G′

dand G′
r where:

1. G′
d = (C, Γ′

d) is obtained from Gd by elimination
of the vertex Rd together with the arches starting
from Rd;

2. G′
r = (C, Γ′

r) is obtained from Gr by elimination
of the vertex Rr together with the arches starting
from Rr.

In Figure 4 is presented the subgraph G′
d for the cov-

ering model from Figure 1.
In [12] we proved that the graph Gd, respectively

Gr, is a conex graph. By the elimination of a vertex
together with the arches starting from this vertex it is
not sure that the subgraph G′

d, respectively G′
r, remain

a conex graph.
We will prove that for a model with guillotine re-

strictions at least one of these subgraphs is not a conex
graph.

Theorem 10 [20] Let M be a rectangular covering
model without gaps and overlapping and the graph
G′

d attached toM. In the covering modelM there is
a vertical guillotine cut if and only if in the graph G′

d
there are at least two connex components.

Proof:
i. Suppose that the covering modelM has a ver-

tical guillotine cut. That means the sets of items C can
be separated in two subsets, Cl, the set of the vertices
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Figure 5: Particular case

situated on the left of the cut, and Cr, the set of the
vertices situated on the right of the cut.

Let Ci ∈ Cl and Cj ∈ Cr two items situated on
the left, respectively on the right of the cut. Suppose
that the graph G′

d is connex. It follows that there is
a chain between Ci and Cj in the graph G′

d. On this
chain there are at least two vertices, Cn, Cm so that
Cn ∈ Cl, Cm ∈ Cr and Cm is downward adjacent
with Cn or Cn is downward adjacent with Cm, from
Definition 7. That means Cm is situated above, re-
spectively downward, Cn and the items Cm and Cn

have at least two common points.
But, in this case, it is impossible to separate Cm

from Cn by a vertical cut. So our supposition that G′
d

is a connex graph is false.
ii. Suppose the two connex components of the

graph G′
d are Gd1 and Gd2. Let C1 be the set of the

vertices from Gd1 and C2 be the set of the vertices
from Gd2. Let Ci ∈ C1 and Cj ∈ C2 so that Ci is
rightward adjacent with Cj . It follows that there is no
chain between Ci and Cj in G′

d and surely no paths.
Suppose that a cut between Ci and Cj intersects

an item Ck. This means we have a situation like in
Figure 5. In this case, Ci and Cj are situated above
the item Ck in the modelM and that means there are
two paths: one path from Ci to Ck and another path
from Cj to Ck in G′

d. That means there is a chain
between Ci and Cj . But this is impossible because Ci

and Cj belong to two different connex components. It
follows that our assumption that a cut between Ci and
Cj intersects an item Ck is false.

So it is possible to separate the modelM in two
submodels by a vertical cut. ut

Theorem 11 [20] Let M be a rectangular covering
model without gaps and overlapping and the graph
G′

r attached toM. In the covering modelM there is
a horizontal guillotine cut if and only if in the graph

G′
r there are at least two connected components.

Proof: The proof is similar with the proof of previous
theorem, for vertical cuts. ut

4 The algorithm for verification of
the guillotine restrictions

The results from the previous theorems suggest an al-
gorithm for verification of the guillotine restrictions,
using the decomposition of graphs G′

d or G′
r in con-

nex components.
Input data: The graphs G′

d or G′
r attached to a

rectangular covering model.
Output data: The s-pictural representation of the

covering model like a formula in a polish prefixed
form.

Method: The algorithm constructs the syntax tree
for the s-pictural representation of the covering model,
defined in Remark 8, starting from the root to the
leaves (procedure PREORDER). For every vertex of
the tree it verifies if it is possible to make a verti-
cal (procedure V-CUT) or horizontal cut (H-CUT),
using an algorithm for decomposition of a graph in
two components (procedure CONEXCOMP): one is a
conex component and the other is the rest of the graph
after extraction of the conex component.

The method ADD() is used for addition of the
next member in the polish prefixed form.

PROCEDURE PREORDER (G, ADD())
V-CUT(G, err,Gl, Gr);
if err = 0 then

if |G| = 1 then ADD(G)
else ADD(�);

PREORDER(Gl, ADD());
PREORDER(Gr, ADD());

end
else

H-CUT(G, err,Gu, Gd);
if err = 0 then

if |G| = 1 then ADD(G)
else ADD(	);

PREORDER(Gu, ADD());
PREORDER(Gd, ADD());

end
else No guillotine restrictions

end
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PROCEDURE V-CUT(G, err,Gl, Gr)
err = 0;
CONEXCOMP(G, p,Nl, Nr);
if p = 1 then

err = 1;
end
else

Gl = Nl;
Gr = Nr;

end

PROCEDURE H-CUT(G, err,Gu, Gd)
err = 0;
CONEXCOMP(G, p,Nu, Nd);
if p = 1 then

err = 1;
end
else

Gu = Nu;
Gd = Nd;

end

4.1 Example

Let us have the covering model from Figure 1 with
the extracted subgraphs, G′

d and G′
r. In Figure 6

it is presented the first vertical cut of the covering
model and the decomposition in two components: a
conex component and the remainder component. In
the syntax tree from Figure 7 the conex component is
marked by 1, the remainder component is marked by
2 and they are connected using the operation of col-
lumn concatenation � for the vertical cut. Let A =
{C1, C2, C3, C4} and B = {C5, C6, C7, C8, C9, C10}
be the sets of the vertices from these two components.

The partial prefix polish notation for this syntax
tree from Figure 7 is:

�.

We continue to make vertical or horizontal cut for
the left and right components from the syntax tree un-
til every components contains only one item from the
covering model.

Using the first component we are doing an hori-
zontal cut in Figure 8, so we have the decomposition
of the set A in two sets which are corresponding to
the two new components, one of them contain only
the item C1 and another set D = {C2, C3, C4}. In
Figure 9 we are adding to the syntax tree the nodes
C1 and the component 3 which are connected using

Figure 6: The first vertical cut

Figure 7: The first Syntax tree
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Figure 8: Step2. The first horizontal cut

Figure 9: Step2. The syntax tree

the operation of line concatenation 	 for the horizon-
tal cut.

The partial prefix polish form for this tree from
Figure 9 is:

�	 C1.

On the third component we are trying to do a ver-
tical cut, a decomposition of the set D in 2 sets like
in Figure 10, so we have other two components. One
of these is a leaf of the syntax tree, C2 and another is
the fourth component, let it be the set E = {C3, C4},
Figure 11.

The partial prefix notation associated to the syn-
tax tree from Figure 11 is:

�	 C1 � C2.

The last step is the decomposition of the fourth
component, the set E in two components using an

Figure 10: Step3. A vertical cut

Figure 11: Step3. The syntax tree
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Figure 12: Step4. An horizontal cut

Figure 13: Step4. The syntax tree

horizontal cut Figure 12, C3 and C4, both leaves of
the syntax tree from Figure 13.

We determinated the all left side of the syntax tree
corresponding to our covering model using the two
kinds of cuts. The partial polish form obtained from
the left side of the syntax tree is:

�	 C1 � C2 	 C3C4.

Let’s consider now the right side of the syntax tree.
Using the second component obtained from the first
cut that we did at the beginning, we are doing an hori-
zontal cut in Figure 14, so we have the decomposition
of the set B in two sets which are corresponding to
the two new components, one of them F contains the
items C5, C6, C7 and the other one G which contains
the items C8, C9, C10. For Step 5 we have associated
the syntax tree from Figure 15 and the partial polish
notation obtained for this step is:

�	 C1 � C2 	 C3C4 	 .

Figure 14: Step5. An horizontal cut

On the fifth component we are doing a vertical cut, a
decomposition of the set F in 2 sets like in Figure 16,
so we have other two components. One of these is the
seventh component, let it be the set H = {C5, C6}
and the other one is a leaf of the syntax tree, C7, see
Figure 17. The partial prefix polish form for the tree
from Figure 17 is:

�	 C1 � C2 	 C3C4 	�.

Using the seventh component we are trying one hori-
zontal cut, a decomposition of the set H in two items
C5 and C6, see Figure 18, both leaves of the syntax
tree from Figure 19. The partial prefix polish nota-
tion till this step is:

�	 C1 � C2 	 C3C4 	�	 C5C6C7.

Returning to component number 6, we are trying a
vertical cut, a decomposition of the set G in two sets,
Figure 20 one is I = {C8, C9} and the other one is
the item C10, which is a leaf of the syntax tree from
Figure 21. Our partial polish form till this step is:

�	 C1 � C2 	 C3C4 	�	 C5C6C7 � .

Using the component 8, we are doing trying an hori-
zontal cut first, but this is impossible so we are doing
a vertical one, and this means the decomposition of
set I in two items, C8 and C9, Figure 22, both leaves
of the syntax tree. Finally, we obtain the syntax tree
from Figure 23, corresponding to the covering model.

The final prefix polish form, for all the syntax tree
is:

�	C1 �C2 	C3C4 	�	C5C6C7 ��C8C9C10.
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Figure 15: Step5. The syntax tree

Figure 16: Step6. A vertical cut

Figure 17: Step6. The syntax tree

Figure 18: Step7. An horizontal cut
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Figure 19: Step7. The syntax tree

Figure 20: Step8. A vertical cut

Figure 21: Step8. The syntax tree

Figure 22: Step9. A vertical cut

Figure 23: The syntax tree

WSEAS TRANSACTIONS on COMPUTERS Daniela Marinescu, Alexandra Baicoianu

ISSN: 1109-2750 1314 Issue 8, Volume 8, August 2009



4.2 Correctness and Complexity

The correctness of the algorithm follows from the the-
orems 1 and 2, that make the connection between a
guillotine cut and the decomposition of the graph G′

d
or G′

r in conex components. For determination of the
polish notation we preserve only one conex compo-
nent from this decomposition.

An algorithm for determination of the conex com-
ponents has the complexity O(m), where m is the
number of the arches [2, 3]. So the complexity of
V-CUT or H-CUT is also O(m). It follows that the
complexity of PREORDER for a rectangular cover-
ing model of k items with guillotine restrictions is
O(km).

5 Conclusions
The problem, the so-called 2-dimensional guillotine
problem, is a constraint on a complete partition of
2-dimensional space. Guillotine partitions were in-
troduced in 1980ies, and they have numerous appli-
cations [1, 5] in computational geometry, computer
graphics, etc.

The partitioning of 2-dimensional space is a ubiq-
uitous problem in industry. It appears in many forms
from pallet loading to floor tile tessellation. A subset
of the problem, the 2-dimensional guillotine problem,
is almost as pervasive. Various aspects of the problem
are found in industries that produce two dimensional
sheets of glass, textiles, paper or other material.

Like the complete partition, the guillotine prob-
lem remains NP hard. For this reason it is better to
use an algorithm for generating an unconstrained cov-
ering model and after that, to use our algorithm for
verifying the guillotine restrictons of the pattern.
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