
Developing Ontology Based Applications with O3L

AGOSTINO POGGI
Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma
Viale G.P.Usberti 181/A, 43100, Parma

ITALY
Agostino.poggi@unipr.it http://www.ce.unipr.it/people/poggi

Abstract: - Ontologies have been gaining interest and their use has been spreading in different applications
fields. However, their use in the realization of applications might be further increased by the availability of
more usable and efficient software library for the management of ontologies. In this paper, an object-oriented
software library for the management of OWL ontologies is presented. This software library, called O3L
(Object-Oriented Ontology Library), provides a complete representation of ontologies compliant with OWL 2
W3C. O3L has not the goal to be use for the creation and manipulation of ontologies, but provides a simplified
and efficient API for the realization of applications, that interoperate through the use of shared ontologies, and
allows: i) the use of OWL individuals as data of the applications, ii) the exchange of OWL individuals between
applications, iii) the reasoning about OWL individuals, and iv) the classification of OWL classes and
properties. This software library has been experimented in the realization of some e-business applications
showing both high effortlessness in the development of the applications and high performances in their
execution.

Key-Words: OWL, object-oriented model, ontology based applications, ontology reasoning, semantic Web,
Java.

1 Introduction

While there are many definitions of what an
ontology is (see, for example, [12][13][21][23]), the
common thread in these definitions is that an
ontology is some formal description of a domain of
discourse, intended for sharing among different
applications, and expressed in a language that can
be used for reasoning [35]. An ontology necessarily
entails or embodies some sort of world view with
respect to a given domain. That world view is often
conceived as a set of concepts (e.g., entities,
attributes and processes), their definitions and their
relationships that is referred to as a
conceptualization [12]. A conceptualization may be
implicit (e.g., it exists only in someone’s head), but
can be also embodied in a piece of software.

For such reasons, ontologies are considered the
most appropriate means that can be used for
facilitating the interoperability between
heterogeneous systems involved in commonly
interested domain applications by providing a
shared understanding of domain problems and a
formalization that makes ontologies machine-
processable.

As a consequence, ontologies have been gaining
interest and have been applying not only in the so
called semantic Web [4][33], but also in other
different computational fields including knowledge
engineering, knowledge representation, qualitative
modeling, language engineering, database design,
information retrieval and extraction, and knowledge
management and organization. (see, for example,
[5][18][19][20][24][26][32][34]).

However, their diffusion in the realization of
software applications might be increased through
the availability of more usable and efficient
software library for their management. In fact, the
current software libraries either allows only a partial
representation and management of the most known
and used ontologies defined in the usual ontology
representation languages (e.g., OWL [8][11]) or
provide a complex API that guarantees a complete
representation and management of ontologies, but
makes difficult to write the code that use or
manipulates such ontologies.

This paper presents an object-oriented software
library, called O3L (Object-Oriented Ontology
Library), that provides a complete representation of
ontologies compliant with OWL 2 W3C
specifications [22] and a simplified and efficient

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1286 Issue 8, Volume 8, August 2009

API for the realization of applications, that
interoperate through the use of shared ontologies.
The next section discussed the problems of the
mapping of OWL ontologies into an object-oriented
representation. Section three introduces the O3L
object-oriented model for representing ontologies.
Section four presents how the algorithms for
reasoning about OWL individuals are defined.
Section five discusses about the implementation of
the O3L software library. Section six shows how an
ontology based application can be realized with
O3L. Finally section seven concludes the paper and
outlines some future work.

2 From OWL to an OO Model
The Web Ontology Language (OWL) is a semantic
markup language that is become the international
reference means for publishing and sharing
ontologies [8][11].

The mapping of an OWL ontology into an
object-oriented representation can be very useful for
increasing the diffusion of ontologies and semantic
Web technologies [25][31]. In fact, the availability
of such a representation can be the basis for the
development of some flexible and efficient software
libraries for the management of ontologies that
allow to cope with the limits of the current software
libraries and tools for the realization of ontology
based applications.

The main problem of this mapping is that there
are important semantic differences between OWL
and an object-oriented language and so it is difficult
to provide an object-oriented mapping that both
minimizes the need of writing code manually and
full satisfies OWL semantics.

 OWL allows the definition of classes and
properties as specialization of multiple classes and
properties. Therefore, the object-oriented languages
that provide multiple inheritance would seem to be
the most suitable for representing OWL ontologies.
However, the use of multiple inheritance can cause
conflict because a subclass can inherits the same
variable or method from different classes. These
inheritance clashes are usually resolved by the
subclass either redefining the conflicting variable or
method for itself or by specifying which inheritance
is preferred. These inheritance clashes are possible
in representing OWL ontologies (e.g., when an
OWL class can inherits a restriction on the same
property from different classes) and so they must be

managed through the manual or automatic
generation of some additional code.

OWL ontologies can be represented also by
using object-oriented languages that do not provide
multiple inheritance. For example, some previous
approaches coped with this problem by using Java
interfaces [3][16]. This solution only partially solves
the problem because interfaces allow the definition
of class variables and methods, while instance
variables and methods code must be provided by the
classes implementing the interfaces. Therefore, the
representation of OWL ontologies requires the
manual or automatic generation of a large amount of
additional code.

Another problem of representing OWL classes
and properties with classes of an object-oriented
language is the mapping of OWL class and property
names into class names of the object-oriented
language. In fact, the most known object-oriented
languages have restrictions on the syntax of class
names different from the ones imposed by the OWL
language. In this case, the solution is to: i) change
the OWL class and property names on the basis of
the restrictions of the target language (e.g., trading-
price may be changed to trading_price for defining a
Java or C++ class) and ii) avoid the introduction of
name conflicts (e.g., trading-price and trading+price
cannot be both changed into trading_price).

A solution for avoiding the previous problems, is
the decomposition of inheritance into the more basic
mechanisms of object composition and message
forwarding [10]. Therefore, for example, an OWL
class contains (the references to) its super classes,
does not inherit their features, but can get/modify
them through the methods provided by the super
classes. Moreover, as done in other approaches, the
problem of representing an OWL ontology is
separated from the problem of acting and reasoning
on it. This solution allows the definition of a very
simple OWL ontology model based on few classes,
that define the variables for maintaining the
components of a particular kind of OWL resource
and implement the methods for getting and setting
their values. Therefore, an OWL ontology is
described by a set of instances: one of them contains
the general information about the ontology and the
others describe its classes, properties and
individuals.. Moreover, this solution avoids the
problem of mapping OWL resource names in
admissible identifiers of the used object-oriented
language, because the name of an OWL resource

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1287 Issue 8, Volume 8, August 2009

become a value that is stored into a variable of the
object representing such a resource.

Different recent works followed this approach
[15][25][30][36][38]. In particular, the OWL API
[25] is the reference software library for the latest
OWL 2 specifications [22] and provides all the
functionality for creating, examining and modifying
OWL 2 ontologies; moreover, it also offers a
selection of parsers, renderers, and interfaces to the
most known ontology reasoners.

The rest of the paper presents another object-
oriented software library, called O3L (Object-
Oriented Ontology Library), that, in a similar way of
the OWL API, provides a complete representation
of ontologies compliant with OWL 2 W3C
specifications. This library is not an alternative to
the OWL API because has not the goal to be use by
applications for the creation and manipulation of
ontologies, but provides (respect to the OWL API) a
simplified and efficient API for the realization of
applications that interoperate through the use of
shared ontologies.

3 O3L Ontology Model
The O3L ontology model provides a representation
of ontologies, described in the OWL 2 format, that
completely encoded the information about the
relationships among OWL classes and properties.

This model is based on five different elements:
OwlOntology, OwlClass, OwlDataProperty,
OwlObjectProperty and OwlIndividual. This model
is based on the assumption that the applications that
use one or more ontologies through the O3L
software library do not need to modify such
ontologies, but can create and then modify, delete
and exchange some OWL individuals built on the
basis of the resources defined in such ontologies.
Therefore the information that are encoded in the
O3L representation of the resources of an OWL
ontology are not the ones declared by the OWL
axioms of such ontology, but are the ones inferred
by a complete reasoning on the OWL ontology (e.g.,
the direct ancestors of an OWL class are not the
OWL classes of which it is declared as a subclass,
but the ones that directly subsume such an OWL
class).

An OWL ontology is represented by the
OwlOntology model that contains information
about: i) the URI representing the ontology
identifier and the information about the version of
the ontology and about the previous versions of such
an ontology that are compatible with the current

version, and ii) all the classes, properties and
individuals that are defined or referred in such an
ontology (see table 1).

Ontology identifier

Ontology version

Ontology backward compatible versions

Imported ontologies

Classes

Properties

Individuals

Table 1. Owl ontology variables.

An OWL class is represented by the OwlClass

model that contains information about: i) the URI
representing the class identifier, ii) the URI
identifying the ontology where the class is defined,
iii) the direct ancestors and descendent of the class,
and, finally, iv) the equivalent and disjoint classes
(see table 2).

Class identifier

Ontology where the class is defined

Direct ancestor classes

Direct descendent classes

Equivalent classes

Disjoint classes

Table 2. Owl class variables.

Property identifier

Ontology where the property is defined

Direct ancestor properties

Direct descendent properties

Equivalent properties

Disjoint properties

Table 3. Owl property variables.

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1288 Issue 8, Volume 8, August 2009

While the information of OWL annotation and
ontology properties is directly encoded in the
representation of the OWL resources to which they
are related, OWL datatype and object properties are
respectively represented by the OwlDataProperty
OwlObjectProperty models that contain information
about: i) the URI representing the property
identifier, ii) the URI identifying the ontology where
the property is defined, iii) the direct ancestors and
descendent of the property, and, finally, iv) the
equivalent and disjoint properties (see table 3).

 Finally, OWL individuals are represented by
the OwlIndividual model that contains information
about: i) the URI representing the individual
identifier, ii) the URI identifying the ontology where
the individual is defined, iii) the classes to which the
individual belongs, iv) the equivalent and different
individuals, and v) the property-values pairs (facts)
describing the individual (see table 4).

Individual identifier

Ontology where the individual is defined

Individual classes

Equivalent individuals

Different individuals

Facts

Table 4. Owl individual variables.

4 Reasoning about individuals
While it is not necessary to provide a support for
reasoning about OWL classes and properties, given
that an application cannot modify them and so their
relationships are encoded in their representations, it
is necessary to provide some algorithms for
reasoning about OWL individuals. Such algorithms
allow to check: i) the membership of OWL
individuals to OWL classes, ii) if OWL individuals
satisfy OWL properties and data types constraints,
and iii) if OWL individuals are either equivalent to
or different from other OWL individuals.

These algorithms cannot be implemented by only
using the information associated with OWL classes
and properties by the O3L models that have been
introduced in the previous section, but can be
implemented by transforming the declarative
representation of the constraints defining OWL
classes and properties in procedural code. Therefore,
the O3L model is enriched by associating an

operation with each OWL class, property and
individual. While the operation associated with
OWL classes and properties checks if the definition
of the OWL individuals satisfy their constraints, the
operation associated with OWL individuals checks
if the OWL individuals satisfy the constraints of the
OWL classes and properties that concur to their
definition.

This paper, does not introduce a complete
description of how the different OWL expressions
are transformed into procedural code, but shows
how they can be represented by formulas, expressed
through set theory and logical expressions, that can
be easily encoded in some procedural code.
Therefore, let be:
− i and l respectively the individual to be checked

and an its literal to be checked;
− ce and CE respectively a class expression and a

set of class expressions;
− dr and DR respectively a data range and a set of

data ranges;
− dt a data type;
− fl and FL respectively a pair and a set of pairs:

facet and literal;
− fl(lt) is true if the literal, lt, satisfies the

constraint defined by the pair facet and literal fl;
− ope and OPE respectively an object property

expression and a set of object property
expressions;

− dpe and DPE respectively a data property
expression and a set of data property
expressions;

− ie and IE respectively a named / anonymous
individual and a set of named / anonymous
individuals;

− lt and LT respectively a literal and a set of
literals;

− V(ope, i) the set of individuals connected with
the individual i through the object property
expression ope;

− V(dpe,i) the set of literals connected with the
individual i through the data property expression
dpe;

− C(OPE, i) the set of individuals connected with
the individual i through the chain of object
property expressions OPE.
The constraints applied by OWL class

expressions on an OWL individual can be expressed
through a set of formulas based on set membership
expressions as shown in table 5.

In a similar way, the constraints applied by OWL
data ranges to the literals, that represent the facts of
an OWL individual, can be expressed through some
set membership expressions. In particular, the

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1289 Issue 8, Volume 8, August 2009

constraints of OWL data type restrictions, are
represented by the conjunction between a set
membership expression and another expression that
checks if the literal satisfies the constraint defined
by a facet – literal pair (see table 6).

subClassOf(CE) ∀ e ∈ CE : i ∈ e

intersectionOf(CE) ∀ e ∈ CE : i ∈ e

unionOf(CE) ∃ e ∈ CE : i ∈ e

complementOf(ce) i ∉ ce

oneOf(IE) i ∈ IE

Table 5. OWL class expressions.

intersectionOf(DR) ∀ e ∈ DR : l ∈ e

unionOf(DR) ∃ e ∈ CE : l ∈ e

complementOf(dr) l ∉ dr

oneOf(DR) l ∈ DR

DatatypeRestriction(dt, FL) l ∈ dt ∧ (∀ e ∈ FL : e(l))

Table 6. Data range expressions.

someValuesFrom(dpe, dr) ∃ e ∈ V(dpe, i) : e ∈ dr

allValuesFrom(dpe, dr) ∀ e ∈ V(dpe, i) : e ∈ dr

hasValue(dpe, lt) lt ∈ V(dpe, i)

minCardinality(dpe, n) | V(dpe, i) | ≥ n

minCardinality(dpe, n, dr) | V(dpe, i) ∩ dr | ≥ n

maxCardinality(dpe, n) | V(dpe, i) | ≤ n

maxCardinality(dpe, n, dr) | V(dpe, i) ∩ dr | ≤ n

exactCardinality(dpe, n) | V(dpe, i) | = n

exactCardinality(dpe, n, dr) | V(dpe, i) ∩ dr | = n

Table 7. Data property restrictions.

The constraints applied by OWL data and object

property restrictions on an OWL individual can be
described through some set membership and
intersection expressions and through some numeric
equality and relational expressions applied to the
values of the facts describing the OWL individual
(see tables 7 and 8).

The constraints applied by OWL data and object
property expressions on an OWL individual can be
described through some set membership and
intersection expressions and through some numeric
equality and relational expressions applied to the

values of the facts describing the OWL individual
(see tables 9 and 10).

someValuesFrom(ope, ce) ∃ e ∈ V(ope, i) : e ∈ ce

allValuesFrom(ope, ce) ∀ e ∈ V(ope, i) : e ∈ ce

hasValue(ope, ie) ie ∈ V(ope, i)

hasSelf(ope) i ∈ V(ope, i)

minCardinality(ope, n) | V(ope, i) | ≥ n

minCardinality(ope, n, ce) | V(ope, i) ∩ ce | ≥ n

maxCardinality(ope, n) | V(ope, i) | ≤ n

maxCardinality(ope, n, ce) | V(ope, i) ∩ ce | ≤ n

exactCardinality(ope, n) | V(ope, i) | = n

exactCardinality(ope, n, ce) | V(ope, i) ∩ ce | = n

Table 8. Object property restrictions.

subPropertyOf(dpe1, dpe2) V(dpe1, i) ⊆ V(dpe2, i)

propertyDomain(dpe, ce) i ∈ ce

propertyRange(dpe, dr) ∀ e ∈ V(dpe, i) : e ∈ dr

functionalProperty(dpe) | V(dpe, i) | ≤ 1

Table 9. Data property expressions.

subPropertyOf(ope1, ope2) V(ope1, i) ⊆ V(ope2,

i)

subPropertyOf(
 PropertyChain(OPE), ope)

C(OPE, i) ⊆ V(ope, i)

propertyDomain(ope, ce) i ∈ ce

propertyRange(ope, ce) ∀ e ∈ V(ope, i) : e ∈
ce

inverseProperties(ope1, ope2) ∀ e ∈ V(ope1, i) : i ∈
V(ope2, e)

functionalProperty(ope) | V(ope, i) | ≤ 1

inverseFunctionalProperty(ope) ∀ e1 ∈ V(ope, i) : (∀ e2
∈ I : e1 ∉ V(ope, e2))

reflexiveProperty(ope) i ∈ V(ope)

irreflexiveProperty(ope) i ∉ V(ope)

symmetricProperty(ope) ∀ e ∈ V(ope, i) : i ∈
V(ope, e)

transitiveProperty(ope) ∀ e ∈ V(ope, i) :
V(ope, e) ⊆V(ope, i)

Table 10. Object property expressions.

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1290 Issue 8, Volume 8, August 2009

Figure 1. O3L ontology Java classes creation process.

5 Implementing the O3L Model
The O3L model has been implemented taking
advantage of the Java programming language.

This implementation is based on five main Java
classes: two concrete classes, OwlOntology and
OwlIndividual, for the representation of OWL
ontologies and individuals, and three abstract
classes, OwlClass, OwlDataProperty and
OwlObjectProperty, that are extended by the
concrete classes for the representation of OWL
classes and properties.

The OwlOntology class defines the methods for
getting the information of the corresponding OWL
ontology that are defined in the O3L ontology
model and for getting the instances of the Java
classes implementing the OWL classes, properties
and individuals of such an OWL ontology.

The OwlClass, OwlDataProperty and
OwlObjectProperty abstract classes, besides
defining the methods for getting the information of
the corresponding OWL entities that are defined in
the class and data/object property O3L models, add
an abstract method, called satisfy, whose goal is to
check if an OWL individual satisfies the constraints
of the represented OWL class or property.

Finally, the OwlIndividual class, besides defining
the methods for manipulating the information of the
corresponding OWL individual that are defined by
the O3L individual model, adds a method, called

satisfy, whose goal is to check if the represented
OWL individual satisfies the constraints of all the
OWL classes and properties concurring to the
definition of such an OWL individual.

The code of the satisfy method of the
OwlIndividual class does not depend on the specific
OWL individual because it simply calls the code of
the satisfy methods of the Java classes
implementing the OWL classes and properties
involved in the definition of such an OWL
individual.

Of course, the definition and implementation of
the previous five Java classes do not conclude the
work for representing an OWL ontology with the
O3L software because it is necessary both to
implement all the concrete Java classes representing
the OWL classes and properties of the ontology and
to instantiate (with the necessary data) the
OwlOntology and OwlIndividual Java classes for
representing the OWL ontology and its OWL
individuals.

This work is not delegated to the application
developers, but is automatically performed by an
O3L software tool called O2J (OWL to Java). This
tool has been implemented by taking advantage of
the OWL API [25] and of the FACT++ reasoner [9].
It is done because:
− the OWL API provides a complete access to the

information of an OWL ontology without the
need of managing both the different formats in

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1291 Issue 8, Volume 8, August 2009

which it can be represented (e.g., RDF and
Manchester formats) and the different kinds of
repository where it can be maintained (e.g., file
systems and database management systems);

− the FACT++ reasoner can manipulate OWL API
ontology representations and allows a complete
classification of OWL classes useful for the
generation of the O3L Java classes representing
an OWL ontology.
The process, executed by the O2J tool for

building the Java classes of a particular OWL
ontology, is based on the following five steps (see
figure 1 for a graphical representation of the
process):
1. an intermediate object-oriented representation of

the OWL ontology is built taking advantage of
the OWL API;

2. all the explicit relationships among OWL
classes, properties and individuals are checked
and all the implicit relationships among OWL
classes, properties and individuals are found
taking advantage of the FACT++ reasoner
applied to the OWL API representation of the
OWL ontology;

3. the Java classes for the OWL classes and
properties of the ontology are created and filled
with the information defined by the
corresponding O3L models and acquired by the
OWL API ontology representation, and by the
results obtained by the FACT++ reasoner;

4. the code for instantiating the OwlOntology and
OwlIndividual classes for the current OWL
ontology and for its individuals is generated on
the basis of the OWL API ontology
representation;

5. the code of the satisfy methods of the Java
classes representing the OWL classes and
properties of the current ontology is generated
taking advantage of the OWL API ontology
representation.
The Java classes generated by the O2J tool are

grouped into Java packages: each package
corresponds to an ontology and its name
corresponds to the ontology URI. As it is written in
a previous section, the name of the Java classes
might not always correspond to the name of the
corresponding OWL entities because of the different
constraints imposed by the OWL and Java syntax.
Therefore, the name of such classes is automatically
generated by the O2J tool without taking into
account the name of the corresponding OWL entity.
However, it does not make complex the use of the
O3L Java ontology representation because the
relationships between the entities of an ontology are
mapped by using the URI of the corresponding

OWL entity and so it is possible use the name of the
OWL entities for accessing the corresponding O3L
Java classes.

6 Realizing Applications with O3L
An O3L based application is centered on a set of
predefined ontologies, that define the domain of the
application, and on another ontology, called
working memory, that imports the previous
ontologies and does not contain OWL classes and
properties, but also maintains the set of OWL
individuals representing the most relevant data of
the application.

Figure 2. Structure of an O3L application.

While the application cannot modify the

predefined ontologies, it can modify the working
memory. In particular, the application can (see
figure 2):
− initialize the working memory with a set of OWL

individuals;
− dynamically generate and eliminate new OWL

individuals;
− dynamically manipulate the OWL individuals of

the working memory taking also advantage of
O3L reasoning support;

− dynamically acquire and transmit OWL
individuals from/to some other applications.
An O3L application can also use data that are not

OWL individuals, but the use of OWL individuals is
at least recommended when such data correspond to
entities defined in the domain model of the

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1292 Issue 8, Volume 8, August 2009

application and is necessary when the processing of
such kinds of data requires the use of ontology
reasoning algorithms and when they are exchanged
with another application that should interoperate
with such an application thanks to the sharing of
some ontologies.

The development process of an O3L based
application may be based on the usual steps of any
software engineering development process. In such
a process, two of the main tasks are the
identification of the domain requirements and the
design (or reuse) of the ontologies needed for the
representation of such a domain.

Of course, the reuse of a predefined ontology
that presumably might be used by other applications
should be preferred to the design of a custom
ontology because it may simplify the
interoperability with such application. Moreover,
the reuse of a predefined ontology should be
preferred even if such a predefined ontology either
covers a larger domain that the one covered by the
developing application or could be used in such
application only after an adjustment of its domain
model.

7 Conclusion
This paper presented an object-oriented software
library for the management of OWL ontologies.
called O3L (Object-Oriented Ontology Library)
[28]. This software library provides a complete
representation of ontologies compliant with OWL 2
W3C [11]. O3L has not the goal to be use for the
creation and manipulation of ontologies, but
provides a simplified and efficient API for the
realization of applications that interoperate through
the use of shared ontologies.

The problem of providing a Java representation
of OWL ontologies in not new and different
solutions have been proposed.

These solutions can be divided in two groups: the
first group includes low level APIs that directly
manipulate the ontology (see, for example, [25][30])
and the second includes high level APIs that hide
certain parts of the model disabling the user (or
program) to add new classes and properties to the
model at run time (see, for example, [9][15][16]).

Moreover, while the solutions of the first group
provide a complete representation of OWL
ontologies and support reasoning on them, the
solutions of the second group does not provide a
complete representation of OWL ontologies and
does not support reasoning on them.

O3L belongs to the last group: it uses a compact
representation of OWL ontologies, but support a

complete reasoning on OWL individuals. Moreover,
O3L provides the information on the relationships
among the OWL classes and properties without the
need of any reasoning algorithm because such
information is directly encoded in the Java
representation of the OWL classes and properties.

O3L derives from OWLET [27]. In a similar way
to what done by O3L, OWLET maps OWL
ontology in a Java representation. This mapping is
only possible for OWL 1 DL ontologies and is
based on a more complex object-oriented model
that, however, allows a dynamic reasoning on all the
ontologies resources (i.e., classes, properties and
individuals). Therefore, at the same way of the
OWL API, it can be also used for the developing of
new ontologies.

O3L has been experimented in the realization of
some e-business applications showing both a high
effortlessness in the realization of applications and
high performance in their execution.

Current work is devoted to the integration of the
O3L library in the JADE multi-agent development
framework [1][2][14] and the extension of O3L for
providing a Java bean like representation for OWL
individuals.

The work on the integration of the O3L library in
the JADE multi-agent development framework,
besides allowing the direct use of the large
repository of available OWL ontologies into JADE
multi-agent applications, has the goal of using the
O3L ontology reasoning tools for both enhancing
the cooperation among agents and the realization of
more flexible applications through a semantic
composition of agent tasks. Regarding the last point,
we are also working on the O3L library to simplify
the integration between agent-based and Web
services.

The work on the extension of O3L for providing
a Java bean like representation for OWL individuals
has the goal of adding a further simplification for
the realization of O3L based applications by
modeling and then implementing OWL individuals
as Java beans where each couple of getter and setter
methods allows the access to the values of an OWL
property that define the OWL individual.

In fact, this kind of representation allows a
programmer to realize the software code that
manipulate and OWL individual by accessing and
modifying the values of a property concurring in the
definition of such an individual through the
corresponding getter and setter methods.

This solution has the advantage of reducing the
length of the application code by avoiding the
burden of finding the values of such a property
among all the property values defining the OWL

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1293 Issue 8, Volume 8, August 2009

individual (i.e., current implementation manages
such values through a Java Map; therefore, before
manipulating the values associate with a property is
necessary to check if there is an entry for the
property in the Map and then retrieve it from the
Map).

References:
[1] Bellifemine, F., Poggi, A., Rimassa, G.

Developing multi agent systems with a FIPA-
compliant agent framework. Software -
Practice & Experience, 31:103-128, 2001.

[2] Bellifemine, F., Caire, G., Poggi, A., &
Rimassa, G. JADE: a Software Framework for
Developing Multi-Agent Applications. Lessons
Learned. Information and Software Technology
Journal, 50:10-21. 2008.

[3] Bergenti, B., Poggi, A., Tomaiuolo, M., Turci.
P. An Ontology Support for Semantic Aware
Agents. In. G. Carbonell and J. Siekmann
(Eds.). Agent-Oriented Information Systems
III, pp. 140-153, Springer, Berlin, Germany,
2006.

[4] Berners-Lee, T., Hendler, J., Lassila, O. The
Semantic Web. Scientific American,
284(5):34–43, 2001.

[5] Borges, A.M., Gil, R., Corniel, M., Contreras,
L., Borges, R.F. Towards a Study
Opportunities Recommender System in
Ontological Principles-based on Semantic Web
Environment. WSEAS Transactions on
Computers, 2(8):279-291, 2009.

[6] Calero, C., Ruiz, F., Piattini, M. Ontologies for
Software Engineering and Software
Technology, Springer, Berlin, Germany, 2006.

[7] Connolly, D., van Harmelen, F., Horrocks, I.,
McGuinness, D.L., Patel-Schneider, P.F., Stein,
L.A. DAML+OIL Reference Description, W3C
Note. 2001. Available from
http://www.w3.org/TR/daml+oil-reference.

[8] Dean, M., Schreiber, G. OWL Web Ontology
Language Reference, W3C Recommendation
10 February 2004, 2004. Available from
http://www.w3.org/TR/owl-ref/.

[9] FACT++ software Web Site. Available from
http://code.google.com/p/factplusplus/.

[10] Frohlich, P.H. Inheritance decomposed. In
Proc. of the Inheritance Workshop at ECOOP
2002, Malaga, Spain, 2002.

[11] Golbreich, C., Wallace, E.K. Web Ontology
Language: New Features and Rationale, W3C
Working Draft, 2008. Available from
http://www.w3.org/TR/owl2-new-features/.

[12] Gruber, T.R. A translation approach to portable
ontologies. Knowledge Acquisition, 5(2):199-
220, 1993.

[13] Guarino N., Formal Ontology in Information
Systems. In Proc. of FOIS’98, Trento, Italy, pp.
3-15, IOS Press, 1998.

[14] JADE software Web site. 2009. Available from
http://jade.tilab.com.

[15] Jastor software Web Site. 2009. Available from
http://jastor.sourceforge.net.

[16] Kalyanpur, A., Pastor, D., Battle, S., Padget, J.
Automatic mapping of owl ontologies into
java. In Proc. of the Sixteenth International
Conference on Software Engineering &
Knowledge Engineering (SEKE'2004), pp. 98-
103, Banff, Canada, 2004.

[17] Knublauch, H. Ontology-driven software
development in the context of the semantic
web: an example scenario with protegé/OWL.
First International Workshop on the Model-
Driven Semantic Web (MDSW), 2004.

[18] Kozaki, K, Hayashi, Y., Sasajima, M., Tarumi,
S., Mizoguch, R. Understanding Semantic
Web Applications. In K. Aberer, K. Choi, N.
Noy, D. Allemang, K. Lee, L. Nixon, J.
Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber, P. Cudré-Mauroux (Eds.). The
Semantic Web -Lecture Notes in Computer
Science, Vol. 4825, pp. 524-539, Springer,
Berlin, Germany, 2008.

[19] Lopez de Vergara, , J.E., Guerrero, A.,
Villagra, V.A., Berrocal, J. Ontology-Based
Network Management: Study Cases and
Lessons Learned. Journal Network System
Management, 17:234–254, 2009.

[20] Masuoka, R., Labrou, Y., Parsia, B., Sirin, E.
Ontology-enabled pervasive computing
applications. IEEE Intelligent Systems,
18(5):68-72, 2003.

[21] McGuinness, D.L. Ontologies Come of Age. In
D. Fensel, J. Hendler, H. Lieberman and W.
Wahlster (Eds.). The Semantic Web: Why,
What, and How, pp. 171-194, MIT Press,
Cambridge, MA, 2001.

[22] Motik, B., Patel-Schneider, P.F., Parsia, B.
Web Ontology Language: Structural
Specification and Functional-Style Syntax,
W3C Working Draft, 2008. Available from
http://www.w3.org/TR/owl2-syntax/.

[23] Noy, N.F. Semantic integration: a survey of
ontology-based approaches. SIGMOD Record.
33(4):65-70, 2004.

[24] Oberle, D., Eberhart, A., Staab, S., Volz, R.
Developing and managing software
components in an ontology-based application

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1294 Issue 8, Volume 8, August 2009

server. In Proc. of the 5th ACM/IFIP/USENIX
International Conference on Middleware, pp.
459-477, Toronto, Canada, 2004.

[25] OWL API software Web Site. Available from
http://owlapi.sourceforge.net/.

[26] Pan, T.J.,, Zheng, L.N., Zhang, H.J., Fang,
C.B., Lou, J., Shao, Z. Combining Web
Services Toward Innovative Design of Agile
Virtual Enterprise Supported by Web 3.0.
WSEAS Transactions on Communications,
1(8):81-91, 2009.

[27] Poggi, A., OWLET: An Object-Oriented
Environment for OWL Ontology Management.
In Proc. of the 11th WSEAS International
Conference on COMPUTERS, pp 44-49, Agios
Nikolaos, Greece, 2007.

[28] Poggi, A., O3L: An OWL Object-Oriented
Library for the Realization of Ontology Based
Applications. In Proc. of the 13th WSEAS
International Conference on COMPUTERS,
pp. 340-345, Rhodes, Greece, 2009.

[29] Prieto, A.E., Lozano-Tello, A. Use of
Ontologies as Representation Support of
Workflows Oriented to Administrative
Management. Journal Network System
Management, 17: 309–325, 2009.

[30] Protegé OWL API Web Site. Available from
http://protege.stanford.edu/plugins/owl/api/.

[31] Puleston, C., Parsia, B., Cunningham, J.
Integrating Object-Oriented and Ontological
Representations: A Case Study. In A. Sheth, S.
Staab, M. Dean, M. Paolucci, D. Maynard, T.
Finin, K. Thirunarayan (Eds.). The Semantic
Web - ISWC 2008, pp. 140-153, Springer,
Berlin, Germany, 2008.

[32] Salguero, A., Araque, F., Delgado, C. Ontology
based framework for data integration. WSEAS
Transactions on Information Science &
Applications, 6(5):953-962, 2008.

[33] Shadbolt, N., Hall, W., Berners-Lee, T. The
Semantic Web Revisited. IEEE Intelligent
Systems, 21(3):96-101, 2006.

[34] Tran, T., Peter Haase, P., Lewen, H., Muñoz-
García, O., Gómez-Pérez, A., Studer, R.
Lifecycle-Support in Architectures for
Ontology-Based Information Systems. In K.
Aberer, K. Choi, N. Noy, D. Allemang, K.
Lee, L. Nixon, J. Golbeck, P. Mika, D.
Maynard, R. Mizoguchi, G. Schreiber, P.
Cudré-Mauroux (Eds.). The Semantic Web -
Lecture Notes in Computer Science, Vol. 4825,
pp. 508-522, Springer, Berlin, Germany, 2008.

[35] Uschold, M, Gruninger, M. Ontologies:
Principles, methods and applications.

Knowledge Engineering Review, 11:93-136,
1996.

[36] Völkel M., Sure, Y. RDFReactor -- From
Ontologies to Programmatic Data Access. In
Proc. of the Jena User Conference,. Bristol,
UK, 2006.

[37] Welty. C. Ontology research. AI Magazine,
24(3):11-12, 2003.

[38] Zimmermann, M. Owl2Java - A Java Code
Generator for OWL, 2009. Available from
http://www.incunabulum.de/projects/owl2java..

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1295 Issue 8, Volume 8, August 2009

