
Achieving Intelligent Agents and its feasibility in Swarm-Array Computing?

BLESSON VARGHESE AND GERARD MCKEE
Active Robotics Laboratory

School of Systems Engineering
University of Reading, Whiteknights Campus

Reading, Berkshire
UNITED KINGDOM, RG6 6AY

E-mail : b.varghese@student.reading.ac.uk, g.t.mckee@reading.ac.uk

Abstract: - The work reported in this paper proposes ‘Intelligent Agents’, a Swarm-Array computing approach focused
to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications.
Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to
achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel
computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents
and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of
autonomic computing. The approach is validated on a multi-agent simulator.

Key-Words: - Autonomic computing, Swarm-array computing, Intelligent agents, Carrier agents.

1 Introduction
Autonomic computing has recently emerged as a domain
of interest to computing researchers worldwide. What is
autonomic computing, and what are its inspiration and
vision? What are its distinct perspectives? What are the
autonomic approaches? What needs to be focused ahead?
These are the few questions answered in this section,
before commencing discussions on Intelligent Agents
and their feasibility in Swarm-Array Computing, the
primary focus of this paper.
 What is autonomic computing, and what are its
inspiration and vision? With the advancements of
computing techniques, biologically inspired computing
has emerged as a major domain in computing. Many
computing paradigms, namely amorphous computing,
evolutionary computing and organic computing have
emerged as a result of being inspired from natural
phenomenon. Autonomic computing is one such
biologically inspired computing paradigm based on the
autonomic human nervous system [1].
 Autonomic computing is a visionary paradigm for
developing large scale distributed systems, reducing cost
of ownership and reallocating management
responsibilities from administrators to the computing
system itself [2] – [9]. Autonomic computing paves the
necessary foundation autonomic computing principles
have paved necessary foundations towards self-managing
systems.
 Self-managing [10] systems are characterized by four
objectives and four attributes. The objectives and
attributes that contribute to self-management are not
independent functions. The objectives considered are [1]
[11] [12]: (a) Self-configuration – the capability of a
computing system to automatically adapt to changes in

the existing physical topology and software environment.
The system must be also capable to seamlessly integrate
new system components. Self-configuring systems are
expected to increase resource availability. (b)
Self-healing - the capability of a computing system to
recuperate from faults and loss. Constant and consistent
monitoring of the computing system is required to detect
faults and loss. (c) Self-optimizing – the capability of a
computing system to automatically tune resources and
balance workloads to improve operational efficiency. (d)
Self-protecting – the capability of a computing system to
protect itself from malicious attacks originating from
within and without the system. Self-protection safeguards
the system from damages due to uncorrected cascading
failures.
 The attributes considered are [1] [11] [12]: (a)
Self-awareness – the capability of a computing system to
be aware of its internal state and knowledge of the
possible states the system can transform to from the
current state. (b) Self-situated – the capability of a
computing system to be aware of the external operating
conditions. (c) Self-monitoring – the capability of a
computing system to detect the change of internal and
external circumstances consistently. (d) Self-adjusting –
the capability of a computing system to adapt to internal
and external changes reflexively.
 What are the perspectives of autonomic computing?
There are mainly two perspectives, namely business and
research oriented perspectives that provide a bird’s-eye
view of the paradigm. Firstly, from a business oriented
perspective, autonomic computing was proposed by IBM
for better management of increasingly complex
computing systems and reduce the total cost of ownership
of systems today [5] [6], hence aiming to reallocate

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1276 Issue 8, Volume 8, August 2009

management responsibilities from administrators to the
computing systems itself based on high-level policies [7]
[8]. With the aim to implement autonomic principles in
personal computing environments, personal autonomic
computing a subset of autonomic computing has also
emerged [9].
 Secondly, the research oriented perspective primarily
focuses on the worms-eye view, laying necessary
foundations for the newly emerging computing
paradigm. There are two categories of ongoing research
in the area of autonomic computing. Firstly, research
describing approaches and technologies related to
autonomic computing [10]. The aim of the approaches is
to achieve autonomy without specifying the technology
to be implemented [11]. Any existing technology capable
of achieving autonomy (in any degree) can be used in the
approaches. Secondly, research attempting to develop
autonomic computing as a unified project [10]. The
research lays emphasis on the means to achieve
autonomy and initiatives are taken to define a set of
standard practices and methods as the path towards
autonomy.
 What are the autonomic computing approaches?
Autonomic computing researchers have adopted six
different approaches, namely emergence-based,
component/service-based, control theoretic based,
artificial intelligence, swarm intelligence and agent based
approaches to achieve self-managing systems.
 The emergence based approach for distributed
systems considers complex behaviours of simple entities
with simple behaviours without global knowledge [12].
Intelligent behaviour is thus repercussions of interactions
and coordination between entities. One major challenge
in emergence based approaches is on how to achieve
global coherent behaviour [13]. Autonomic computing
research on emergence based approaches is reported in
[12] - [16].
 The component/service based approach for distributed
systems employ service-oriented architectures. With
advancements in software engineering practices,
component/service based approaches are also
implemented in many web based services. The autonomic
element of the autonomic system is a component whose
interfaces, behaviours and design patterns aim to achieve
self-management. These approaches are being developed
for large scale networked systems including grids.
Autonomic computing research on component/service
based approaches is reported in [17] - [21].
 The control theoretic based approach aims to apply
control theory for developing autonomic computing
systems. The building blocks of control theory such as
reference input, control input, control error, controller,
disturbance input, measured output, noise input, target
system and transducer are used to model computing
systems and further used to study properties like stability,

short settling times, and accurate regulation. Using a
defined set of control theory methodologies, the
objectives of a control system namely regulatory control,
disturbance rejection and optimization can be achieved.
These objectives are closely associated with the
objectives of autonomic computing. Research on control
theoretic based approaches applied to autonomic
computing is reported in [22] - [24].
 The artificial intelligence based approaches aim for
automated decision making and the design of rational
agents. The concept of autonomy is realized by
maximizing an agent’s objective based on perception and
action in the agent’s environment with the aid of
information from sensors and in-built knowledge. Work
on artificial intelligence approaches for autonomic
computing is reported in [25] [26].
 The swarm intelligence based approaches focuses on
designing algorithms and distributed problem solving
devices inspired by collective behaviour of swarm units
that arise from local interactions with their environment
[27] [28]. The algorithms considered are
population-based stochastic methods executed on
distributed processors. Autonomic computing research
on swarm intelligence approaches is reported in [29] -
[32].
 The agent based approaches for distributed systems is
a generic technique adopted to implement emergence,
component/service, artificial intelligence or swarm
intelligence based approaches. The agents act as
autonomic elements or entities that perform distributed
task. The domain of software engineering considers
agents to facilitate autonomy and hence have a profound
impact on achieving the objectives of autonomic
computing. Research work based on multi-agents
supporting autonomic computing are reported in [5] [33]
- [39].
 What needs to be focused ahead? The focus of
researchers in autonomic computing should be towards
two directions. Firstly, researchers ought to aim towards
applying autonomic computing concepts to parallel
computing systems. This focus is essential since most
distributed computing systems are closely associated
with the parallel computing paradigm. The benefits of
autonomy in computing systems, namely reducing cost of
ownership and reallocating management responsibilities
to the system itself are also relevant to parallel computing
systems. It is surprising that only few researchers have
applied autonomic computing concepts to parallel
computing systems in the approaches above.
 Secondly, autonomic computing researchers ought to
focus towards implementing the approaches for building
reliable systems. One potential area of application that
demands reliable systems is space applications. Space
crafts employ FPGAs, a special purpose parallel
computing system that are subject to malfunctioning or

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1277 Issue 8, Volume 8, August 2009

failures of hardware due to ‘Single Event Upsets’
(SEUs), caused by radiation on moving out of the
protection of the atmosphere [40] - [42]. One solution to
overcome this problem is to employ reconfigurable
FPGAs. However, there are many overheads in using
such technology and hardware reconfiguration is
challenging in space environments. In other words,
replacement or servicing of hardware is an extremely
limited option in space environments. On the other hand
software changes can be accomplished. In such cases,
autonomic computing approaches can come to play.
 How can a bridge be built between autonomic
computing approaches and parallel computing systems?
How can autonomic computing approaches be extended
towards building reliable systems for space applications?
The work reported in this paper is motivated towards
bridging this gap by proposing swarm-array computing, a
novel technique to achieve autonomy for distributed
parallel computing systems and experimenting the
feasibility of a proposed approach on FPGAs that can be
useful for space applications.
 The remainder of the paper is organized as follows.
Section 2 introduces swarm-array computing. Section 3
investigates the feasibility of the proposed approach by
simulations. Section 4 presents the real-time

implementation detail to be considered in future work.
Section 5 concludes the paper.

Figure 1. The development f Swarm-Array Computing o

2 Swarm-Array Computing
Swarm-array computing is a swarm robotics inspired
approach and is proposed as a path to achieve autonomy.
The development of the swarm-array computing is shown
in figure 1. The foundations of swarm-array computing
are based on parallel and autonomic computing
paradigms. The constitution of the swarm-array
computing approach can be separated into four
constituents. Three approaches are proposed that bind the
swarm-array computing constituents together. The four
constituents and the three approaches are considered in
the following sub sections.

2.1 Constituents
There are four prime constituents that make up the
constitution of swarm-array computing. They are the
computing system, the problem/task, the swarms and the
landscape considered in this section.
 Firstly, the computing systems which are available for
parallel computing are multi-core processors, clusters,

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1278 Issue 8, Volume 8, August 2009

grids, field programmable gate arrays (FPGA), general
purpose graphics processing units (GPGPU),
application-specific integrated circuit (ASIC) and vector
processors. With the objective of exploring swarm-array
computing, FPGAs are selected as an experimental
platform for the proposed approaches.
 FPGAs are a technology under investigation in which
the cores of the computing system are not geographically
distributed. The cores in close proximity can be
configured to achieve a regular grid or a two dimensional
lattice structure. Another reason of choice to look into
FPGAs is its flexibility for implementing reconfigurable
computing.
 The cores of the computing system can be considered
as a set of autonomous agents, interacting with each other
and coordinating the execution of tasks. In this case, a
processing core is similar to an organism whose function
is to execute a task. The focus towards autonomy is laid
on the parallel computing cores abstracted onto
intelligent cores. The set of intelligent cores hence
transform the parallel computing system into an
intelligent swarm. The intelligent cores hence form a
swarm-array. A parallel task to be executed resides
within a queue and is scheduled onto different cores by
the scheduler. The swarm of cores collectively executes
the task.
 The intelligent cores described above are an abstract
view of the hardware cores. But then the question on what
intelligence can be achieved on the set of cores needs to
be addressed. Intelligence of the cores is achieved in two
different ways. Firstly, by monitoring local neighbours.
Independent of what the cores are executing, the cores
can monitor each other. Each core can ask the question of
‘are you alive’ to its neighbours and gain information.
Secondly, by adjusting to core failures. If a core fails, the
process which was executed on the core needs to be
shifted to another core where resources previously
accessed can be utilized. Once a process has been shifted,
all data dependencies need to be re-established.
 To shift a process from one core to another, there is a
requirement of storing data associated and state of the
executing process, referred to as checkpointing. This can
be achieved by a process monitoring each core or by
swarm carrier agents that can store the state of an
executing process. The checkpointing method suggested
is decentralized and distributed across the computing
system. Hence, though a core failure may occur, a process
can seamlessly be transferred onto another core. In effect,
awareness and optimizing features of the self-ware
properties are achieved.
 Secondly, the problem/task to be executed on the
parallel computing cores that can be considered as a
swarm of autonomous agents. To achieve this, a single
task needs to be decomposed and the sub tasks need to be
mapped onto swarm agents. The agent and the

sub-problems are independent of each other; in other
words, the swarm agents are only carriers of the sub-tasks
or are a wrapper around the sub-tasks.
 The swarm displaces itself across the parallel
computing cores or the environment. The goal would be
to find an area accessible to resources required for
executing the sub tasks within the environment. In this
case, a swarm agent is similar to an organism whose
function is to execute on a core. The focus towards
autonomy is laid on the executing task abstracted onto
intelligent agents. The intelligent agents hence form a
swarm-array.
 The intelligent agents described above are an abstract
view of the sub-tasks to be executed on the hardware
cores. Intelligence of the carrier agents is demonstrated
in two ways. Firstly, the capabilities of the carrier swarm
agents to identify and move to the right location to
execute a task. In this case, the agents need to be aware of
their environments and which cores can execute the task.
Secondly, the prediction of some type of core failures can
be inferred by consistent monitoring of power
consumption and heat dissipation of the cores. If the core
on which a sub-task being executed is predicted to fail,
then the carrier agents shift from one core to another
gracefully without causing an interruption to execution,
hence making the system more fault-tolerant and reliable.
An agent can shift from one core to another by being
aware of which cores in the nearest vicinity of the
currently executing core are available.
 Thirdly, a combination of the intelligent cores and
intelligent swarm agents leads to intelligent swarms. The
intelligent cores and intelligent agents form a
multi-dimensional swarm-array. The arena in which the
swarms interact with each other is termed as landscape.
 Fourthly, the landscape that is a representation of the
arena of cores and agents that are interacting with each
other in the parallel computing system. At any given
instance, the landscape can define the current state of the
computing system. Computing cores that have failed and
are predicted to fail are holes in the environment and
obstacles to be avoided by the swarms.
 A landscape is modelled from three different
perspectives which is the basis for the swarm-array
computing approaches discussed in the next section.
Firstly, a landscape comprising dynamic cores (are
autonomous) and static agents (are not autonomous) can
be considered. In this case, the landscape is affected by
the intelligent cores. Secondly, a landscape comprising of
static cores and dynamic agents can be considered. In this
case, the landscape is affected by the mobility of the
intelligent agents. Thirdly, a landscape comprising of
dynamic cores and dynamic agents can be considered. In
this case, the landscape is affected by the intelligent cores
and mobility of the carrier agents.

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1279 Issue 8, Volume 8, August 2009

2.2 Approaches
At this point it is appropriate to consider how the
constitution of swarm-array computing fits together? To
answer this question, three approaches that combine the
constituents of swarm-array computing are proposed.
 In the first approach, only the intelligent cores are
considered to be autonomous swarm agents and form the
landscape. A parallel task to be executed resides within a
queue and is scheduled onto the cores by a scheduler. The
intelligent cores interact with each other as considered in
section 2.1 to transfer tasks from one core to another at
the event of a hardware failure.
 In the second approach, only the intelligent swarm
agents are considered to be autonomous and form the
landscape. A parallel task to be executed resides in a
queue, which is mapped onto carrier swarm agents by the
scheduler. The carrier swarm displace through the cores
to find an appropriate area to cluster and execute the task.
The intelligent agents interact with each other as
considered in Section 2.1 to achieve mobility and
successful execution of a task. Figure 2 describes the
approach diagrammatically.
 In the third approach, both the intelligent cores and
intelligent agents are considered to form the landscape.
Hence, the approach is called a combinative approach. A
parallel task to be executed resides in a queue, which is
mapped onto swarm agents by a scheduler. The swarm
agents can shift through the landscape utilizing their own
intelligence, or the swarm of cores could transfer tasks
from core to core in the landscape. The landscape is
affected by the mobility of intelligent agents on the cores
and intelligent cores collectively executing a task by
accommodating the intelligent agent.
 However, in this paper the major focus is the second
approach and is only considered for experimental studies.
The experimental results of the first method is reported in
[43].

3 Simulation Studies
Simulation studies were pursued to validate and visualize
the proposed approach in swarm-array Computing. Since
FPGA cores are considered in this paper and the approach
proposed in this paper considers executing cores as
agents; hence a multi-agent simulator is employed. This
section is organized into describing the simulation
environment, experimental platform and model and
simulation results.

3.1 Simulation Environment
The feasibility of the proposed swarm-array computing
approach was validated on the SeSAm (Shell for

Simulated Agent Systems) simulator. The SeSAm
simulator environment supports the modelling of
complex agent-based models and their visualization [44]
[45].

Figure 2. Second Approach in swarm-array computing

 The environment has provisions for modelling agents,
the world and simulation runs. Agents are characterized
by a reasoning engine and a set of state variables. The
reasoning engine defines the behaviour of the agent, and
is implemented in the form of an activity diagram, similar
to a UML-based activity diagram. The state variables of
the agent specify the state of an agent. Rules that define
activities and conditions can be visually modelled
without the knowledge of a programming language. The
building block of such rules is primitives that are
pre-defined. Complex constructs such as functions and
data-types can be user-defined.
 The world provides knowledge about the
surroundings the agent is thriving. A world is also
characterized by variables and behaviours. The
modelling of the world defines the external influences
that can affect the agent Hence, variables associated with
a world class can be used as parameters that define global
behaviours. This in turn leads to the control over agent
generation, distribution and destruction.
 Simulation runs are defined by simulation elements
that contribute to the agent-based model being

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1280 Issue 8, Volume 8, August 2009

constructed. The simulation elements include situations,
analysis lists, simulations and experiments. Situations are
configurations of the world with pre-positioned agents to
start a simulation run. Analysis lists define means to
study agents and their behaviour with respect to time.
Simulations are combinations of a situation, a set of
analysis items and a simulation run; or in other words a
complete definition of a single simulation run.
Experiments are used when a combination of single
simulation runs are required to be defined.

3.2 Experimental Platform & Model
As considered in section 2.1, the swarm-array computing
approach needs to consider the computing platform, the
problem/task and the landscapes. The parallel computing
platform considered in the studies reported in this paper is
FPGAs and is modelled in SeSAm. The hardware cores
are arranged in a 5 X 5 regular grid structure. The model
assumes serial bus connectivity between individual cores.
Hence, a task scheduled on a core can be transferred onto
any other core in the regular grid.
 The breakdown of any given task to subtasks is not
considered within the problem domain of swarm-array
computing. The simulation is initialized with sub-tasks
scheduled to a few cores in the grid. Each subtask
carrying agent consistently monitors the hardware cores.
This is possible by sensory information (in our model,

temperature is sensed consistently) passed onto the
carrier agent. In the event of a predicted failure, the
carrier agent displaces itself to another core in the
computing system. The behaviour of the individual cores
varies randomly in the simulation. For example, the
temperature of the FPGA core changes during simulation.
If the temperature of a core exceeds a predefined
threshold, the subtask being executed on the core is
transferred by the carrier agent to another available core
that is not predicted to fail. During the event of a transfer
or reassignment, a record of the status of execution of the
subtask maintained by the carrier agent also gets
transferred to the new core. If more than one sub-task is
executed on a core predicted to fail, each sub-task may be
transferred to different cores.

Figure 3. Sequence of eight simulation screenshots (a) – (h) of a simulation run from initialization on the SeSAm multi-agent
simulator. Figure shows how the carrier agents carrying sub-tasks are seamlessly transferred to a new core when executing cores

fail.

3.3 Simulation Results
Figure 3 is a series of screenshots of a random simulation
run developed on SeSAm for eight consecutive time steps
from initialization. The figure shows the executing cores
as rectangular blocks in pale blue colour. When a core is
predicted to fail, i.e., temperature increases beyond a
threshold, the core is displayed in red. The subtasks
wrapped by the carrier agents are shown as blue filled
circles that occupy a random position on a core. As
discussed above, when a core is predicted to fail, the

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1281 Issue 8, Volume 8, August 2009

subtask executing on the core predicted to fail gets
seamlessly transferred to a core capable of processing at
that instant.
 The simulation studies are in accordance with the
expectation and hence are a preliminary confirmation of
the feasibility of the proposed approach in swarm-array
computing. Though some assumptions and minor
approximations are made, the approach is an opening for
applying autonomic concepts to parallel computing
platforms.

4 Real time Implementation
To implement the second approach considered in Section
2.2, the authors of this paper would like to opt for
‘Cluster-based implementation’. Clusters are parallel
computing systems, which have nodes linked together.
Three basic elements that define a cluster are the
collection of individual nodes, a network connecting the
nodes, and software that enables the nodes to
communicate [46].
 The approach will be implemented on the cluster
computing systems owned by the Centre for Advanced
Computing and Emerging Technologies (ACET) [47]
[48] at the University of Reading. The cluster intended to
be utilized comprises 16 Linux nodes.
 Immediate efforts will be made to implement classical
algorithms on the cluster. One such type of algorithms is
the parallel reduction algorithms [49] onto which the
swarm-array computing approach will be adopted.
Parallel reduction algorithms are chosen due to two
reasons. Firstly, the criticality of the executing nodes.
Each node of the cluster is a critical node while executing
a parallel reduction algorithm. This is due to the fact that
each node executes and maintains a piece of data
important to other nodes. However, the information
contained is not replicated and diffused to adjacent nodes.
If one node fails, it is most likely that the executing
algorithm stalls and requires to be reinstated by a restart
operation. Secondly, parallel reduction algorithms are
used for critical applications including space
applications. Self-management is an inevitable issue in
such applications. If there exists any point of failure, it is
most likely that the entire application or mission fails.
 To implement the approach, Message Passing
Interface (MPI) [50] [51] and Parallel Virtual Machine
(PVM) [52] [53] will be utilized. MPI provides control
over the executing process and hence will be useful to
implement intelligent agents. On the other hand, PVM
provides better control over the processor on which a
process executes (MPI does not offer control over
processor) and hence will be useful to implement the
intelligent core approach.
 Future work will also aim to study the third proposed
approach or the combinative approach in swarm-array

computing. Efforts will be made towards implementing
the approaches in real time as discussed above and hence
explore in depth the fundamental concepts associated
with the constituents of swarm-array computing.

5 Conclusions
In this paper, a swarm-array computing approach based
on intelligent agents that act as carriers of tasks has been
explored. Foundational concepts that define swarm-array
computing are introduced. The feasibility of the proposed
approach is validated on a multi-agent simulator. Though
only preliminary results are produced in this paper, the
approach gives ground for expectation that autonomic
computing concepts can be applied to parallel computing
systems and build reliable systems for space applications.
Real-time implementation details necessary to achieve
the concepts of intelligent cores and intelligent agents are
also presented briefly.

References:

[1] M. G. Hinchey and R. Sterritt, “99% (Biological)
Inspiration” in the Proceedings of the 4th IEEE
International Workshop on Engineering of
Autonomic and Autonomous Systems, 2007, pp. 187
– 195.

[2] P. Lin, A. MacArthur and J. Leaney, “Defining
Autonomic Computing: A Software Engineering
Perspective” in the Proceedings of the Australian
Software Engineering Conference, 2005, pp. 88 – 97.

[3] R. Sterritt and M. Hinchey, “Autonomic Computing
– Panacea or Poppycock?” in the 12th IEEE
International Conference and Workshops on the
Engineering of Computer-Based Systems, 2005, pp.
535 – 539.

[4] R. Sterritt and D. Bustard, “Autonomic Computing –
a Means of Achieving Dependability?” in the
Proceedings of the 10th IEEE International
Conference and Workshop on the Engineering of
Computer-Based Systems, 2003, pp. 247 – 251.

[5] M. R. Nami and M. Sharifi, “Autonomic Computing
a New Approach” in the First Asia International
Conference on Modelling and Simulation, 2007, pp.
352 – 357.

[6] M. Jarrett and R. Seviora, “Constructing an
Autonomic Computing Infrastructure using
Cougaar” in the Proceedings of the 3rd IEEE
International Workshop on Engineering of
Autonomic and Autonomous Systems, 2006, pp. 119
– 128.

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1282 Issue 8, Volume 8, August 2009

[7] S. Lightstone, “Foundations of Autonomic
Computing Development” in the Proceedings of the
4th IEEE Workshop on Engineering of Autonomic
and Autonomous Systems, 2007.

[8] W. Gentsch, K. Iano, D. J.-Watt, M. A. Minhas and
M. Yousif, “Self-Adaptable Autonomic Computing
Systems: An Industry View” in the Proceedings of
the 16th IEEE International Workshop on Database
and Expert Systems Applications, 2005.

[9] G. Cybenko, V. H. Berk, I. D. G.-DeSouza and C.
Behre, “Practical Autonomic Computing” in the
Proceedings of the 30th IEEE Annual International
Computer Software and Applications Conference,
2006.

[10] M. R. Nami and K. Bertels, “A Survey of Autonomic
Computing Systems” in the Third International
Conference on Autonomic and Autonomous
Systems, 2007, pp. 26 – 30.

[11] T. Marshall and Y. S. Dai, “Reliability Improvement
and Models in Autonomic Computing” in the
Proceedings of the 11th International Conference on
Parallel and Distributed Systems, 2005, pp. 468 –
472.

[12] T. M. King, D. Babich, J. Alava, P. J. Clarke and R.
Stevens, “Towards Self-Testing in Autonomic
Computing Systems” in the Proceedings of the 8th
International Symposium on Autonomous
Decentralized Systems, 2007, pp. 51 – 58.

[13] R. J. Anthony, “Emergence: a Paradigm for Robust
and Scalable distributed applications” in the
Proceedings of the International Conference on
Autonomic Computing, 2004, pp. 132 – 139.

[14] T. De Wolf and T. Holvoet, "Emergence as a general
architecture for distributed autonomic computing,"
K. U. Leuven, Department of Computer Science,
Report CW 384, January, 2004.

[15] F. Saffre, J. Halloy, M. Shackleton and J. L.
Deneubourg, “Self-Organized Service Orchestration
Through Collective Differentiation” in the IEEE
Transactions on Systems, Man and Cybernetics, Part
B, Dec 2006, pp. 1237 – 1246.

[16] . Privosnik and M. Marolt, “The Development of
Emergent Properties in Massive Multi-Agent
Systems,” in the Proceedings of the WSES
International Conference on Multimedia, Internet,
Video Technologies, Malta, 2001.

[17] P. Champrasert, C. Lee and J. Suzuki,
“SymbioticSphere: Towards an Autonomic Grid
Network System” in the Proceedings of the IEEE
International Conference on Cluster Computing,
2005, pp. 1 – 2.

[18] A. Zeid and S. Gurguis, “Towards Autonomic Web
Services” in the Proceedings of the 3rd ACS/IEEE
International Conference on Computer Systems and
Applications, 2005.

[19] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci
and M. Trubian, “Resource Management in the
Service Oriented Architecture” in the Proceedings of
the IEEE International Conference on Autonomic
Computing, 2006, pp. 84 – 92.

[20] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess
and J. O. Kephart, “An Architectural Approach to
Autonomic Computing” in the Proceedings of the
IEEE International Conference on Autonomic
Computing, 2004.

[21] A. Moga, J. Soos, I. Salomie and M. Dinsoreanu,
“Adding Self-healing Behaviour to Dynamic Web
Service Compostion,” in the Proceedings of the 5th
WSEAS International Conference on Data Networks,
Communications & Computers, Bucharest, Romania,
2006.

[22] M. Parashar, .Z. Li, H. Liu, V. Matossian and C.
Schmidt, “Enabling Autonomic Grid Applications:
Requirements, Models and Infrastructure” in the
Lecture Notes in Computer Science, Self-Star
Properties in Complex Information Systems,
Springer Verlag. Vol. 3460, 2005, pp. 273-290.

[23] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G.
Kaiser and D. Phung, “Self-Managing Systems: A
Control Theory Foundation” in the Proceedings of
the 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based
Systems, 2005, pp. 441 – 448.

[24] S. Abdelwahed, N. Kandasamy, and S. Neema,
“Online Control for Self-Management in Computing
Systems,” in the Proceedings of the 10th IEEE
Real-Time and Embedded Technology and
Applications Symposium, Toronto, Canada, 2004.

[25] Q. Zhu, L. Lin, H. M. Kienle and H. A. Muller,
“Characterizing Maintainability concerns in
Autonomic Element Design” in the Proceedings of
the IEEE International Conference on Software
Maintenance, 2008, pp. 197 – 206.

[26] J. O. Kephart and W. E. Walsh, “An Artificial
Intelligence Perspective on Autonomic Computing
Policies” in the Proceedings of the 5th IEEE
International Workshop on Policies for Distributed
Systems and Networks, 2004, pp. 3 – 12.

[27] A. Peddemors, I. Niemegeers, H. Eertink and J. de
Heer, “A System Perspective on Cognition for
Autonomic Computing and Communication” in the

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1283 Issue 8, Volume 8, August 2009

Proceedings of the 16th International Workshop on
Database and Expert Systems Application, 2005.

[28] M. G. Hinchey, R. Sterritt and C. Rouff, "Swarms
and Swarm Intelligence " in IEEE Computer, Vol.
40, No. 4, IEEE Computer Society, April 2007, pp.
111-113.

[29] J. Kennedy, R. C. Eberhart and Y. Shi, “Swarm
Intelligence”, Morgan Kaufmann Publishers, 2001.

[30] J. Wang, B. J. d’Auriol, Y.-K. Lee and S. Lee, “A
Swarm Intelligence inspired Autonomic Routing
Scenario in Ubiquitous Sensor Networks” in the
Proceedings of the International Conference on
Multimedia and Ubiquitous Engineering, 2007, pp.
745 – 750.

[31] M. Hinchey, Y.- S. Dai, C. A. Rouff, J. L. Rash and
M. Qi, “Modeling for NASA Autonomous
Nano-Technology Swarm Missions and
Model-Driven Autonomic Computing” in the
Proceedings of the 21st International Conference on
Advanced Information Networking and
Applications, 2007, pp. 250 – 257.

[32] L. M. F.-Carrasco, H. T.-Marin and M. V.-Rendon,
“On the Path Towards Autonomic Computing:
Combining Swarm Intelligence and Excitable Media
Models” in the Proceedings of the 7th Mexican
International Conference on Artificial Intelligence,
2008, pp. 192 – 198.

[33] T. De Wolf and T. Holovet, “Towards Autonomic
Computing: Agent-Based Modelling, Dynamical
Systems Analysis, and Decentralised Control” in the
Proceedings of the IEEE International Conference
on Industrial Informatics, 2003, pp. 470 – 479.

[34] D. Bonino, A. Bosca and F. Corno, “An Agent based
Autonomic Semantic Platform” in the Proceedings
of the International Conference on Autonomic
Computing, 2004, pp. 189 – 196.

[35] H. Tianfield, “Multi-agent Autonomic Architecture
and its Application in e-Medicine” in the
Proceedings of the IEEE/WIC International
Conference on Intelligent Agent Technology, 2003.

[36] G. Pour, “Prospects for Expanding Telehealth:
Multi-Agent Autonomic Architectures” in the
Proceedings of the International Conference on
Computational Intelligence for Modelling and
Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet
Commerce 2006.

[37] H. Guo, J. Gao, P. Zhu and F. Zhang, “A
Self-Organized Model of Agent-Enabling
Autonomic Computing for Grid Environment” in the

Proceedings of the 6th World Congress on Intelligent
Control and Automation, 2006, pp. 2623 – 2627.

[38] J. Hu, J. Gao, B.–S. Liao and J.-J. Chen,
“Multi-Agent System based Autonomic Computing
Environment” in the Proceedings of the International
Conference on Machine Learning and Cybernetics,
2004, pp. 105 – 110..

[39] A.Schiaffino M. De Franceschi, K. S. Borges, R.
Moraes, F. Vasques, “Autonomic Computing
Systems: Using AI Techniques for the Development
of Agents in the Network Management Domain,” in
the WSEAS Transactions on Communications, Issue
8, Volume 5, August 2006.

[40] M. V. O’Bryan, C. Poivey, S. D. Kniffin, S. P.
Buchner, R. L. Ladbury, T. R. Oldham, J. W.
Howard Jr., K. A. LaBel, A. B. Sanders, M. Berg, C.
J. Marshall, P. W. Marshall, H. S. Km, A. M.
Dung-Phan, D. K. Hawkins, M. A. Carts, J. D.
Forney, T. Irwin, .C. M. Seidleck, S. R. Cox, M.
Friendlich, R. J. Flanigan, D. Petrick, W. Powell, J.
Karsh and M. Baze, “Compendium of Single Event
Effects Results for Candidate Spacecraft Electronics
for NASA” in the Proceedings of the IEEE Radiation
Effects Data Workshop, 2006, pp. 19 – 25.

[41] E. Johnson, M. J. Wirthlin and M. Caffrey,
“Single-Event Upset Simulation on an FPGA” in the
Proceedings of the International Conference on
Engineering of Reconfigurable Systems and
Algorithms, USA, 2002.

[42] S. Habinc, “Suitability of Reprogrammable FPGAs
in Space Applications” a feasibility Report for the
European Space Agency by Gaisler Research under
ESA contract No. 15102/01/NL/FM(SC) CCN-3,
September 2002.

[43] B. Varghese and G. T. McKee, “Towards Self-ware
via Swarm-Array Computing” in the Proceedings of
the International Conference on Computational
Intelligence and Cognitive Informatics, Paris,
France, 2009.

[44] F. Klugl, R. Herrler and M. Fehler, “SeSAm:
Implementation of Agent-Based Simulation Using
Visual Programming” in the Proceedings of the Fifth
International Joint Conference on Autonomous
Agents and Multi-Agent Systems, Japan, 2006, pp.
1439 – 1440.

[45] SeSAm website: http://www.simsesam.de
[46] J. D. Sloan, “High Performance Linux Clusters with

OSCAR, Rocks, openMosix & MPI,” O’Reilly
Media, Inc. 2005.

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1284 Issue 8, Volume 8, August 2009

[47] Centre for Advanced Computing and Emerging
Technologies (ACET) website:
http://www.acet.reading.ac.uk

[48] High Performance Computing website of the ACET
Centre: http://hpc.acet.rdg.ac.uk

[49] M. J. Quinn, “Parallel Computing Theory and
Practice,” McGraw-Hill, Inc, Second Edition, 1994.

[50] S. Vetter, Y. Aoyama and J. Nakano, “RS/6000 SP:
Practical MPI Programming,” IBM Redbooks, 1999.

[51] W. Gropp, E. Lusk and A. Skjullum, “Using MPI-2:
Advanced Features of the Message Passing
Interface,” MIT Press, 1999.

[52] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek and V. Sunderam, “PVM: Parallel Virtual
Machine A Users’ Guide and Tutorial for Networked
Parallel Computing,” MIT Press, 1994.

[53] G. A. Geist, J. A. Kohl and P. M. Papadopoulos,
“PVM and MPI: A Comparison of Features,” in
Calculateurs Paralleles Vol. 8 No. 2, 1996.

WSEAS TRANSACTIONS on COMPUTERS Blesson Varghese, Gerard Mckee

ISSN: 1109-2750 1285 Issue 8, Volume 8, August 2009

