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Abstract: - In this paper, we study different network flow problems in networks with node capacity. The 
literature on network flow problems is extensive, but these problems are described and studied in networks in 
which only arcs could have finite capacities. There are several applications that arise in practice and that can be 
reduced to a specific network flow problem in a network in which also nodes have limited capacity. This is the 
reason for focusing on maximum flow problem, minimum flow problem and minimum cost flow problem in a 
network with node capacities. 
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1 Introduction 
Network flow problems are a group of network 
optimization problems with widespread and diverse 
applications. The literature on network flow 
problems is extensive. Over the past 50 years 
researchers have made continuous improvements to 
algorithms for solving several classes of problems. 
From the late 1940s through the 1950s, researchers 
designed many of the fundamental algorithms for 
network flow, including methods for maximum flow 
and minimum cost flow problems. In the next 
decades, there are many research contributions 
concerning improving the computational complexity 
of network flow algorithms by using enhanced data 
structures, techniques of scaling the problem data 
etc.  

One of the reasons for which the maximum flow 
problem and that minimum cost flow problem were 
studied so intensively is the fact that they arise in a 
wide variety of situations and in several forms. 

Although it has its own applications, the 
minimum flow problem was not dealt so often as the 
maximum flow ([1], [2], [3], [6], [18], [19], [20], 
[21], [23]) and the minimum cost flow problem ([1], 
[3], [5], [9], [10], [25]). 

These network flow problems are intensively 
studied in networks in which only arcs could have 
finite capacities, but there are several applications 
that arise in practice and that can be reduced to a 
specific network flow problem in a network in 
which also nodes have capacity. For instance, the 

nodes might be airports with limited runaway 
capacities for takeoff and landings or might be 
switches in a communication network with a limited 
number of ports. In such networks, we are interested 
to determine (minimum, maximum or minimum 
cost) flows that satisfy both the arc and node 
capacities. In the next three sections, we will show 
how each of these three network flow problem can 
be solved in those particular network which allow 
nodes to have limited capacities. 
 
 
2 Maximum Flow Problem 
The maximum flow problem is one of the most 
fundamental problems in network flow theory and it 
was studied extensively. The importance of the 
maximum flow problem is due to the fact that it 
arises in a wide variety of situations and in several 
forms. Sometimes the maximum flow problem 
occurs as a subproblem in the solution of more 
difficult network problems, such as the minimum 
cost flow problem or the generalized flow problem. 
The maximum flow problem also arises in a number 
of combinatorial applications that on the surface 
might not appear to be maximum flow problems at 
all. The problem also arises directly in problems as 
far reaching as machine scheduling, the assignment 
of program modules to computer processors, the 
rounding of census data in order to retain the 
confidentiality of individual households, tanker 
scheduling and several others. 
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2.1.  Standard Maximum Flow Problem 
Without any loss of generality, we can consider a 
network with zero lower bounds, because any 
maximum flow problem in a network with positive 
lower bounds can be transformed in an equivalent 
maximum flow problem in a network with zero 
lower bounds (for details see [1]). 
 Let G = (N, A, c, s, t) be a capacitated network 
with a nonnegative capacity c(i, j) associated with 
each arc (i, j)∈A. We distinguish two special nodes 
in the network G: a source node s and a sink node t. 
 Let n=|N|, m = |A| and C = max {c(i, j) |    (i, j) 
∈ A}. 
 A flow is a function f : A →R+ satisfying the 
next conditions: 
 

f(s, N) - f(N, s) = v       (1) 
f(i, N) - f(N, i) = 0, i ≠ s,t     (2) 
f(t, N) - f(N, t) = -v       (3) 
0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A     (4) 

for some v ≥ 0. 
 

We refer to v as the value of the flow f. 
The maximum flow problem is to determine a 

flow f for which v is maximized. 
For the maximum flow problem, a preflow is a 

function f : A →R+  satisfying the next conditions: 
 

f(i, N) - f(N, i) ≥ 0, i ≠ s,t      (5) 
0 ≤ f(i, j) ≤ c(i, j), (i, j)∈A     (6) 

 
Let f be a preflow. We define the excess of a 

node i∈N in the following manner: 
 

e(i) = f(i, N) - f(N, i)       (7) 
 

Thus, for the maximum flow problem, for any 
preflow f, we have: 

e(i) ≥ 0, i∈N \{s, t}. 
We say that a node i∈N \{s, t} is active if e(i) > 0 

and balanced if e(i) = 0. 
A preflow f for which  

e(i) = 0, i∈N \{s, t} 
is a flow. Consequently, a flow is a particular case 
of preflow.  

For the maximum flow problem, the residual 
capacity  r(i, j) of any arc (i, j)∈A, with respect to a 
given preflow f,  is given by  

 
r(i, j)  = c(i, j) - f(i, j) + f(j, i). 

 

By convention, if (i, j)∈A and (j, i)∉A, then we 
add the arc (j, i) to the set of arcs A and we set c(j, i) 
= 0. The residual capacity r(i, j) of the arc (i, j) 
represents the maximum amount of additional flow 
that can be sent from the node i to node j using both 
of the arcs (i, j) and (j, i). 

The network Gf  = (N, Af) consisting only of those 
arcs with strictly positive residual capacity is 
referred to as the residual network (with respect to 
the given preflow f). 

In the residual network Gf  = (N, Af) the distance 
function   d : N →N  with respect to a given preflow 
f  is a function from the set of nodes to the 
nonnegative integers.  

We say that a distance function is valid if it 
satisfies the following validity conditions: 

 
d(t) = 0  
d(i) ≤ d(j) + 1, for every arc (i, j) ∈Af.  
 

We refer to d(i) as the distance label of node i. 
 
Theorem 1.([1])(a) If the distance labels are valid, 
the distance label d(i) is a lower bound on the 
length of the shortest directed path from node i to 
sink node t in the residual network. 
       (b) If d(s) ≥ n, the residual network contains no 
directed path from the source node s to the sink 
node t. 
 

A preflow is blocking if it saturates an arc on 
every path from s to t. 

The maximum flow problem was first formulated 
and solved using the well known augmenting path 
algorithm by Ford and Fulkerson in 1956. Since 
then, two types of maximum flow algorithms have 
been developed: augmenting path algorithms and 
preflow algorithms: 

1) The augmenting path algorithms maintain 
mass balance constraints at every node of 
the network other than the source node and 
the sink node. These algorithms 
incrementally augment flow along paths 
from the source node to the sink node. By 
determining the augmenting paths with 
respect to different selection rules, different 
algorithms were developed. 

2) The preflow algorithms flood the network 
so that some nodes have excesses. These 
algorithms incrementally relieve flow from 
nodes with excesses by sending flow from 
the node forward toward the sink node or 
backward toward the source node. By 
imposing different rules for selecting nodes 
with excesses, different preflow algorithms 
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were obtained. These algorithms are more 
versatile and more efficient than the 
augmenting path algorithms.  

 
 
2.2 Maximum Flow Problem in Networks 

with Node Capacities 
Now we can formulate the maximum flow problem 
in networks with node capacities. Let G =             
(N, A, c, s, t) be a network on which we define a 
new function: nc:A→R+. The node capacity 
function, nc, associates to each node i a positive 
value nc(i) that represents the maximum amount of 
flow that can pass through node i.  
 In a network with node capacities G =          
(N, A, c, nc, s, t), a feasible flow is a function          
f: A → R+ satisfying conditions (1) - (4) and: 

    
Theorem 3. There is a maximum flow f’of value v’ 
in network G’ if and only if there is a maximum 
flow f of value v = v’ in network G.  

 
   f(s, N) ≤ nc(s)        (8) 
   f(N, i) ≤ nc(i) ∀i∈N\{s}    (9) 
 
 The maximum flow problem in networks with 
node capacities consists in determining a flow of 
which value is maximized. 

We will solve the maximum flow problem in the 
network with node capacities G = (N, A, c, nc, s, t) 
by determining a standard maximum flow in a 
standard network G’ = (N’, A’, c’, s’, t) that is 
equivalent to the original network G. Network G’ is 
determined in the following manner: 

 
   N’=N1∪N2 

   N1={i’ | i∈N} 

   N2={i” | i∈N} 

   A’=A1∪A2 

   A1={(i”,j’) | (i,j)∈A} 
   A2={(i’,i”) | i∈N} 
   l’(i”,j’) = l(i,j), ∀(i”,j’)∈A1 
   l’(i’,i”) = 0, ∀(i’,i”)∈A2 
   c’(i”,j’) = c(i,j), ∀(i”,j’)∈A1 
   c’(i’,i”) = nc(i), ∀(i’,i”)∈A2 
 
Theorem 2. There is a feasible flow f’of value v’ in 
network G’ if and only if there is a feasible flow f of 
value v = v’ in network G.  
 
Proof. In network G’, let f’ be a feasible of value v’. 
We determine the flow f in the network G with node 
capacities in the following manner: 
 
   f(i, j) = f’(i”, j’), ∀(i,j)∈A     (10) 

 

Obviously, f is a feasible flow of value v = v’ in 
network G. 

Reciprocally, let f be a feasible of value v in the 
network G. We establish the flow f’ in the network 
G’ in the following manner: 

 
   f’(i”, j’)= f(i, j), ∀(i, j)∈A1 

f’(i’, i”) = f(N, i), ∀(i’, i”)∈A2 
 
Obviously, f’ is a feasible flow of value v’ = v in 

network G’. 
 
 A consequence of the theorem 2 is the following: 
 

 
 Consequently, the maximum flow problem in a 
network with node capacities G = (N, A, c, nc, s, t) 
can be solved by determining a maximum flow f’ in 
a transformed standard network G’ = (N’, A’, c’, s’, 
t). From the maximum flow f’, we establish easily 
the maximum flow f in G by using the relations 
(10). For finding the maximum flow f’ in G’, we can 
use any algorithm for the maximum flow problem: 
any augmenting path algorithm (see [1], [3]) or any 
preflow algorithm (see [1], [3], [18], [19], [20], 
[21]).  
 
 
3 Minimum Flow Problem 
Although it has its own applications, the 
minimum flow problem was not dealt so often 
as the maximum flow ([1], [2], [3], [6], [18], 
[19], [20], [21], [23]) and the minimum cost 
flow problem ([1], [3], [5], [9], [10], [25]). 
There are many problems that occur in economy 
that can be reduced to minimum flow problems. 
Examples can be found in [15] and [16]. 
 
 
3.1 Standard Minimum Flow Problem 

Given a capacitated network G = (N, A, l, c, s, t) 
with a nonnegative capacity c(i, j) and with a 
nonnegative lower bound l(i, j) associated with 
each arc (i, j)∈A. We distinguish two special nodes 
in the network G: a source node s and a sink node t. 

Let n=|N|, m = |A| and C = max { c(i, j) | (i, j) ∈ 
A}. 

A flow is a function f : A →R+ satisfying the 
next conditions: 
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f(s, N) - f(N, s) = v       (11) 
f(i, N) - f(N, i) = 0, i ≠ s,t     (12) 
f(t, N) - f(N, t) = -v       (13) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A   (14) 

 
for some v ≥ 0, where 

f(i, N) = Σj f(i, j), i∈N 
and 

f(N, i) = Σj  f(j, i), i∈N. 
 

We refer to v as the value of the flow f. 
The minimum flow problem is to determine a 

flow f for which v is minimized. So, the objective is 
to send as little flow as possible through the 
network G from the source node s to the sink node 
t. 

For the minimum flow problem, a preflow is a 
function  f : A →R+  satisfying the next conditions: 

 
f(i, N) - f(N, i) ≤ 0, i ≠ s,t     (15) 
l(i, j) ≤ f(i, j) ≤ c(i, j), (i, j)∈A   (16) 

 
Let f be a preflow. We define the deficit of a 

node i∈N in the following manner: 
 

e(i) = f(i, N) - f(N, i)       (17) 
 

Thus, for the minimum flow problem, for any 
preflow f, we have: 

 
e(i) ≤ 0, i∈N \{s, t}. 
 

We say that a node i∈N \{s, t} is active if e(i) < 0 
and balanced if e(i) = 0. 

A preflow f for which  
 

e(i) = 0, i∈N \{s, t} 
 

is a flow. Consequently, a flow is a particular case 
of preflow. 

For the minimum flow problem, the residual 
capacity r(i, j) of any arc (i, j)∈A, with respect to a 
given preflow f,  is given by  

 
r(i, j)  = c(j, i) - f(j, i) + f(i, j) - l(i, j). 
 

By convention, if (i, j)∈A and (j, i)∉A, then we 
add the arc (j, i) to the set of arcs A and we set l(j, i) 
= 0 and c(j, i) = 0. The residual capacity r(i, j) of 
the arc (i, j) represents the maximum amount of 
flow from the node i to node j that can be cancelled 
by modifying the flow on both of the arcs (i, j) and 
(j, i). 

The network Gf  = (N, Af) consisting only of those 
arcs with strictly positive residual capacity is 
referred to as the residual network (with respect to 
the given preflow f). 

In the residual network Gf  = (N, Af) the distance 
function  d : N →N  with respect to a given preflow 
f  is a function from the set of nodes to the 
nonnegative integers.  

We say that a distance function is valid if it 
satisfies the following validity conditions: 

 
d(s) = 0  
d(j) ≤ d(i) + 1, for every arc (i, j) ∈Af.  

 
We refer to d(i) as the distance label of node i. 

 
Theorem 4.(a) If the distance labels are valid, the 
distance label d(i) is a lower bound on the length of 
the shortest directed path from the source node s to 
node i in the residual network. 
       (b) If d(t) ≥ n, the residual network contains no 
directed path from the source node s to the sink 
node t. 
 
Proof. (a) Let P = (s=i1, i2 ,…, ik , ik+1=i) be any 
path of length k from node s to node i in the 
residual network. The validity conditions imply 
that: 
 
  d(i2) ≤ d(i1) + 1 = d(s)+1 = 1 
  d(i3) ≤ d(i2) + 1 ≤ 2 
  d(i4) ≤ d(i3) + 1 ≤ 3 

…. 
  d(ik+1) ≤ d(ik) + 1 ≤ k. 
 
(b) We proved that d(t) is a lower bound on the 
length of the shortest path from the source node s 
to the sink node t in the residual network and we 
know that no directed path can contain more than 
(n-1) arcs. Consequently, if d(t) ≥ n, then the 
residual network contains no directed path from s 
to t. 
 

We say that the distance labels are exact if for 
each node i, d(i) equals the length of the shortest 
path from node s to node i  in the residual network. 

We refer to an arc (i, j) from the residual network 
as an admissible arc if d(j) = d(i) + 1; otherwise it 
is  inadmissible. 

We refer to a node i with e(i) < 0 as an active 
node. We adopt the convention that the source node 
and the sink node are never active. 
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3.2.Minimum Flow Problem in Networks 
with Node Capacities 

Now we can formulate the minimum flow problem 
in networks with node capacities. Let G =          
(N, A, l, c, s, t) be a network on which we define a 
new function: nc:A→R+. The node capacity 
function, nc, associates to each node i a positive 
value nc(i) that represents the maximum amount of 
flow that can pass through node i.  

   
Obviously, f’ is a feasible flow of value v’ = v in 

network G’. 

 In a network with node capacities G =          
(N, A, l, c, nc, s, t), a feasible flow is a function 
f:A→R+ satisfying conditions (11) - (14) and: 

     

Theorem 6. There is a maximum flow f’of value v’ 
in network G’ if and only if there is a maximum 
flow f of value v = v’ in network G.  

 
   f(s, N) ≤ nc(s)        (18) 
   f(N, i) ≤ nc(i) ∀i∈N\{s}    (19) 
 
 The minimum flow problem in networks with 
node capacities consists in determining a flow of 
which value is minimized. 

We will solve the minimum flow problem in the 
network with node capacities G = (N, A, l, c, nc, s, t) 
by determining a standard minimum flow in a 
standard network G’ = (N’, A’, l’, c’, s’, t) that is 
equivalent to the original network G. Network G’ is 
determined in the following manner: 

 
   N’=N1∪N2 

   N1={i’ | i∈N} 

   N2={i” | i∈N} 

   A’=A1∪A2 

   A1={(i”,j’) | (i,j)∈A} 
   A2={(i’,i”) | i∈N} 
   l’(i”,j’) = l(i,j), ∀(i”,j’)∈A1 
   l’(i’,i”) = 0, ∀(i’,i”)∈A2 
   c’(i”,j’) = c(i,j), ∀(i”,j’)∈A1 
   c’(i’,i”) = nc(i), ∀(i’,i”)∈A2 
 
Theorem 5. There is a feasible flow f’of value v’ in 
network G’ if and only if there is a feasible flow f of 
value v = v’ in network G.  
 
Proof. In network G’, let f’ be a feasible of value v’. 
We determine the flow f in the network G with node 
capacities in the following manner: 
 
   f(i, j) = f’(i”, j’), ∀(i,j)∈A      (20) 

 
Obviously, f is a feasible flow of value v = v’ in 

network G. 
Reciprocally, let f be a feasible of value v in the 

network G. We establish the flow f’ in the network 
G’ in the following manner: 

 
   f’(i”, j’) = f(i, j), ∀(i, j)∈A1 

f’(i’, i”) = f(N, i), ∀(i’, i”)∈A2 
 

 
 A consequence of the theorem 5 is the following: 
 

 
 Consequently, the minimum flow problem in a 
network with node capacities G = (N, A, l, c, nc, s, t) 
can be solved by determining a minimum flow f’ in 
a transformed standard network G’ = (N’, A’, l’, c’, 
s’, t”). From the minimum flow f’, we establish 
easily the minimum flow f in G by using the 
relations (20). For finding the minimum flow f’ in 
G’, we can use any algorithm for the minimum flow 
problem: any decreasing path algorithm (see [15], 
[16]), any preflow algorithm (see [11], [12], [13], 
[15], [16]) or even the minimax algorithm (see [3], 
[14]).  
 
 
4 Minimum Cost Flow Problem 
The minimum cost flow problem, as well as one of 
its special cases which is the maximum flow 
problem, is one of the most fundamental problems 
in network flow theory and it was studied 
extensively. The importance of the minimum cost 
flow problem is also due to the fact that it arises in 
almost all industries, including agriculture, 
communications, defence, education, energy, health 
care, medicine, manufacturing, retailing and 
transportation. Indeed, minimum cost flow problem 
are pervasive in practice. 
 
 
4.1.Standard Minimum Cost Flow Problem 
Let G = (N, A) be a directed graph, defined by a set 
N of n nodes and a set A of m arcs. Each arc (i, j)∈A 
has a capacity c(i, j) and a cost b(i, j). We associate 
with each node i∈N a number v(i) which indicates 
its supply or demand depending on whether v(i) > 0 
or v(i) < 0. In the directed network G = (N, A, c, b, 
v), the minimum cost flow problem is to determine 
the flow f(i, j) on each arc (i, j)∈A which 
 

minimize  ∑
∈Aji

jifjib
),(

),(),(    (21) 

 
subject to 
 

WSEAS TRANSACTIONS on COMPUTERS Laura Ciupala

ISSN: 1109-2750 1270 Issue 8, Volume 8, August 2009



∑∑
∈∈

∈∀=−
AijjAjij

Niivijfjif
),(|),(|

),(),(),(   (22) 

Ajijicjif ∈∀≤≤ ),(),,(),(0 .  (23) 
where . 0)( =∑

∈Ni
iv

 
A flow f satisfying the conditions (22) and (23) is 

referred to as a feasible flow. 
Let C denote the largest magnitude of any 

supply/demand or finite arc capacity, that is 
 

C = max(max{v(i) | i∈N}, max{c(i, j) |    
(i, j)∈A,  c(i, j)<∞}) 

 
and let B denote the largest magnitude of any arc 
cost, that is 
 

B = max{b(i, j) | (i, j)∈A}. 
 

For solving a minimum cost flow problem, 
several algorithms were developed from the primal-
dual algorithm proposed by Ford and Fulkerson in 
1962 to the polynomial-time cycle-cancelling 
algorithms described by Sokkalingam, Ahuja and 
Orlin in 2001. Most of these algorithms work on the 
residual network. So, before describing them, we 
have to introduce some notions and some 
assumptions. 

The residual network G(f) = (N, A(f)) 
corresponding to a flow f is defined as follows. We 
replace each arc (i, j)∈A by two arcs (i, j) and (j, i). 
The arc (i, j) has the cost b(i, j) and the residual 
capacity r(i, j) = c(i, j) - f(i, j) and the arc (j, i) has 
the cost b(j, i) = -b(i, j) and the residual capacity    
r(j, i) = f(i, j). The residual network consists only of 
arcs with positive residual capacity. 

We shall assume that the minimum cost flow 
problem satisfies the following assumptions: 
 
Assumption 1. The network is directed. 

This assumption can be made without any loss of 
generality. In [1] it is shown that we can always 
fulfil this assumption by transforming any 
undirected network into a directed network. 
 
Assumption 2. All data (cost, supply/demand and 
capacity) are integral. 

This assumption is not really restrictive in 
practice because computers work with rational 
numbers which we can convert into integer numbers 
by multiplying by a suitably large number. 
 
Assumption 3. The network contains no directed 
negative cost cycle of infinite capacity. 

If the network contains any such cycles, there are 
flows with arbitrarily small costs. 
 
Assumption 4. All arc costs are nonnegative. 

This assumption imposes no loss of generality 
since the arc reversal transformation described in [1] 
converts a minimum cost flow problem with 
negative arc costs to one with nonnegative arc costs. 
This transformation can be done if the network 
contains no directed negative cost cycle of infinite 
capacity. 
 
Assumption 5. The supplies/demands at the nodes 
satisfy the condition 0)( =∑

∈Ni
iv and the minimum 

cost flow problem has a feasible solution. 
 
Assumption 6. The network contains an 
uncapacitated directed path (i.e. each arc in the path 
has infinite capacity) between every pair of nodes. 

We impose this condition by adding artificial 
arcs (1, i) and (i, 1) for each i∈N and assigning a 
large cost and infinite capacity to each of these arcs. 
No such arc would appear in a minimum cost 
solution unless the problem contains no feasible 
solution without artificial arcs. 
 

We associate a real number π(i) with each node 
i∈N. We refer to π(i) as the potential of node i. 
These node potentials are generalizations of the 
concept of distance labels. 

For a given set of node potentials π, we define 
the reduced cost of an arc (i, j) as 
 

bπ (i, j) = b(i, j) – π(i) + π(j). 
 

The reduced costs are applicable to the residual 
network as well as to the original network. 
 
Theorem 6. ([1]) (a) For any directed path P from 
node h to node k we have 
 

∑∑
∈∈

=
PjiPji

jibjib
),(),(

),(),(π – π(h) + π(k) 

 
(b) For any directed cycle W we have 
 

∑∑
∈∈

=
WjiWji

jibjib
),(),(

).,(),(π  

 
Theorem 7. (Negative Cycle Optimality 
Conditions) ([1]) A feasible solution f is an optimal 
solution of the minimum cost flow problem if and 
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only if there is no negative cycle in the residual 
network G(f). 
 
Theorem 8. (Reduced Costs Optimality 
Conditions) ([1]) A feasible solution f is an optimal 
solution of the minimum cost flow problem if and 
only if some set of node potentials π satisfy the 
following reduced cost optimality conditions: 
 

bπ(i, j) ≥ 0  for every arc (i, j) in the 
residual network G(f). 

 
Theorem 9. (Complementary Slackness 
Optimality Conditions) ([1]) A feasible solution f 
is an optimal solution of the minimum cost flow 
problem if and only if for some set of node 
potentials π, the reduced cost and flow values satisfy 
the following complementary slackness optimality 
conditions for every arc (i, j)∈A: 
 

If bπ(i, j) > 0, then f(i, j) = 0    (24) 
If 0 < f(i, j) < c(i, j), then bπ(i, j) =0  (25) 
If bπ(i, j) < 0, then f(i, j) = c(i, j)   (26) 

 
A pseudoflow is a function f : A →R+  satisfying 

the only conditions (23). 
For any pseudoflow f, we define the imbalance 

of node i as 
 

e(i) = v(i) + f(N, i) - f(i, N), for all i∈N. 
 

If e(i) > 0 for some node i, we refer to e(i) as the 
excess of node i; if e(i) < 0, we refer to -e(i) as the 
deficit of node i. If e(i) = 0 for some node i, we refer 
to node i as the balanced.  

The residual network corresponding to a 
pseudoflow is defined in the same way that we 
define the residual network for a flow. 

The optimality conditions can be extended for 
pseudoflows. A pseudoflow f* is optimal if there are 
some set of node potentials π such that the following 
reduced cost optimality conditions are satisfied: 
 

bπ(i, j) ≥ 0  for every arc (i, j) in the 
residual network G(f*). 

 
We refer to a flow or a pseudoflow f as ε-optimal 

for some ε > 0 if for some node potentials π, the pair 
(f, π) satisfies the following ε-optimality conditions: 
 

If bπ(i, j) > ε, then f(i, j) = 0    (27) 
If - ε ≤ bπ(i, j) ≤ ε, then  

0 ≤ f(i, j) ≤ c(i, j)     (28) 
If bπ(i, j) < -ε, then f(i, j) = c(i, j)  (29) 

 
These conditions are relaxations of the (exact) 

complementary slackness optimality conditions   
(24) - (26) and they reduce to complementary 
slackness optimality conditions when ε = 0. 

The algorithms for determining a minimum cost 
flow rely upon the optimality conditions stated by 
Theorems 7, 8 and 9.  

The basic algorithms for minimum cost flow can 
be divided into two classes: those that maintain 
feasible solutions and strive toward optimality and 
those that maintain infeasible solutions that satisfy 
optimality conditions and strive toward feasibility 
(for details see [1]).  

Algorithms from the first class are: the cycle-
canceling algorithm and the out-of-kilter algorithm. 
The cycle-canceling algorithm maintains a feasible 
flow at every iteration, augments flow along 
negative cycle in the residual network and 
terminates when there is no more negative cycle in 
the residual network, which means (from Theorem 
7) that the flow is a minimum cost flow. The out-of-
kilter algorithm maintains a feasible flow at every 
iteration and augments flow along shortest path in 
order to satisfy the optimality conditions.  

Algorithms from the second class are: the 
successive shortest path algorithm and primal-dual 
algorithm. The successive shortest path algorithm 
maintains a pseudoflow that satisfies the optimality 
conditions and augments flow along shortest path 
from excess nodes to deficit nodes in the residual 
network in order to convert the pseudoflow into an 
optimal flow. The primal-dual algorithm also 
maintains a pseudoflow that satisfies the optimality 
conditions and solves maximum flow problems in 
order to convert the pseudoflow into an optimal 
flow.  

Starting from the basic algorithms for minimum 
cost flow, several polynomial-time algorithms were 
developed. Most of them were obtained by using the 
scaling technique. By capacity scaling, by cost 
scaling or by capacity and cost scaling, the 
following polynomial-time algorithms were 
developed: capacity scaling algorithm, cost scaling 
algorithm, double scaling algorithm, repeated 
capacity scaling algorithm and enhanced capacity 
scaling algorithm (for details see [1], [10]). 

Another approach for obtaining polynomial-time 
algorithms is to select carefully the negative cycles 
in the cycle-canceling algorithm (for details see 
[24]). 
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4.2.Minimum Cost Flow Problem in 
Networks with Node Capacities 

Now we can formulate the minimum cost flow 
problem in networks with node capacities. Let 
G=(N, A, c, b, v) be a network on which we define a 
new function: nc:A→R+. The node capacity 
function, nc, associates to each node i a positive 
value nc(i) that represents the maximum amount of 
flow that can pass through node i.  
 In a network with node capacities          
G = (N, A, c, nc, b, v), a feasible flow is a function f: 
A→R+ satisfying the following conditions: 

                  

  
∑∑

∈∈
∈∀=−

AijjAjij
Niivijfjif

),(|),(|
),(),(),(   (30) 

Ajijicjif ∈∀≤≤ ),(),,(),(0 .    (31) 
f(s, N) ≤ nc(s)          (32) 

 f(N, i) ≤ nc(i) ∀i∈N\{s}      (33) 
where . 0)( =∑

∈Ni
iv

 
The minimum cost flow problem in networks 

with node capacities consists in determining a 
feasible flow of which cost is minimized, which 
means finding a function f: A→R+ that satisfies 
conditions (30) - (33) and:  

 
   minimize ∑  

∈Aji
jifjib

),(
),(),(

 
We will solve the minimum cost flow problem in 

a network with node capacities G=(N, A, c, nc, b, v) 
by determining a standard minimum cost flow in a 
standard network G’= (N’, A’, c’, b', v’) that is 
equivalent to the original network G. Network G’ is 
determined in the following manner: 

 
  N’=N1∪N2 

  N1={i’ | i∈N} 

  N2={i” | i∈N} 

  A’=A1∪A2 

  A1={(i”, j’) | (i,j)∈A} 
  A2={(i’, i”) | i∈N} 
  c’(i”, j’) = c(i, j), ∀(i”, j’)∈A1 
  c’(i’, i”) = nc(i), ∀(i’, i”)∈A2 

b’(i”, j’) = b(i, j), ∀(i”, j’)∈A1 
  b’(i’,i”) = 0, ∀(i’,i”)∈A2 

  v’(i’) = 0, for any i’∈N1 such that v(i) ≤ 0 
v’(i’) = v(i), for any i’∈N1 such that v(i) > 0 
v’(i’’) = 0, for any i’’∈N2 such that v(i) ≥ 0 
v’(i’’) = v(i), for any i’’∈N2 such that v(i) < 0 

 

Obviously, 0)('
'

=∑
∈Ni

iv .  

 
Theorem 10. There is a feasible flow f’, with the 
cost z(f’) = ∑

∈Aji
jifjib

),(
),('),(

∑
ji ),(

 in network             

G’= (N’, A’, c’, b', v’)  if and only if there is a 
feasible flow f of cost z(f) =  in 

network G = (N, A, c, nc, b, v), with z(f) = z(f’).  
∈A

jifjib ),(),(

 
Proof. In network G’, let f’ be a feasible of cost 
z(f’). We determine the flow f in the network G with 
node capacities in the following manner: 
 
   f(i,j)=f’(i”,j’), ∀(i,j)∈A     (34) 
 

Obviously, f is a feasible flow of cost z(f) = z(f’) 
in network G. 

Reciprocally, let f be a feasible of cost z(f) in the 
network G. We establish the flow f’ in the network 
G’ in the following manner: 

 
   f’(i”,j’)= f(i,j), ∀(i,j)∈A1 

f’(i’,i”) =f(N,i), ∀(i’,i”)∈A2 
 

Obviously, f’ is a feasible flow of cost z(f’) = z(f) 
in network G’. 
 

A consequence of the theorem 10 is the 
following: 
 
Theorem 11. There is a minimum cost flow f’, with 
the cost z(f’)= ∑

∈Aji
jifjib

),(
),('),(  in network            

G’= (N’, A’, c’, b', v’) if and only if there is a 
minimum cost flow f with cost z(f) = 
∑

∈Aji

jifjib
),(

),(),(  in network G=(N, A, c, nc, b, v), 

with z(f) = z(f’). 
 
 Consequently, the minimum cost flow problem 
in a network with node capacities                  
G = (N, A, c, nc, b, v), can be solved by determining 
a minimum cost flow f’ in a transformed standard 
network G’= (N’, A’, c’, b', v’). From the minimum 
cost flow f’, we establish easily the minimum cost 
flow f in G by using the relations (34). For finding 
the minimum cost flow f’ in G’, we can use any 
algorithm for the minimum cost flow problem. 
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5 Conclusion 
In this paper, we studied three different network 
flow problems in networks with node capacity: 
minimum flow problem, maximum flow problem 
and minimum cost flow problem. The literature on 
network flow problems is extensive, but these 
problems are described and studied in networks in 
which only arcs could have finite capacities. There 
are several applications that arise in practice and 
that can be reduced to a specific network flow 
problem in a network in which also nodes have 
limited capacity. For instance, the nodes might be 
airports with limited runaway capacities for takeoff 
and landings or might be switches in a 
communication network with a limited number of 
ports. In such networks, we are interested to 
determine (minimum, maximum or minimum cost) 
flows that satisfy both the arc and node capacities. 
This is the reason for focusing on maximum flow 
problem, minimum flow problem and minimum cost 
flow problem in a network with node capacities. We 
solved all these problems by transforming them into 
corresponding standard flow problems. For a given 
network with node capacities, we determined a 
transformed network without node capacities in 
different ways for different flow problems. But all 
these transformed networks have 2n nodes and n + 
m arcs if the initial network has n nodes and m arcs. 
This means that any of these three flow problems in 
a network with node capacities can be solved by 
applying any algorithm for the corresponding 
standard flow problem in the transformed network 
nd the time complexity is not changed.  
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