
Program Recursive Forms and Programming Automatization for
Functional Languages

N.ARCHVADZE

Department of Computer Sciences
Faculty of Exact and Natural Sciences
I. Javakhishvili Tbilisi State University

2, University st., 0143, Tbilisi
GEORGIA

natarchvadze@yahoo.com http://www.tsu.ge

M.PKHOVELISHVILI
Department of Programming

N.Muskhelishvili computing mathematic Institute
7, Akuri st., 0193, Tbilisi

GEORGIA
merab5@list.ru http://www.acnet.ge/icm

L.SHETSIRULI

Department of Mathematics and Computer Science
Shota Rustaveli State University
35, Ninoshvili st., 6010, Batumi

GEORGIA
lika77u@yahoo.com http://www.bsu.edu.ge

M.NIZHARADZE

Faculty of Informatics and Control Systems
Georgian Technical University

77 Kostava st., 0175, Tbilisi
GEORGIA

mziana60@mail.ru http://www.gtu.ge

Abstract: - The automatic programming system has been considered by means of which it becomes easier to
carry out traditional programming stages. There is discussed both recursive forms: parallel, interrecursion and
recursion of high level that exist for functional programming languages and induction methods for the purpose of
their verification. The way how to present imperative languages easy and double cycles by means of recursion
forms is shown, the possibility of verification has been studied for each recursion form.

Key-Words: - Functional Programming Languages, Recursive Forms, Programs Verification.

1. Automatic Programming System
(APS)

1.1. Task of Automatic Programming

Development of computational technics fails to

provide problem solving technology elaboration.
First-hand user fails to draw make up a program
independently depending on his/her knowledge
(without transforming into formal algorithm

language by the programmer). Because of this
reason and the critic towards the possibilities of
procedure programming the informatics
intellectual, automatic programming direction is
developing. We suggest the automatic
programming system (APS) [1], that should
automatize all the processes starting with writing
the program until the eventual fixing up. APS
concerns only functional programming
languages. These languages reached in their

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1256 Issue 8, Volume 8, August 2009

http://www.natarchvadze@yahoo.com/
http://www.tsu.ge/
mailto:merab5@list.ru
http://www.acnet.ge/icm
mailto:lika77u@yahoo.com
mailto:%20info@bsu.edu.ge
mailto:zbaia@mail.ru
http://www.gtu.ge/

developing process such results that they could be
considered as alternatives for traditional languages.
First of all APS is drawn up for languages working
with lists. As it is known the most practiced
language in programming is LISP for working out
lists. In this language application of recursion is
allowed. By means of well-selected recursive
functions any lists could be worked out. It is not
difficult to prove that drawing up recursive
functions representing lists in other lists are
computable [2] ones. Hence our first problem
concerns recursion in the functional languages. The
second problem is verification that is one of the
basic tasks of automatic, intellectual programming.
Programmers know experience how difficult it is to
make correct program, i.e. such one that does
exactly what is required. In most bulky programs
there errors consequences of which could be most
various. The deeper penetration of computers into
all spheres of life the more serious is the possible
threat to the life op people as a result of program
errors. Hardware is corroborated with similar
problems. We consider exclusively software [3].
One of APS system application is possible in el
teaching E-learning. Here programming languages
are taught [4, 5].

1.2. APS structure
APS includes five modules: a) program

synthesizer, b) tester, c) proof testimony to the
correctness of program (program verification), d)
optimizing processor, e) corrector. Each of these
modules could be functioned independently;
various combinations of these modules are allowed.

Automatic Synthesizer of programs should
draw up programs according to target models.
Models are given through examples or verbal
description, or annotations. Annotation consists of
three parts: input clause, output clause and cycle
invariancy.

Tester is intended for semiautomatic testing of
programs. On the one hand an attempt is being
made proceeding from the program description to
choose the required tests without the user, on the
other hand to allow his/her help in a dialog regime.

Verification of the program tries to prove
irregularity of the resulting program. If it works
well then controlling goes to the Corrector. In case
of fail the attempt to prove its correctness takes
place; for that the method of induction is applied. If
irregularity and non- irregularity of the program is
not proved then processor requires additional
descriptions in a dialog regime.

Optimizing Processor is intended for
optimizing separate parts of the program. Here is
included the transformation synthesis block. The

basic function of which is translation of
recursive programs into interactive ones. In
optimizing processor clearing of cycles, joining
cycles, etc are considered as well.

Complex of Program Production (CPP) is
intended for functional languages. First of all it
is drawn up for Lisp. For that basic forms of
recursive functions are applied. We speak about
them later.

The general scheme of the CPP is presented
as follows:

1. The required program is synthesized (not
necessarily correct);

2. By means of tester the errors are found, if
failed then shift to 4;

3. Corrector corrects errors and shifts to 2;
4. Attempt to prove correctness of the

program takes place. If irregularity is proved
then shifting to 3;

5. Optimization of the program.

2. Recursive forms in the functional
programming languages
2.1. Peculiarity of Functional
Programming

The repeated calculation in the functional
programming is made with the recursion help,
which is not only the calculation organization
base means, but it is the thinking shape in the
functional programming and the methodology of
the task decisions.

At the recursive description action should be
payed attention to sharpening at the following:
firstly the procedure must contain at least the one
terminal branch and the finishing condition;
secondly, when the procedure comes to the
recursive branch, then the functional process is
stopped and the same process starts again. The
remembering of the interrupting process
occupied, which will be done after the new
process is finished. The new process may be
stopped as well and will be have to wait for the
other process execution and so on.

Thus the interrupted processes stack is made,
from which the last process is realized for the
time given. After the finishing the previous
process is realized. Then, as soon as stack
empties, the whole process is executed or all
interrupted processes will be done.

A function is the general recursive, if its
algorithmic description is impossible. Such
function calculation is possible infinitely. The
general recursive function example is (f n m)
function, result of which is 1, if in π-number
decimal record is a fragment with m ciphers and

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1257 Issue 8, Volume 8, August 2009

n length found.
A recursion is simple, if the function is called

in any branch only once.
The recursion differs by meaning and

argument. It is considered that a recursion is
meaning, when the call is by the image, which is
presented IN the function result. It the function
result as other function meaning is returned and the
recursive calculation is in this function argument,
then say, that the recursion is by argument. The
recursive call argument may be again recursive call
and so on. For example, will be define the function
APPEND , with help of which is made the
unification of two lists. One can to notice, that all
functions will be presented in the functional
programming language COMMON LISP.

(defun APPEND (x y)
 (cond((null x) y)
 (t(cons(car x)
 (APPEND (cdr x) y)))))

There is used the recursion by argument.
APPEND may be definite by the recursion
meaning:

(defun APPEND (x y)

 (cond((null x) y)

 (t(APPEND (cdr x)

 (cons(car x) y)))))

This definition differs by this that a result is
constructed direct in the second argument.

2.2. The recursions form

In the functional languages the following form

recursions are determined [8]:
1) The parallel recursion, when the F-function

definition includes the definite G-function call, one
or some arguments of which recursively call F-
function:

(defun f ...
 ...(g...(f...)...(f...)...)
 ...)

2) Inter-recursion, when in F-function
definition the definite G-function IS CALLED,
which includes the F-function call:

(defun f ...
 ...(g...)...)

(defun g ...
 ...(f...)...)

3) The recursion of high level, when the
recursive call argument is the recursive call:

(defun f ...
 ...(f...(f...)...)
 ...)

2.2.1. Parallel recursion

A recursion is parallel, if it is in several
arguments of the function simultaneously.

Let definite function COPY, the result of
which is the argument copy. Copy of the list is
the primary list.

(defun COPY (l)
 (cond((null l) nil)
 ; The finishing condition
 (t(cons(car l) ; The recursion
 (COPY(cdr l))))))

This is the function with recursive argument
since the recursive call is the function CONS
argument. A conditional operator includes two
branches: the branch with finishing condition
and the one with recursion, by help of which a
list passes, is copied and shortened in this
process in the CDR-direction.

The considered function COPY list is copied
in the CDR direction only in the upper level.
When it is necessary to copy list both in CDR
and car directions, the recursion should spread
on the sublists as well. So is obtained the
COPY-TREE function:

(defun COPY-TREE(l)
 (cond((null l)nil)
 ((atom l)l)
 (t(cons
 (COPY-TREE
 ; copy of the head
 (car l))
 (COPY-TREE ; copy of the tail
 (cdr l))))))

In this function the recursion is used both in
the list head and the list tail. Since could be
called recursively two arguments one function
(cons) of it is parallel recursion. The parallelism
means only textual and not temporal, though
parallel recursive functions may be very
naturally treated on the multiprocessor computer,
if the recursion each branch will be calculated on
the separate processor.

2.2.2. Inter-recursion

The recursion between two or more

functions is called inter-recursive (mutual), if
they call each other. For example, let us discuss
function REVERSE, which turns over the list:

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1258 Issue 8, Volume 8, August 2009

(defun REVERSE(l)

 (cond((atom l)l)

 ((t(REARRANGE l nil))))

(defun REARRANGE (l result)

 (cond((null l) result)

 (t(REARRANGE (cdr l)

 (cons(REVERSE(car l)) result)))))

Function REVERSE is used as the auxiliary
function with additional parameters. At the turned
list construction it cares of the sub lists to be
turned. It does not do it itself, but instructs function
REARRANGE. Besides REARRANGE partici-
pates in the inter-recursion, it is recursive itself.

2.2.3. High level recursion

Let us consider the nested cycles programming
by the form, during which the function definition
recursive call is the same function argument. At
recursions of that type orders of various level,
could be distinguished according to which level of
recursion the call is at. This kind of recursion is
called the one of higher level.. The considered so
far functions were of zero level.

The high level recursion classic example is
Akkerman's function, which recursively is
determined for m and n numbers as follow way:

Let us reduce Akkerman's determination to the

LISP:

(defun AKKERMAN(m n)

 (cond((= m 0)(+ n 1))

 ((= n 0)(AKKERMAN (- m 1)1))

 (t(AKKERMAN (- m 1)

 (AKKERMAN m (- n 1))))))

Akkerman's function is recursive one of the
first order. Its calculation is rather complicated, the
calculation time grows very even for the small
arguments.

The first order recursion another example is the
function IN-ONE-LEVEL, which places the list's
elements on one level:

(defun IN-ONE-LEVEL (l)

 (LEVEL l nil))

(defun LEVEL(l result)

 (cond((null l) result)

 ((atom l)(cons l result))

 (t(LEVEL (car l)

 (LEVEL (cdr l))))))

 In this function the recursive call argument
is the recursive call. By recursions of high order
the function determination could be recorded
more abstractly and shortly though it is rather
difficult to present such work.

The function LEVEL works as follows: A
result is composed in the list RESULT. If l is the
list and its first element is an atom, then all is
reduced to the recursion previous level, but in a
situation, when the list RESULT contains the list
tail, which in one level lined up is already.

In case, when the l list head is again a list
firstly it reduced one level. This happens by
recursive call, which lasts as long as an atom is
found, which will be added to already lined up
list.

The function REVERSE following
explanation is an example of deeper recursion

(defun REVERSE(l)

 (cond

 ((null l)l)

 ((null(cdr l))l)

 (t(cons

 (car(REVERSE(cdr l)))

 (REVERSE(cons(car l)

 (REVERSE(cdr

 (REVERSE(cd r l)))))))

In the definition the second order recursion
is used. To understand these calculations is very
difficult. In general it is possible to avoid such
calculations, if the definitions are divided in
some parts and the corresponding parameters are
used for the intermediate results keeping and
passing.

3. Presentation of imperative
languages cycle operators by
functional programming languages
recursion
3.1. Presentation of simple cycles

In imperative languages the cycle operators

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1259 Issue 8, Volume 8, August 2009

belong to the ruling operators and they are used for
the repeated activity presentation. Our aim is to
present them by the recursive forms which are
exercised in the functional programming. This
allows to apply the function verification means not
only for the functional languages, but also for the
imperative type of languages.

 A cycle is a group commands implementation
of which is repeated as long as, the cycle
continuation condition is true. The repetition takes
place either by the special counter (there the
repetition quantity is known) or the controlling
meaning (the rate is unknown beforehand).

Simple recursion corresponds the imperative
languages cycle operators. The examples on C are
given. Using the counter by means of the while
cycle operator the program is:

#include <stdio.h>

int main()

{ int counter=1;

 while (while counter<=10) {

 printf("%d \n",counter);

 ++counter; }

 return 0; }

Using the counter with for structure cycle will
be:

#include <stdio.h>

int main()

{ int counter;

 for (counter=1;counter<=10;counter++)

 printf("%d \n",counter);

 return 0; }

Both of these cases are reduced to the shape
after the simple recursion where l argument is a
number (on LISP):

(defun f(l)

 (cond((= l 1)(print l))

 (t(f(- l 1)))))D

In general,
(defun F(l)

 (cond((PR l) (A l))

 (t(F(B l)))))

 Where l is the counter with the given primary
meaning, A - the function, which is implemented
for the counter's given significance (or the action,

which is repeated in the cycle), B is the function,
which changes the counter's significance (for
example, reduces by 1), but PR is the predicate,
the true of which defines the cycle interrupting
condition. So F function repeats on itself the
recursive address by the argument, which means
changed the significance by B function for a
time, until the argument reaches the meaning
when function PR is true.

It is clear, that the recursion of this form
works not only for the numeral argument, but
also for complicated data: for the massifs and
lines. In this case 1 will be a list but function B
will be CDR-function:

(defun F(l)

 (cond((null l) (A l))

 (t(F(cdr l)))))

As to the cycle operator with the control
significance (the function PR1), it will be also
presented by the simple recursion, where F1 is
the working function, on the argument that
simplifies it

(defun F1(l)

 (cond((PR1 l)(A1 l))

 (t(F(F1 l)))))

3.2. Nested cycles presentation
The existed nested cycles in the imperative

languages in the functional programming
languages in general could be realized by means
of two or more functions, out of which each
corresponds the simple cycle. Such recursive
function call will be the recursive call argument
in the other function. It is natural, that in the
function definition the recursive call argument
may be the other recursive call. It is recursion of
higher level.

First let us consider the nested cycles
programming by means of two different
functions (inter-recursion). The nested cycles
may be expressed by the cycle sentences (DO,
LOOP and etc.) or by the specialized repeatable
functions (for example the function MAP).

Let us consider the nested cycles
programming on the example of the lists sorting.
At first the function INSERT should be
determined, which adds element a in the
arranged list l so, that the distribution remained.
At this time any two element row is defined by
predicate EARLIER-P:

(defun INSERT (a l order)

 (cond((null l)(list a))

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1260 Issue 8, Volume 8, August 2009

 ((EARLIER-P a(car l) order)

 (cons a l))

 (t(cons (car l)

 INSERT a (cdr l) order)))))

The predicate EARLIER-P controls if a
element is before b-element according to their
disposition in the list order:

(defun EARLIER-P (a b order)

 (cond

 ((null order) nil)

 ((eq a(car order))t) ; a earlier b

 ((eq b(car order))nil) ; b earlier a

 (t (EARLIER-P a b (cdr order)))))

Functions INSERT and EARLIER-P are two
level nested iterative structures.

The list, which is not arranged, may be done by
function SORT, which recursively puts the list's
first element in the corresponding place in the
beforehand arranged list tail.

(defun SORT (l order)

 (cond((null l)nil)

 (t(INSERT (car l)

 (SORT (cdr l)order)order))))

Functions SORT, INSERT and EARLIER-P
already make three level nested structure.

Thus the cycles may be presented by simple
recursion, but the nested cycles by the inter-
recursion or the recursion of higher level.

4. Creation of universal forms of
recursive function presentations for
functional programming languages

Our purpose is to create such forms of

recursive function presentations that will be
general, in particular, for functional programming
languages Lisp functions.

4.1. Recursive function general forms for
Lisp

In [8] the common forms of recursive functions
are planned allowing working out the lists. Let us
present these functions in the Lisp language. They
will look as follows:

<DE LIST1(a g f x)(COND((NULL x)a)

 (T(APPLY* g(APPLY f(CAR X))

 (LIST1 a g f (CDR x>

<DE LIST2(a g f x)(COND((NULL x)a)

 (T(LIST2(APPLY*g(APPLY f(CAR x))a)

 g f(CDR x>

Proceeding from this any recursive LISP
function working out arbitrary x-list could be
presented as follows:

<DE FUN(x)(COND((NULL x)a)

 (T(G(F(CAR x))

 (FUN(CDR x> (1)

or
<DE FUN(A x)(COND((NULL x)A)

 (T(FUN(G(F(CAR x))A)(CDR x>

In [6] recursive function forms are given;
they are more limited than (1). For instance, in

f=

if x NIL, NIL
else CONS((CAR(x)),F(())

then
CDRxα β

= ⎧
⎨
⎩

G and A from (1) are more concrete:
 G=CONS, A=NIL, а f=α и I=β.

Here, I is reflection
 (DE I(x)x)

Let us consider the example describing REV
functions it turns the list upside-down

<DE REV(x)(AND

x(APPEND(REV(CDR x))(LIST(CAR x>

Substituting AND for COND expressions we
get:

<DE REV(x)(COND((NULL x) nil)

 (T(APPEND(REV(CDR x)))

 (LIST(CAR x>

If compared this with (1) form the
discrepancies appear in constructions:

<DE REV(x)(COND((NULL x) NIL)

 (T(APP(LIST(CAR x))(REV(CDR x>

Here function APP is determined as follows:

<DE APP(x,y)(APPEND y x>

It should be said that LIST1 and LIST2
forms do not exhaust all recursive functions of
working out of lists. For that we consider PLIST

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1261 Issue 8, Volume 8, August 2009

function which unites neighboring pairs of
elements:

 (PLIST '(x1 x2 x3 x4 ...x2n-1 x2n))⇒

((x1 x2)(x3 x4)...(x2n-1 x2n))

This function is as follows:

<DE PLIST(x)(COND((NULL x)NIL)

 (T(CONS(LIST(CAR x)

 (CADR x))(PLIST(CDDR x>

If compared this with (1) form the
discrepancies appear in constructions:

F(CAR x)≠(LIST(CAR x)(CADR x))

(CDR x)≠ (CDDR x)

If PLIST is presented by means of MAPLIST
function:

<DE PLIST(x)(MAPLIST x

 '(LAMBDA(Y)(LIST(CAR y)

 (CADR y)))'CDDR>

And MAPLIST could be presented:

<DE MAPLIST(f Q x)(COND((NULL x)NIL)

 (T(CONS(APPLY f x)

 (MAPLIST f Q(APPLY Q x>

4.2. Generalization of presentations
Previous descriptions prompt more perfect

working out of lists for recursive functions:
<DE LIST11(a g f Q x)

 (COND((NULL x)a) (2)

 (T(APPLY* g (APPLY f x)

 (LIST11 a g f (APPLY Q x>

<DE LIST21(a g f Q x)

 (COND((NULL x)a) (3)

 (T(LIST21(APPLY

 g(APPLY f x)a)

 g f (APPLY Q x>

By help of LIST11, PLIST could be described

 (PLIST x)=(LIST11 NIL CONS FF CDDR x)

where <DE FF(x)(LIST(CAR x)(CADR x>

Analogically MAP-type functions could be
described:

 (MAPCAR f Q x)=(LIST11 NIL

 CONS f(CAR x)Q x)

(MAPLIST f Q x)=(LIST11 NIL

 CONS F Q x)

where F=f(w(x))

In (2) and (3) review of list takes place by
means of Q and elements for working out are
getting ready by means of f. More handy is
presence of the pair for Q function Q0 that is
determined as Q

If Q=CDR, then Q0=CAR

If Q=CDDR, then Q0=LIST(CAR,CADR))

If Q=CDDR,

 then Q0=LIST(CAR,CADR,CADDR)

and etc.
Then new forms could be determined:

<DE LIST111(a g f Q x)

(COND((NULL x)NIL)

 (T(APPLY* g(APPLY

 f(APPLY Q0 x))

 (LIST111 a g f(APPLY Q x>

<DE LIST211(a g f Q x)

 (COND((NULL x)NIL)

 (T(LIST211(APPLY*

 g(APPLY f(APPLY Q0 x))a)

 g f (APPLY Q0 x>

4..3. Recursive forms for N arguments

Now we discuss recursive forms for N
arguments working out forms. Each of them is a
list. We discuss function TRARG that receives
one list out of N arguments. They are further
arguments for LIST1 and LIST2.

<DE TRARG L(SETQ RN O)

 (MAPLIST(CAR L)'(LAMBDA L)

 (SETQ RN(ADD1 RN))

 (MAPCAR L

'(LAMBDA(H)(CAR NTN H RN>

If is planned

(TRARG '(x1 x2 ...xn)'(y1 y2 ...yn)

 '(z1 z2 ...zn)) ⇒

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1262 Issue 8, Volume 8, August 2009

 ((x1 y1...z1)(x2 y2...z2)...(xn yn...zn))

Not always required “keeping” all elements of
arguments; then TRARG* is applied.

<DE TRARG* L(MAPLIST RRN

 '(LAMBDA(x)(MAPCAR L

 '(LAMBDA(H)(CAR NTH H x>

where in RRN – numbers of necessary
elements in the list are kept. The task is more
complicated if not identical numbers of elements
are required for lists working out.. If the conformity
with law of element distinguish from lists is
targeted F=(F1 F2 ... Fn), where F1 plays the part
for Q for the first list, F2 – for the second list, etc.
then the new function could be defined:

<DE TRARG(F.L)

 (APPLY 'TRARG(MAPCAR L

 '(LAMBDA(x)

 (PROGN(MAPLIST x 'CAR(CAR F))

 (SETQ F(CDR F>

If more complicated argument is required for
choosing required elements two ways are possible:

a) by means of number lists;
 b) or by means of two F and F0, where the first

element of the list F acts on the first element as Q0,
as Q from LIST111 and LIST211. If it is required
to choose from the first argument odd elements,
from the second even numbers, then for (a) the list
is required:

((1 3 5 ...)(2 4 6...)...)
for (b):

F=(CAR CADR ...) F0=(CDDR CDDR...)
As it is seen (b) is more real as the quantity of

arguments is not limited with it. For (b) the
corresponding function is as follows:

 <DE TRARGEF (F F0 L)

 (APPLY 'TRARG

 (MAPCAR '(LAMBDA(x)

 PROGN(MAPLIST x

 (CAR F)(CAR F0))

 (AND(SETQ F(CDR F))

 (SETQ F0(CDR F0))

Now new forms of recursiveness could be
recorded for N arguments:

<DE LISTN1(a g f F F0 L)

 (LIST11 a g f Q (TRANGEF F F0 L>

<DE LISTN2(a g f F F0 L)

 (LIST21(a g f Q(TRARGEF F F0.L>

It is clear that we have to work up extra
information since we work up one argument first
from N arguments and then LIST11 or LIST21
work on this argument. Presence of new
functions is more effective:

<DE LISTN11(a g f F F0.L)

 (COND((MEMBER NIL L)A)

 (T(APPLY* g(APPLY f(M F L))

 (LIST11 a g f F F0.

 (M F0 L>

<DE LIST21(a g f F F0.L)

 (COND((MEMBER NIL L)a)

 (T(LISTN21(APPLY* g

 (APPLY f(M F L))a)

 g f F F0.(M F0 L>

where

<DE M(F L)(AND L

 (CONS(APPLY*(CAR F)(CAR L))

 (M(CDR F)(CDR L>

Thus each recursive function of list working
up with N arguments could be presented as:

<DE FUN(F F0.L)

 (COND((MEMBER NIL L)a)

 (T(g(f(M F L))

 (APPLY 'FUN

 (CONS 'F(CONS 'F0(M F0 L>

or

 <DE FUN(A F F0 L)

 COND ((MEMBER NIL L)A)

 (T(FUN(g (f(M F Ш) a)

 (F F0.(M F0 L>

Here limit is imposed on F list which must
contain at least one element being the CDR-type
function.

Thus we have determined two universal
forms of recursive functions for working up
LISP lists.

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1263 Issue 8, Volume 8, August 2009

5. POSSIBILITIES OF FUNCTIONS
VERIFICATION PRESENTED BY
RECURSION DIFFERENT FORMS
IN THE FUNCTIONAL
LANGUAGES

We consider that for program verification it is

necessary to apply structural and transfinite
methods of induction of proofs. The proof methods
are applied for recursive functions which
arguments are numbers according which changes
take place.

Let us discuss how to prove recursive function
verification of various type discussed by us.

5.1. Verification of Parallel Recursive
Functions

In the programs verification proofs the

transfinite induction and structural methods are
considered. The proofs methods is used for the
recursive functions, the arguments of which are
numbers and by which are made the changes.

The parallel recursive functions verification
may be realized by the structural verification
method. It is meant that the recursive functions
arguments are not numbers, but structures and an
induction is realized by the list length. Such
programs correctness may be proved as follows: a)
let us prove that the program works corrects for
simpler data (for the empty list). b) Let us prove,
that the program works correctly for more
complicated data (for N+1 length list) with the
admittance, that it works correctly for
comparatively simple data (for N length list)

5.2. Verification of interrecursive functions

The interrecursive functions verification may

be realized by using transfinite induction method.
The transfinite induction method is the proof
method, which is the mathematical induction
generalization for the parameters non-numerical
signification. It is as follows: it is necessary to
define the necessary for it dependence, and such,
that passes ahead of previous calls before further
recursive calls - this gives the algorithm finishing
guarantee.

The interrecursive functions differ from some
recursive functions, which call each other. The
argument of each function is the number or a list.
Let us define the size, which is equal to sum of all
these function argument lengths. Let us consider
this size as the transfinite induction measure. Then

the induction method has following shape: we
verify the interrecursive functions correctness for
the arguments with the zero length. Later it is
supposed, that the functions are correct, when
arguments sum is N length and we try to prove
for N-1 length, as when used with structural
induction. The induction step decreases, if the
lengths sum decreases.

5.3. Combined induction technique

Combined induction technique is used for
verification for such complex functions whose
arguments are again the recursive functions. For
example, for the functions of the following type:

 ϕ (ϕ1(), ϕ2(), ... , ϕN ()), where each
argument ϕ1(), ϕ2(), ..., ϕN () is the recursive
function.

 A special case is the cases with mixed
version which are of great interest: a) the case
when each function ϕ1(), ϕ2(), ..., ϕN () is
numerically stated and its recurrent values are
also numbers, while the function ϕ is operable
on lists, and b) the case when each function ϕ1(),
ϕ2(), ..., ϕN () is list-operable, while ϕ is
operable on numbers. In this case, separate use
of the proofs induction and structural induction
techniques could cause errors; therefore, their
combined techniques should be used. For
example, we have a composition of functions ϕ (
ϕ1(L), ϕ2(L)), where ϕ1(L) is the function that
computes the maximum elements of L list, ϕ2(L)
– computes the minimum, while ϕ circulates the
simple mean of these arguments. In such a case,
proof of ϕ1(L) and ϕ2(L) functions correctness is
proved by using first the structural induction
technique and then the proof-by-induction
technique.

 In the composition of functions, account
should be taken that the computation of values of
the functions takes place from left to right, when
the S-expression is rather straight than parallel.
This can cause a number of errors, for example,
in case when each function in the composition is
database-operable and replaces the data in the
base.

5.4. Special program verification
technique

 The program verification history is

known for the cases when special languages used
to be created on purpose to simplify verification
of the programs written in them. An alternative
approach to this is the necessity that a
generalized, abstract program for the given

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1264 Issue 8, Volume 8, August 2009

programming language be created and verified its
accuracy. It is necessary that the program needing
verification be automatically transferred to the form
of an abstract program. In this case, it will not be
subjected to verification (because it will already be
a particular form of a correct program).

 The problem of the program verification
process automation in programming has retained its
urgency up to this day. In respect of the functional
language LISP, this problem must be reduced to
any program abstract form and then to its further
automatic verification.

 We offer the following verification
algorithm:

a) To make the so-called universal function
(or functions) for the given programming language
of which will make it possible to present the
recursive function of any type written in this
language. After that the universal function
verification should take place. For this purpose the
above-mentioned induction techniques will be
used, an attempt will be made to define the size
(reflecting natural number arguments) finding
algorithms, certainly, within the bounds of the
given language.

b) To create construction transformers, i.e. the
apparatus thanks to which constructions of one
form, in particular, loops and conditional
representations, will be transformed into recursive
construction one. If the transformers are universal,
then it will be possible to transfer loops and
conditional representations to a recursive form for
the non-functional languages which will, in their
turn, make it possible to use the given algorithm for
other languages as well.

c) If the given function that needs verification
is recursive, then it will be transformed into a after
which its accuracy will be proved automatically. If
the given functions contain loops and conditional
statements, then it will automatically transfer to the
form of recursive and correspondingly universal
functions form by means of the transformer
described in paragraph (b) above. Thereafter, its
accuracy will be proved.

6. Conclusion

Thus we have discussed recursive functions

verification process automatization problems. We
discussed functional programming language for
LISP abstract program image and by applying
proofs induction, structural and transfite induction
methods to prove the recursive function
correctness. We should say that it would be
desirable to arrange a dialog rate in the process
when the program adjusting to abstract program
form takes place. Analogical forms could be

determined for non-list expressions since
imperative languages controlling operators
(cycles) could be presented my means of
discussed recursive forms.

References:
[1] Archvadze N., Pkhovelishvili M., Shetsiruli

L. Complex of Production of programs for
functional languages System Analysis and
Information Technologies: Materials of the
XI International Conference on Science and
Technology. -ESC "LASA" NTUU "KRI",
2009, p.453.

[2] N. Katlend. Vichislimost. Vvedenie v teoriu
rekursivnikh funkstii. M., “Mir”, 1983.

[3] J.Rutkowski, D.Use of Artificial Intelligence
Techniques to Fault Diagnosis in Analog
Systems. 2nd EUROPEAN COMPUTING
CONFERENCE (ECC’08). Malta,
September 11-13, 2008. pp. 267-274.

[4] E.Doicary, C.Dan. E-TLSS – A Powerful E-
Learning Tool for Structural Synthesis of TL
Circuits. 2nd EUROPEAN COMPUTING
CONFERENCE (ECC’08). pp.173-178.

[5] F. De Arriaga, C. Gingell, A. Arriaga, J.
Arriaga, F. Arriaga. A General Student’s
Model Suitable for Intelligent E-Learning
Systems. 2nd EUROPEAN COMPUTING
CONFERENCE (ECC’08), pp. 167-172.

[6] Archvadze N., Pkhovelishvili M., Shetsiruli
L. The Methods of the Effective Date Search
for the Listed Structures. International
Conference on Modern Problems in Applied
Mathematics Dedicated to the 90th
Anniversary of the Iv/Javakhishvili Tbilisi
State University and 40th Anniversary of the
I.Vekua Institute of Applyied Mathematics.
Book of Abstracts. Tbilisi, 2008. p.16.

[7] V. Berdj. Metodi rekursivnogo programiro-
vania. M., “Mashinostroenie”, 1983.

[8] Archvadze N., Pkhovelishvili M., Shetsiruli
L., Nizharadze. A recursion forms and their
verification by using the undictive methods.
Computing and Computational Intelligence.
Proceeding of the 3nd EUROPEAN
COMPUTING CONFERENCE (ECC’09),
Tbilisi, 2009, pp.357-361.

WSEAS TRANSACTIONS on COMPUTERS N. Archvadze, M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze

ISSN: 1109-2750 1265 Issue 8, Volume 8, August 2009

