
Program Recursive Forms and Programming Automatization for 
Functional Languages 

 
N.ARCHVADZE 

Department of Computer Sciences 
Faculty of Exact and Natural Sciences  
I. Javakhishvili Tbilisi State University 

2, University st., 0143, Tbilisi  
GEORGIA 

natarchvadze@yahoo.com    http://www.tsu.ge 
 

M.PKHOVELISHVILI 
Department of Programming 

N.Muskhelishvili computing mathematic Institute 
7, Akuri st., 0193, Tbilisi  

GEORGIA 
merab5@list.ru   http://www.acnet.ge/icm  

 
L.SHETSIRULI 

Department of Mathematics and Computer Science  
Shota Rustaveli State University 
35, Ninoshvili st., 6010, Batumi 

GEORGIA 
lika77u@yahoo.com     http://www.bsu.edu.ge 

 
M.NIZHARADZE 

Faculty of Informatics and Control Systems 
Georgian Technical University 

77 Kostava st., 0175, Tbilisi 
GEORGIA 

mziana60@mail.ru   http://www.gtu.ge 
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their verification. The way how to present imperative languages easy and double cycles by means of recursion 
forms is shown, the possibility of verification has been  studied for each recursion form. 
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1. Automatic Programming System 
(APS) 

1.1. Task of Automatic Programming 
 
Development of computational technics fails to 

provide problem solving technology elaboration. 
First-hand user fails to draw make up a program 
independently depending on his/her knowledge 
(without transforming into formal algorithm 

language by the programmer). Because of this 
reason and the critic towards the possibilities of 
procedure programming the informatics 
intellectual, automatic programming direction is 
developing. We suggest the automatic 
programming system (APS) [1], that should 
automatize all the processes starting with writing 
the program until the eventual fixing up. APS 
concerns only functional programming 
languages. These languages reached in their 
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developing process such results that they could be 
considered as alternatives for traditional languages. 
First of all APS is drawn up for languages working 
with lists. As it is known the most practiced 
language in programming is LISP for working out 
lists. In this language application of recursion is 
allowed. By means of well-selected recursive 
functions any lists could be worked out. It is not 
difficult to prove that drawing up recursive 
functions representing lists in other lists are 
computable [2] ones. Hence our first problem 
concerns recursion in the functional languages. The 
second problem is verification that is one of the 
basic tasks of automatic, intellectual programming. 
Programmers know experience how difficult it is to 
make correct program, i.e. such one that does 
exactly what is required. In most bulky programs 
there errors consequences of which could be most 
various. The deeper penetration of computers into 
all spheres of life the more serious is the possible 
threat to the life op people as a result of program 
errors. Hardware is corroborated with similar 
problems. We consider exclusively software [3]. 
One of APS system application is possible in el 
teaching E-learning. Here programming languages 
are taught [4, 5].  
 

1.2. APS structure 
APS includes five modules: a) program 

synthesizer, b) tester, c) proof testimony to the 
correctness of program (program verification), d) 
optimizing processor, e) corrector. Each of these 
modules could be functioned independently; 
various combinations of these modules are allowed. 

Automatic Synthesizer of programs should 
draw up programs according to target models. 
Models are given through examples or verbal 
description, or annotations. Annotation consists of 
three parts: input clause, output clause and cycle 
invariancy. 

Tester is intended for semiautomatic testing of 
programs. On the one hand an attempt is being 
made proceeding from the program description to 
choose the required tests without the user, on the 
other hand to allow his/her help in a dialog regime. 

Verification of the program tries to prove 
irregularity of the resulting program. If it works 
well then controlling goes to the Corrector. In case 
of fail the attempt to prove its correctness takes 
place; for that the method of induction is applied. If 
irregularity and non- irregularity of the program is 
not proved then processor requires additional 
descriptions in a dialog regime.  

Optimizing Processor is intended for 
optimizing separate parts of the program. Here is 
included the transformation synthesis block. The 

basic function of which is translation of 
recursive programs into interactive ones. In 
optimizing processor clearing of cycles, joining 
cycles, etc are considered as well. 

Complex of Program Production (CPP) is 
intended for functional languages. First of all it 
is drawn up for Lisp. For that basic forms of 
recursive functions are applied. We speak about 
them later. 

The general scheme of the CPP is presented 
as follows: 

1. The required program is synthesized (not 
necessarily correct); 

2. By means of tester the errors are found, if 
failed then shift to 4; 

3. Corrector corrects errors and shifts to 2; 
4. Attempt to prove correctness of the 

program takes place. If irregularity is proved 
then shifting to 3; 

5. Optimization of the program. 
 
2. Recursive forms in the functional 
programming languages 
2.1. Peculiarity of Functional 
Programming 

The repeated calculation in the functional 
programming is made with the recursion help, 
which is not only the calculation organization 
base means, but it is the thinking shape in the 
functional programming and the methodology of 
the task decisions. 

At the recursive description action should be 
payed attention to sharpening at the following: 
firstly the procedure must contain at least the one 
terminal branch and the finishing condition; 
secondly, when the procedure comes to the 
recursive branch, then the functional process is 
stopped and the same process starts again. The 
remembering of the interrupting process 
occupied, which will be done after the new 
process is finished. The new process may be 
stopped as well and will be have  to wait for the 
other process execution and so on.  

Thus the interrupted processes stack is made, 
from which the last process is realized for the 
time given. After the finishing the previous 
process is realized. Then, as soon as stack 
empties, the whole process is executed or all 
interrupted processes will be done. 

A function is the general recursive, if its 
algorithmic description is impossible. Such 
function calculation is possible infinitely. The 
general recursive function example is (f n m) 
function, result of which is 1, if in π-number 
decimal record is a fragment with m ciphers and 
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n length found.  
A recursion is simple, if the function is called 

in any branch only once. 
The recursion differs by meaning and 

argument. It is considered that a recursion is 
meaning, when the call is by the image, which is 
presented IN the function result. It the function 
result as other function meaning is returned and the 
recursive calculation is in this function argument, 
then say, that the recursion is by argument. The 
recursive call argument may be again recursive call 
and so on. For example, will be define the function 
APPEND , with help of which is made the 
unification of two lists. One can to notice, that all 
functions will be presented in the functional 
programming language COMMON LISP.  

(defun APPEND (x y) 
    (cond((null x) y) 
         (t(cons(car x) 
                (APPEND (cdr x) y ))))) 

There is used the recursion by argument. 
APPEND may be definite by the recursion 
meaning:  

(defun APPEND (x y) 

    (cond((null x) y) 

         (t(APPEND ( cdr x) 

                   (cons(car x) y ))))) 

This definition differs by this that a result is 
constructed direct in the second argument. 

 
2.2. The recursions form 

 
In the functional languages the following form 

recursions are determined [8]:  
1) The parallel recursion, when the F-function 

definition includes the definite G-function call, one 
or some arguments of which recursively call F-
function: 

(defun f ... 
    ...(g...(f...)...(f...)...) 
    ...) 

2) Inter-recursion, when in F-function 
definition the definite G-function IS CALLED, 
which includes the F-function call: 

(defun f ... 
    ...(g...)...) 

(defun g ... 
    ...(f...)...) 

3) The recursion of high level, when the 
recursive call argument is the recursive call: 

(defun f ... 
    ...(f...(f...)...) 
    ...) 

 

2.2.1. Parallel recursion 
 

A recursion is parallel, if it is in several 
arguments of the function simultaneously.  

Let definite function COPY, the result of 
which is the argument copy. Copy of the list is 
the primary list. 

(defun COPY (l) 
 (cond((null l) nil)  
                               ; The finishing condition  
             (t(cons(car l)    ; The recursion 
                  (COPY(cdr l)))))) 

This is the function with recursive argument 
since the recursive call is the function CONS 
argument. A conditional operator includes two 
branches: the branch with finishing condition 
and the one with recursion, by help of which a 
list passes, is copied and shortened in this 
process in the CDR-direction. 

The considered function COPY list is copied 
in the CDR direction only in the upper level. 
When it is necessary to copy list both in CDR 
and car directions, the recursion should spread 
on the sublists as well.  So is obtained the 
COPY-TREE function:  

(defun COPY-TREE(l) 
   (cond((null l)nil) 
        ((atom l)l) 
        (t(cons 
               (COPY-TREE     
                                        ; copy of the head 
                      (car l)) 
               (COPY-TREE       ; copy of the tail 
                           (cdr l)))))) 

In this function the recursion is used both in 
the list head and the list tail. Since could be 
called recursively two arguments one function 
(cons) of it is parallel recursion. The parallelism 
means only textual and not temporal, though 
parallel recursive functions may be very 
naturally treated on the multiprocessor computer, 
if the recursion each branch will be calculated on 
the separate processor. 
 
2.2.2.  Inter-recursion 

 
The recursion between two or more 

functions is called inter-recursive  (mutual), if 
they call each other. For example, let us discuss 
function REVERSE, which turns over the list: 
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(defun REVERSE(l) 

    (cond((atom l)l) 

         ((t(REARRANGE l nil)))) 

(defun REARRANGE (l result) 

     (cond((null l) result) 

          (t(REARRANGE (cdr l) 

                 (cons(REVERSE(car l)) result))))) 

Function REVERSE is used as the auxiliary 
function with additional parameters. At the turned 
list construction it cares of the sub lists to be 
turned. It does not do it itself, but instructs function 
REARRANGE. Besides REARRANGE partici-
pates in the inter-recursion, it is recursive itself. 
 
2.2.3. High level recursion 
 

Let us consider the nested cycles programming 
by the form, during which the function definition 
recursive call is the same function argument. At 
recursions of that type orders of various level, 
could be distinguished according to which level of 
recursion the call is at. This kind of recursion is 
called the one of higher level.. The considered so 
far functions were of zero level.  

The high level recursion classic example is 
Akkerman's  function,   which recursively is 
determined for m and n numbers as follow way: 

 
Let us reduce Akkerman's determination to the 

LISP: 

(defun AKKERMAN(m n) 

    (cond((= m 0)(+ n 1)) 

         ((= n 0)(AKKERMAN (- m 1)1)) 

         (t(AKKERMAN (- m 1) 

              (AKKERMAN m (- n 1)))))) 

Akkerman's function is recursive one of the 
first order. Its calculation is rather complicated, the 
calculation time grows very even for the small 
arguments. 

The first order recursion another example is the 
function IN-ONE-LEVEL, which places the list's 
elements on one level: 

(defun IN-ONE-LEVEL (l) 

      (LEVEL l nil)) 

(defun LEVEL(l result) 

     (cond((null l) result) 

          ((atom l)(cons l result)) 

          (t(LEVEL (car l) 

                (LEVEL (cdr l)))))) 

 In this function the recursive call argument 
is the recursive call. By recursions of high order 
the function determination could be recorded 
more abstractly and shortly though it is rather 
difficult to present such work.  

The function LEVEL works as follows: A 
result is composed in the list RESULT. If l  is the 
list and its first element is an atom, then all is 
reduced to the recursion previous level, but in a 
situation, when the list RESULT contains the list 
tail, which in one level lined up is already. 

In case, when the l list head is again a list 
firstly it reduced one level. This happens by 
recursive call, which lasts as long as an atom is 
found, which will be added to already lined up 
list. 

The function REVERSE following 
explanation is an example of deeper recursion 

(defun REVERSE(l) 

     (cond 

         ((null l)l) 

         ((null(cdr l))l) 

         (t(cons 

                (car(REVERSE(cdr l))) 

                (REVERSE(cons(car l) 

                      (REVERSE(cdr 

                     (REVERSE(cd r l))))))) 

In the definition the second order recursion 
is used. To understand these calculations is very 
difficult. In general it is possible to avoid such 
calculations, if the definitions are divided in 
some parts and the corresponding parameters are 
used for the intermediate results keeping and 
passing. 

 
3. Presentation of imperative 
languages cycle operators by 
functional programming languages 
recursion 
3.1. Presentation of simple cycles 

In imperative languages the cycle operators 
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belong to the ruling operators and they are used for 
the repeated activity presentation. Our aim is to 
present them by the recursive forms which are 
exercised in the functional programming. This 
allows to apply the function verification means not 
only for the functional languages, but also for the 
imperative type of languages. 

 A cycle is a group commands implementation 
of which is repeated as long as, the cycle 
continuation condition is true. The repetition takes 
place either by the special counter (there the 
repetition quantity is known) or the controlling  
meaning (the rate is unknown beforehand). 

Simple recursion corresponds the imperative 
languages cycle operators. The examples on C are 
given. Using the counter by means of the  while 
cycle operator the program is: 

#include <stdio.h> 

int main() 

{ int counter=1; 

  while (while counter<=10) { 

         printf("%d \n",counter); 

           ++counter;         } 

  return 0;  } 

Using the counter with  for  structure cycle will 
be: 

#include <stdio.h> 

int main() 

{ int counter; 

  for (counter=1;counter<=10;counter++) 

       printf("%d \n",counter); 

  return 0; } 

Both of these cases are reduced to the shape 
after the simple recursion where l argument is a 
number (on LISP):  

(defun f(l) 

    (cond((= l 1)(print l)) 

         (t(f(- l 1)))))D 

In general,  
(defun F(l) 

    (cond((PR  l) (A l)) 

         (t(F(B l))))) 

 Where l is the counter with the given primary 
meaning, A -  the function, which is implemented 
for the counter's given significance (or the action, 

which is repeated in the cycle), B is the function, 
which changes the counter's significance (for 
example, reduces by 1), but PR is the predicate, 
the true of which defines the cycle interrupting  
condition.  So F function repeats on itself the 
recursive address by the argument, which means 
changed the significance by B function for a 
time, until the argument reaches the meaning 
when function PR is true.  

It is clear, that the recursion of this form 
works not only for the numeral argument, but 
also for complicated data: for the massifs and 
lines. In this case 1 will be a list but function B 
will be CDR-function: 

(defun F(l) 

    (cond((null l) (A l)) 

         (t(F(cdr l))))) 

As to the cycle operator with the control 
significance (the function PR1), it will be also 
presented by the simple recursion, where F1 is 
the working function, on the argument that 
simplifies it  

(defun F1(l) 

      (cond((PR1 l)(A1 l)) 

           (t(F(F1 l))))) 

3.2. Nested cycles presentation 
The existed nested cycles in the imperative 

languages in the functional programming 
languages in general could be realized by means 
of two or more functions, out of  which each 
corresponds the simple cycle. Such recursive 
function call will be the recursive call argument 
in the other function. It is natural, that in the 
function definition the recursive call argument  
may be the other recursive call. It is recursion of 
higher level. 

First let us consider the nested cycles 
programming by means of two different 
functions (inter-recursion). The nested cycles 
may be expressed by the cycle sentences (DO, 
LOOP and etc.) or by the specialized repeatable 
functions (for example the function MAP). 

Let us consider the nested cycles 
programming on the example of the lists sorting. 
At first the function INSERT should be 
determined, which adds element a in the 
arranged list l so, that the  distribution remained. 
At this time any two element row is defined by 
predicate  EARLIER-P: 

(defun INSERT (a l order) 

    (cond((null l)(list a)) 
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         ((EARLIER-P a(car l) order) 

              (cons a l)) 

          (t(cons (car l) 

                  INSERT a (cdr l) order))))) 

The predicate  EARLIER-P controls if a 
element is before b-element according to their 
disposition in the list order: 

(defun EARLIER-P (a b order) 

    (cond 

         ((null order) nil) 

         ((eq a(car order))t)       ; a earlier b 

         ((eq  b(car order))nil)    ; b earlier a 

         (t (EARLIER-P a b (cdr order))))) 

Functions INSERT and EARLIER-P are two 
level nested iterative structures. 

The list, which is not arranged, may be done by 
function SORT, which recursively puts the list's 
first element in the corresponding place in the 
beforehand arranged list tail. 

(defun SORT (l order) 

    (cond((null l)nil) 

         (t(INSERT (car l) 

                (SORT (cdr l)order)order)))) 

Functions SORT, INSERT and EARLIER-P 
already make three level nested structure. 

Thus the cycles may be presented by simple 
recursion, but the nested cycles by the inter-
recursion or the recursion of higher level. 

 
 

4. Creation of universal forms of 
recursive function presentations for 
functional programming languages 

 
Our purpose is to create such forms of 

recursive function presentations that will be 
general, in particular, for functional programming 
languages Lisp functions.  

 
4.1. Recursive function general forms for 
Lisp 
 

In [8] the common forms of recursive functions 
are planned allowing working out the lists. Let us 
present these functions in the Lisp language. They 
will look as follows: 

<DE LIST1(a g f x)(COND((NULL x)a) 

           (T(APPLY* g(APPLY f(CAR X)) 

                                  (LIST1 a g f (CDR x> 

<DE LIST2(a g f x)(COND((NULL x)a) 

       (T(LIST2(APPLY*g(APPLY f(CAR x))a) 

                               g  f(CDR x> 

Proceeding from this any recursive LISP 
function working out arbitrary x-list could be 
presented as follows: 

<DE FUN(x)(COND((NULL x)a)       

               (T(G(F(CAR x)) 

                      (FUN(CDR x>              (1) 

or 
<DE FUN(A x)(COND((NULL x)A) 

                 (T(FUN(G(F(CAR x))A)(CDR x>      

In [6] recursive function forms are given; 
they are more limited than (1). For instance, in  

f=   

                            
if  x NIL, NIL
else  CONS( (CAR(x)),F( ( ))

then
CDRxα β

=  ⎧
⎨
⎩

G and A from (1) are more concrete: 
    G=CONS, A=NIL, а f=α и I=β. 

Here, I is reflection 
 (DE I(x)x) 

Let us consider the example describing REV 
functions it turns the list upside-down 

<DE REV(x)(AND  

x(APPEND(REV(CDR x))(LIST(CAR x> 

Substituting AND for COND expressions we 
get: 

<DE REV(x)(COND((NULL x) nil) 

             (T(APPEND(REV(CDR x)))  

   (LIST(CAR x> 

If compared this with (1) form the 
discrepancies appear in constructions: 

<DE REV(x)(COND((NULL x) NIL) 

             (T(APP(LIST(CAR x))(REV(CDR x> 

Here function APP is determined as follows: 

<DE APP(x,y)(APPEND y x> 

It should be said that LIST1 and LIST2 
forms do not exhaust all recursive functions of 
working out of lists. For that we consider PLIST 
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function which unites neighboring pairs of 
elements: 

 (PLIST '(x1 x2 x3 x4 ...x2n-1 x2n ))⇒ 

((x1 x2)(x3 x4)...(x2n-1 x2n)) 

This function is as follows: 

<DE PLIST(x)(COND((NULL x)NIL) 

                 (T(CONS(LIST(CAR x) 

    (CADR x))(PLIST(CDDR x> 

If compared this with (1) form the 
discrepancies appear in constructions: 

F(CAR x)≠(LIST(CAR x)(CADR x)) 

(CDR x)≠ (CDDR x) 

If PLIST is presented by means of MAPLIST 
function: 

<DE PLIST(x)(MAPLIST x  

                  '(LAMBDA(Y)(LIST(CAR y) 

   (CADR y)))'CDDR> 

And MAPLIST could be presented: 

<DE MAPLIST(f Q x)(COND((NULL x)NIL) 

                       (T(CONS(APPLY f x) 

                              (MAPLIST f Q(APPLY Q x> 

 

4.2. Generalization of presentations 
Previous descriptions prompt more perfect 

working out of lists for recursive functions: 
<DE LIST11(a g f Q x) 

    (COND((NULL x)a)                          (2) 

                 (T(APPLY* g (APPLY f x) 

                               (LIST11 a g f (APPLY Q x> 

<DE LIST21(a g f Q x) 

      (COND((NULL x)a)                 (3) 

                   (T(LIST21(APPLY 

                           g(APPLY f x)a) 

                           g f (APPLY Q x> 

By help of LIST11, PLIST could be described 

 (PLIST x)=(LIST11 NIL CONS FF CDDR x) 

where  <DE FF(x)(LIST(CAR x)(CADR x> 

Analogically MAP-type functions could be 
described: 

 (MAPCAR f Q x)=(LIST11 NIL  

                              CONS f(CAR x)Q x) 

(MAPLIST f Q x)=(LIST11 NIL 

                                CONS F Q x) 

where  F=f(w(x)) 

In (2) and (3) review of list takes place by 
means of Q and elements for working out are 
getting ready by means of f. More handy is 
presence of the pair for Q function Q0 that is 
determined as Q 

If Q=CDR, then  Q0=CAR 

If Q=CDDR, then Q0=LIST(CAR,CADR)) 

If Q=CDDR, 

         then Q0=LIST(CAR,CADR,CADDR)     

and etc. 
Then new forms could be determined: 

<DE LIST111(a g f Q x) 

(COND((NULL x)NIL) 

                       (T(APPLY* g(APPLY  

                          f(APPLY Q0 x)) 

                      (LIST111 a g f(APPLY Q x> 

<DE LIST211(a g f Q x) 

       (COND((NULL x)NIL)  

            (T(LIST211(APPLY*  

                    g(APPLY f(APPLY Q0 x))a) 

                                g f (APPLY Q0 x> 

 

4..3. Recursive forms for N arguments 
 

Now we discuss recursive forms for N 
arguments working out forms. Each of them is a 
list. We discuss function TRARG that receives 
one list out of N arguments. They are further 
arguments for LIST1 and LIST2. 

<DE TRARG L(SETQ RN O) 

     (MAPLIST(CAR L)'(LAMBDA L) 

                 (SETQ RN(ADD1 RN)) 

                     (MAPCAR L  

'(LAMBDA(H)(CAR NTN H RN> 

If is planned  

(TRARG '(x1 x2 ...xn)'(y1 y2 ...yn) 

       '(z1 z2 ...zn)) ⇒ 
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  ((x1 y1...z1)(x2 y2...z2)...(xn yn...zn)) 

Not always required “keeping” all elements of 
arguments; then TRARG* is applied. 

<DE TRARG* L(MAPLIST RRN  

             '(LAMBDA(x)(MAPCAR L  

      '(LAMBDA(H)(CAR NTH H x> 

where in RRN – numbers of necessary 
elements in the list are kept. The task is more 
complicated if not identical numbers of elements 
are required for lists working out.. If the conformity 
with law of element distinguish from lists is 
targeted F=(F1 F2 ... Fn), where F1 plays the part 
for Q for the first list, F2 – for the second list, etc. 
then the new function could be defined: 

<DE TRARG(F.L) 

      (APPLY 'TRARG(MAPCAR L  

                     '(LAMBDA(x) 

   (PROGN(MAPLIST x 'CAR(CAR F)) 

                                (SETQ F(CDR F> 

If more complicated argument is required for 
choosing required elements two ways are possible: 

a) by means of number lists; 
 b) or by means of two F and F0, where the first 

element of the list F acts on the first element as Q0, 
as Q from LIST111 and LIST211. If it is required 
to choose from the first argument odd elements, 
from the second even numbers, then for (a) the list 
is required:  

((1 3 5 ...)(2 4 6...)...)  
for (b):  

F=(CAR CADR ...) F0=(CDDR CDDR...) 
As it is seen (b) is more real as the quantity of 

arguments is not limited with it. For (b) the 
corresponding function is as follows: 

    <DE TRARGEF (F F0 L) 

         (APPLY 'TRARG  

                       (MAPCAR '(LAMBDA(x) 

                           PROGN(MAPLIST x 

                                    (CAR F)(CAR F0)) 

                       (AND(SETQ F(CDR F)) 

                                      (SETQ F0(CDR F0)) 

Now new forms of recursiveness could be 
recorded for N arguments: 

<DE LISTN1(a g f F F0 L) 

      (LIST11 a g f Q (TRANGEF F F0 L> 

<DE LISTN2(a g f F F0 L) 

      (LIST21(a g f Q(TRARGEF F F0.L> 

It is clear that we have to work up extra 
information since we work up one argument first 
from N arguments and then LIST11 or LIST21 
work on this argument. Presence of new 
functions is more effective: 

<DE LISTN11(a g f F F0.L) 

           (COND((MEMBER NIL L)A) 

                (T(APPLY* g(APPLY f(M F L)) 

                           (LIST11 a g f F F0. 

                                              (M F0 L> 

<DE LIST21(a g f F F0.L) 

          (COND((MEMBER NIL L)a) 

               (T(LISTN21(APPLY* g 

                                  (APPLY f(M F L))a) 

                                    g f F F0.(M F0 L> 

where 

<DE M(F L)(AND L 

              (CONS(APPLY*(CAR F)(CAR L)) 

                                (M(CDR F)(CDR L> 

Thus each recursive function of list working 
up with N arguments could be presented as: 

<DE FUN(F F0.L) 

    (COND((MEMBER NIL L)a) 

         (T(g(f(M F L)) 

              (APPLY 'FUN  

                     (CONS 'F(CONS 'F0(M F0 L> 

or  

       <DE FUN(A F F0 L) 

          COND ((MEMBER NIL L)A) 

                       (T(FUN(g (f(M F Ш) a) 

                                          (F F0.(M F0 L> 

Here limit is imposed on F list which must 
contain at least one element being the CDR-type 
function.  

Thus we have determined two universal 
forms of recursive functions for working up 
LISP lists. 
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5. POSSIBILITIES OF FUNCTIONS 
VERIFICATION PRESENTED BY 
RECURSION DIFFERENT FORMS 
IN THE FUNCTIONAL 
LANGUAGES 

 
We consider that for program verification it is 

necessary to apply structural and transfinite 
methods of induction of proofs. The proof methods 
are applied for recursive functions which 
arguments are numbers according which changes 
take place. 

Let us discuss how to prove recursive function 
verification of various type discussed by us. 
 
5.1. Verification of Parallel Recursive 
Functions 

 
In the programs verification proofs the 

transfinite induction and structural  methods are 
considered. The proofs methods is used for the 
recursive functions, the arguments of which are 
numbers and by which are made the changes. 

The parallel recursive functions verification 
may be realized by the structural verification 
method. It is meant that the recursive functions 
arguments are not numbers, but structures and an 
induction is realized by the list length. Such 
programs correctness may be proved as follows: a) 
let us prove that the program works corrects for 
simpler data (for the empty list). b) Let us prove, 
that the program works correctly for more 
complicated data (for N+1 length list) with the 
admittance, that  it works correctly for 
comparatively simple data (for N length list) 
 
5.2. Verification of interrecursive functions 

 
The interrecursive  functions verification may 

be realized by using transfinite induction method. 
The transfinite induction method is the proof 
method, which is the mathematical induction 
generalization for the parameters non-numerical 
signification. It is as follows: it is necessary to 
define the necessary for it dependence, and such, 
that passes ahead of previous calls before further 
recursive calls - this gives the algorithm finishing 
guarantee. 

The interrecursive functions differ from some 
recursive functions, which call each other. The 
argument of each function is the number or a list. 
Let us define the size, which is equal to sum of all 
these function argument lengths. Let us consider 
this size as the transfinite induction measure. Then 

the induction method has following shape: we 
verify the interrecursive functions correctness for 
the arguments with the zero length. Later it is 
supposed, that the functions are correct, when 
arguments sum is N length and we try to prove 
for N-1 length, as when used with structural 
induction. The induction step decreases, if the 
lengths sum decreases.   

 
5.3. Combined induction technique 

Combined induction technique is used for 
verification for such complex functions whose 
arguments are again the recursive functions. For 
example, for the functions of the following type: 

 ϕ ( ϕ1(), ϕ2(), ... , ϕN ( ) ), where each 
argument ϕ1(), ϕ2(), ..., ϕN ( ) is the recursive 
function.  

 A special case is the cases with mixed 
version which are of great interest: a) the case 
when each function ϕ1(), ϕ2(), ..., ϕN ( ) is 
numerically stated and its recurrent values are 
also numbers, while the function ϕ is operable 
on lists, and b) the case when each function ϕ1(), 
ϕ2(), ..., ϕN ( ) is list-operable, while ϕ is 
operable on numbers. In this case, separate use 
of the proofs induction and structural induction 
techniques could cause errors; therefore, their 
combined techniques should be used. For 
example, we have a composition of functions ϕ ( 
ϕ1(L), ϕ2(L)), where  ϕ1(L) is the function that 
computes the maximum elements of L list, ϕ2(L) 
– computes the minimum, while ϕ circulates the 
simple mean of these arguments. In such a case, 
proof of ϕ1(L) and ϕ2(L) functions correctness is 
proved by using first the structural induction 
technique and then the proof-by-induction 
technique. 

 In the composition of functions, account 
should be taken that the computation of values of 
the functions takes place from left to right, when 
the S-expression is rather straight than parallel. 
This can cause a number of errors, for example, 
in case when each function in the composition is 
database-operable and replaces the data in the 
base.  

 
5.4. Special program verification 
technique 

 
 The program verification history is 

known for the cases when special languages used 
to be created on purpose to simplify verification 
of the programs written in them. An alternative 
approach to this is the necessity that a 
generalized, abstract program for the given 
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programming language be created and verified its 
accuracy. It is necessary that the program needing 
verification be automatically transferred to the form 
of an abstract program. In this case, it will not be 
subjected to verification (because it will already be 
a particular form of a correct program). 

 The problem of the program verification 
process automation in programming has retained its 
urgency up to this day. In respect of the functional 
language LISP, this problem must be reduced to 
any program abstract form and then to its further 
automatic verification.  

 We offer the following verification 
algorithm: 

a) To make the so-called universal function 
(or functions) for the given programming language 
of which will make it possible to present the 
recursive function of any type written in this 
language. After that the universal function 
verification should take place. For this purpose the 
above-mentioned induction techniques will be 
used, an attempt will be made to define the size 
(reflecting natural number arguments) finding 
algorithms, certainly, within the bounds of the 
given language.    

b) To create construction transformers, i.e. the 
apparatus thanks to which constructions of one 
form, in particular, loops and conditional 
representations, will be transformed into recursive 
construction one. If the transformers are universal, 
then it will be possible to transfer loops and 
conditional representations to a recursive form for 
the non-functional languages which will, in their 
turn, make it possible to use the given algorithm for 
other languages as well.    

c) If the given function that needs verification 
is recursive, then it will be transformed into a after 
which its accuracy will be proved automatically. If 
the given functions contain loops and conditional 
statements, then it will automatically transfer to the 
form of recursive and correspondingly universal 
functions form by means of the transformer 
described in paragraph (b) above. Thereafter, its 
accuracy will be proved. 

 
6. Conclusion 

 
Thus we have discussed recursive functions 

verification process automatization problems. We 
discussed functional programming language for 
LISP abstract program image and by applying 
proofs induction, structural and transfite induction 
methods to prove the recursive function 
correctness. We should say that it would be 
desirable to arrange a dialog rate in the process 
when the program adjusting to abstract program 
form takes place. Analogical forms could be 

determined for non-list expressions since 
imperative languages controlling operators 
(cycles) could be presented my means of 
discussed recursive forms. 
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