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Abstract: - A simple an effective algorithm for performing distance queries between a large number of points 
stored in quadtrees and octrees. The algorithm is developed and tested for the construction of diffusion-limited 
aggregates. To achieve an enhancement on the searching time we accept approximate distance values with low 
precision at the first levels of the hierarchical structure, and accurate ones at the last level. The structure of the 
trees is the only feature used for the determination of approximate distances at any stage. These techniques 
allowed us to build DLA clusters with up to 109 particles for the two-dimensional case and up to 108 particles 
for the three-dimensional case. We also worked with the PDLA model obtaining fractal clusters with up to 
1010 and 109 particles for two and three dimension clusters respectively. We worked on a supercomputer to run 
the PDLA simulations, as well as a high performance server for DLA simulations. We employed POSIX 
threads to provide parallelization and mutexes as control mechanisms to achieve synchronization between 
groups of 4 processors, hence simulating PDLA clusters with early convergence to the DLA model. 
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1   Introduction 
Distance queries in multidimensional data structures 
are a very important matter in computer applications 
like robotics, collision detection, computer graphics, 
pattern recognition, path planning, and simulation of 
physical phenomena, among others. Nowadays there 
is a wide variety of well designed algorithms to 
handle distance queries in both accurate and 
approximate fashions [1]. Here we introduce a new 
variant for searching in quadtrees and octrees that 
yields accurate and approximate distance values 
depending on the relative magnitude of such values. 
This paper is focused in the fast calculation of the 
distance between a moving query point and a set 
consisting of a large number of points scattered on a 
space domain. To improve the performance for the 
distance queries we take advantage of the precision 
degree previously known as acceptable in each 
query for the computation of the distance between a 
query point and a very large set of points by looking 
at the nodes of the structure (a quadtree or an octree) 
on which the data is stored, the area they cover in 
space, and the distance between the query point and 
the environment by means of their relation in terms 
of scale. 
A previous idea of having several representations for 
a diverse set of scales has already been successfully 
applied for random fractal cluster simulations by the 

use of bitmaps [2]. We introduce in this paper a 
different method which has the advantage that it 
does not make use any kind of map for storing 
additional information about a variety of scale views 
of the cluster, instead of that, we take advantage of 
the internal structure of the quadtree or octree that 
stores data relative to space in a hierarchical way, 
this allowed us to save memory and speed up 
calculations in order to run dynamical cluster 
simulations having a huge number of elements. In 
this way, we do not need to store additional data 
neither to update states of external maps. Here we 
present our method for Euclidean dimensions 2=d  
and 3=d , this can be straightforwardly extended to 
higher dimensions, remarking the fact that the 
number of children for each node in the 
corresponding octree will be  d2 .
While we present the DLA simulation as a study 
case, we think this distance search technique might 
be applied to a variety of problems on which 
precision requirements can be handled in the same 
way as it is shown for this particular example. 
Creating fractal clusters with a high number of 
particles has been already treated several times, due 
to the importance of the exactitude for simulation 
and establishment of asymptotical parameters for 
many natural phenomena involving fractal growth 
[3-6]. The Diffusion Limited Aggregation model, 
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described by Witten & Sanders [7] was firstly 
simulated with a few thousands of particles. A 
significant improvement for simulating the model 
was given by Ball & Brady [2] by the introduction 
of large step random leaps for particle moving over 
empty areas. This was achieved using a hierarchy of 
grid maps. These techniques allowed Tolman & 
Meakin [8] to build DLA clusters with up to 107 
particles. Kaufman et all. [9], introduce the use of 
quadtrees for the efficient storage of particles 
obtaining clusters with up to 108 particles by using 
32 processors working in parallel and based on the 
PDLA model also described in the same work. This 
last method was later used by Mandelbrot to study 
lacunarity [10] over 108 particle clusters created 
using a single processor. We started from the 
background references cited above and following 
the methodology described in the next sections we 
have obtained fractal DLA clusters consisting of  
N=109 particles generated by a single in processor in 
an average time of 14 hours. To improve these 
figures, we made use of a parallel multiprocessor 
system to generate clusters following the PDLA 
model, which converges to the DLA model for a 
large number of particles [9]. Implementing these 
techniques with our variable precision distance 
search algorithm, we constructed 1010 particle 
PDLA clusters with a high concordance in the mass-
radius behavior with respect to the DLA model. 
These simulations required in average 52 hours of 
execution time using four sharing memory processor 
per job. For simulation of the three-dimensional 
DLA, growing 3D-clusters with 108 particles took 
4.5 hours in an average working in 2D, and 25 hours 
to obtain a 109 PDLA cluster in 3D with four 
processors 
 
 
2   Diffusion-Limited Aggregation 
The diffusion limited aggregation model introduced 
by Witten & Sander [7] can be described as the 
following iterative process: A seed particle is placed 
at the origin, this is the initial cluster. Another 
particle makes a random walk starting from one 
place far from the origin usually called birth radius 

 and ending when the particle visits a location 
adjacent to the cluster, then the moving particle 
become part of it. If the particle exceeds some 
boundaries established by the death radius  then 
it is discarded. The process is repeated until certain 
number of particles conforming the cluster is 
reached. The distance from the farthest particle of 
the cluster to the origin is sometimes called exterior 

radius .The DLA model describes a large 
number of natural growth phenomena. 

bhR

dhR

extR

Although its algorithmic sketch seems quite simple, 
many implementation techniques are required to 
achieve the simulation of large clusters. Having 
large DLA fractal aggregates is important for the 
analysis of asymptotical properties of this model 
which covers a wide variety of growth phenomena. 
The main difficulty that appears working with large 
clusters is that a moving particle must be aware of 
all other particles in the cluster, its necessary then to 
know the distance from the particle to the cluster 
and this value changes at each step of the Brownian 
motion, so a massive number of queries has to be 
performed in order to get large DLA clusters. 
Brownian motion describes the erratic behavior of 
microscopic particles suspended in a liquid. Hence it 
is an important model to explain diffusive aspects on 
many natural processes. Applications of Brownian 
motion are extended to many other areas, for 
example determination of shapes for natural 
landscapes [11, 12].    
 
 
3 Variable Precision Search for DLA 
and PDLA Simulations. 
In this section we introduce our variable precision 
distance search algorithm to make queries about 
distance between one point and a set of points stored 
in a bucket quadtree or octree. This kind of search 
exploits the implicit information about space 
contained in the data structure by looking for the 
first area free of particles that encounters and then, 
depending on the level in which this area was found 
it sets an approximate distance. We applied this 
algorithm to DLA and PDLA model simulations and 
present the obtained results on performance and 
fractal measurements taken from the fractal clusters 
generated. 
 
3.1 Variable Precision Distance Queries In 
Quadtrees And Octrees. 
Roughly speaking, the variable precision distance 
search algorithm works by looking for the distance 
between a query point and the center of the occupied 
nodes at the first levels of the quadtree, if the query 
point is far enough, then an approximate distance is 
returned, otherwise the algorithm will verify if it is 
in a leaf containing points and then returning an 
exact distance. This procedure is carried on 
recursively through all the levels of the quadtree. 
The method is exactly described in the pseudo code 
shown in Listing 1. A brief explanation of the 
functions used in the pseudo-code is given at Table 
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1. To examine the potential of our algorithm we 
analyze the possible cases and values returned by 
the procedure above described. Suppose the 
algorithm defined by the function 
VPDIST_SEARCH given in Listing 1 is applied to 
find the distance between a query point p  and a set 
of points  stored in a quadtree , assume that Ø≠A Q
p  is in the geometric domain of Q . Let  be the 

length of the diagonal that crosses the area covered 
by one node at the last level  of  and let  
be the distance between 

gd

n Q ),d( qp
p  and its nearest 

neighbor . Then the algorithm returns  
if the distance from 

Aq ∈ ),d( qp
p  and the center of the node at 

level  containing  is less than , otherwise it 
returns with an error of at least  
and at most + . To prove this, we take the 
cases for which the function returns exact and 
approximate distances. For the exact case it is clear 
that the condition of line 13 in listing 1 will be true 
for a search at level  and line 07 tell us that the 
exact verification is done when 

n q

,qp

n

gd2
),d( qp

.0
),qp

gd2

d(2.

q)

0+

p,d(

)d(4

< . 
Moreover, line 07 also tells that if 2≤n  the 
algorithm will always yield . The calls in 
lines 24 to 32 ensure that all the potential nodes for 
nearest neighbors will be searched at any level of Q  
due to the intersection conditions on lines 25, 28 and 
31. On the other hand, if an approximate distance 

 is returned then this will be done by inspecting 

one node 

),qpd(

appd

η  at a level k  with . Let  be 
the center of the area covered by 

nk< ≤2 cq
η  and r  be the 

distance between and one of the corners of such 
area. We have   as result of line 
10. We can see that the closest that 

c

=
q

dapp d( rq,p c −)
p can be from 

 is cq r4  due to the condition stated at line 07, in the 
same way, the farthest that p can be from is  
otherwise the condition at line 07 would have been 
true for the preceding node al level , since it 
checks for a distance greater than  from 

cq r9 ,

1−k
r8 p  to the 

center  for the father of cfq η , which is the length of 
the diagonal crossing a node at level . Note 
that  so we have d( . To 
ensure the expression 

2
9≤

app

−k
qc )

,dapp

rqq ccf =),d( r

]2r

p,

[d)q,d( p +∈

d

 
consider that  is not closer than  to q app p  because 
in that case the circle with center on p  and radius 

 would intersect with a not-null node at level 
 and recursion calls in lines 24 to 32 would 

returned a shorter distance than . Furthermore, 
although 

appd
−k 1

appd
η  is not necessarily the node at level k  

that contains , it has at least one point, so the 
nearest neighbor is not beyond that 

q
rapp 2d +  from 

p .  Then we have that for the approximate cases the 
relation ]2,[, rdd appapp +)qd( p ∈  is held, and this is 
equivalent to the positive error range for  stated 
before. 

appd

cq

Fig. 1 illustrates some of the ideas given in the 
argument above by showing one case in which the 
query point  is the closest possible to the center 

of the node that is inspected for an approximate 
distance . It also shows the case when the query 

point  is the farthest possible from  before the 
approximate distance would have been taken from 
an upper level on the quadtree inside the recursive 
process as the search is performed in a top-down 
way. The shaded area corresponds to all those points 
for which the algorithm will return an approximate 
distance based on  at the level depicted in Fig. 1, 
where the node with center  is the north-east child 
of its father. 

ap

cq

appd

b

cq

cq

p

Note that the precision given by the algorithm 
described above might be inadequate for many 
distance search applications. However it can be 
pretty useful when a big error is unimportant if it 
allows a process to be conducted to a further step, as 
in the problem here studied.  
 
3.2 Simulation of the DLA and PDLA Models. 
The technique exposed here is an improvement for 
the use of the hierarchical data structure called 
quadtree storing point data for a fractal cluster 
described by Kaufman et al [9], besides simulating 
the DLA model we worked too with the PDLA 
model which consists in allowing several particles to 
move around randomly until they reach the cluster, 
each particle being handled by a processor so the 
simulation of the Brownian motion for each particle 
is done simultaneously. The PDLA model converges 
to the DLA model for a large number of particles 
belonging to the cluster [9]. We also employed the 
hierarchical structure to efficiently store points in 
main memory, and we used pointers to chunks of 
particles to reduce the memory space required per 
particle. The major enhancement we have made with 
respect to the cited reference is that we use the 
quadtree not only for efficient storage but also we 
exploit it to perform approximate distance queries, 
avoiding the use of hierarchical maps since we take 
all the information we need from the structure of the 
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quadtree or octree and working in this way we have 
a procedure not limited to two-dimensional spaces. 
We used the algorithm described in the previous 
section to find out the distance between a moving 
particle and the cluster. This situation is involved in 
the simulation of Brownian motion for particles in a 
complex background defined by all the other points 
that are already part of the cluster on which we need 
to know the length of the clearance where a particle 
can move freely in a random way. High precision in 
this measure is not a critical issue when the particle 
is relatively far of the cluster’s branches. Besides 
staying away from hierarchical maps we also avoid 
the implementation of killing-free techniques [9,13], 
instead of that, when we have a moving particle at a 
point p  with bhRp >  we take extRp −  as the 
length of displacement for the next move in a 
random direction. The idea is illustrated in Fig. 2. In 
this way we can put as far as  without 
slowing down the simulation in a significant way. 
This ratio is limited by the use of 64-bit integer 
arithmetic used for the simulations applied to get our 
data as described in the section corresponding to the 
implementation of our program. Using floating point 
arithmetic the ratio  can be as large as 1020 
without affecting too much the processing time. 

dhR

dhR /

210×bhR

bhR

We first applied the variable precision distance 
search algorithm to work under a Euclidean 
dimension .To build 1010 particle PDLA 
clusters we ran our simulations on a HP Cluster 
Platform 4000 supercomputer. The jobs were run 
using groups of 4 AMD Opteron processors at 2.4 
GHz with 64 GB of shared memory and a 400MHz 
FSB bandwidth. We used only one processor to 
grow the clusters up to 107 particles under the DLA 
regime, i.e. using only one processor, and then we 
brought in the other three processors to achieve 1010 

particles for the PDLA model. This gave us a good 
convergence from the PDLA to the DLA model as is 
presented in a later section. The average time 
required to get a 1010 particle PDLA cluster was 42 
hours. Memory space required to create a 1010 
particle PDLA cluster is 42 GB of RAM. A binary 
file containing raw coordinate data for this cluster 
occupies about 150 GB of disk space. 

2=d

In addition, we created 109 DLA clusters using a 
single processor. For these cases the program was 
ran over on a PowerEdge 2900 server with 8 Intel 
Xeon processors at 2.66 GHz with 32GB of shared 
RAM and 1333MHz FSB a bandwidth, as the 
memory requirements were not so extensive as for 
the 1010 particle clusters. Here the jobs were 
executed by a single processor as it is established by 
the DLA model. Here the multiple processors were 

only providing concurrency to run several jobs at the 
same time, so we kept reproducing the original DLA 
model taking an average time of 10 hours per job. 
This wall-clock time was small as expected because 
these simulations were performed on the mentioned 
server with an improved front side bus bandwidth 
(1333MHz) and a slightly faster CPU speed (2.66 
GHz) with respect to the characteristics of the nodes 
of the HPCP4000 cluster.  
To work with a Euclidean dimension  3=d  we 
modified the data structure changing from a 
quadtree to an octree, we also modified several 
functions to be adapted to the new structure but the 
main steps of the algorithm were still remaining the 
same. The simulations with the variable precision 
algorithm were carried out to simulate PDLA 
clusters with up to 109 particles in a space with 
Euclidean dimension 3=d , and once again we had 
one processor working until it reaches a cluster of 
107 particles, then we launched other 3 processor 
running the algorithm for the construction of the 
same aggregate, forming a group of 4 sharing 
memory processors to get a cluster with size of 109 
particles. It took an average of 12 hours to build a 
3d-PDLA cluster in this fashion. For the 3d-DLA 
model we built 108 particle clusters in an average 
time of 4 hours. 
Fig. 4 a). shows a picture of one two-dimensional 
cluster conformed by 109 points. In Fig. 4b we can 
see a PDLA cluster consisting of 1010 particles. Fig. 
5 also shows a tiny three-dimensional DLA cluster 
of 3500 particles, this small size cluster is shown in 
this paper for practical reasons as the structure of 
large 3d-DLA is completely lost when projected 
particle by particle to a 2d image. 
 
3.3 Program Implementation. 
In this section we describe the details of the code 
implementation we made to get the DLA and PDLA 
models working in a computer system. The code 
was written in C language and was compiled with 
the GNU Compiler Collection (gcc) utility [14]. To 
give multiprocessing capabilities to the code we 
used the the POSIX-threads library [15] running 
over the Linux kernel 2.6.39.3 [16]. We made use of 
mutexes in order to avoid race conditions that could 
be generating data inconsistency and particle 
overlaps. The central function in the implementation 
performs the simulation of the Brownian motion for 
one particle. Sequential and parallel procedures were 
coded inside the same application, giving the option 
to specify the number of threads that will be 
executing the Brownian motion function for each 
different particle moving in the space at a given 
time. When the parallel model is required a 
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reference to this function is passed to a different 
thread for its simultaneous execution. Note that with 
this structure there must be at least the same number 
of processors as threads; otherwise there won’t be 
any improvement on simulation speed. The flow 
diagram detailing the process carried by this central 
function implementing an off-lattice DLA model for 
the Euclidean dimension 2=d  is shown in Fig. 6. 
Here  represents the number of particles.  is the 
set of points that compose the aggregate,  and 

 are the birth and death radius respectively. The 
label  stands for the tolerance distance that 
particles have to be from the cluster to get added to 
it and can be interpreted as the particle diameter. 
The value 

N

tol

A
bhR

dhR

tol<<ε  is an adjustment needed to deal 
with discrete numeric representation issues.  
indicates the distance between the point 

), A(d p
p  and the 

set , and it is obtained by a call to the variable 
precision distance search function VPDIST() 
described in Listing 1. The main loop for the 
Brownian motion process is identified by the label 1. 
This performs the Brownian motion simulation for 
the current moving particle. The loop labeled with 2 
resets the motion for a particle that has travel 
beyond  from the cluster origin puts it again at a 
random point situated at a distance  from the 
origin. The loop marked with 3 performs the 
addition of a new particle to the aggregate . If the 
desired number of particles has not been already 
reached, the process begins again. In this last loop 
the dashed verification shown in Fig. 6 is only 
performed for the case of having more than one 
thread executing the function. This avoids particle 
overlapping as it checks that no particle has been 
placed in the space where the new particle is going 
to be added. If there were a collision, the new 
particle would be discarded. The shadow processes 
in the flow diagram indicate critical sections that are 
protected from simultaneous execution from 
different threads by mutexes. To avoid an excessive 
blocking time we used three separate mutexes for 
this critical sections. This operation of adding a new 
particle to the cluster may involve the creation of 
new nodes to the tree structure and the allocation for 
memory space reserved to the program. We use one 
mutex for the search and possible creation of the 
node on which the new particle will be added, and 
another mutex to modify or create the bucket list 
structure for storing particles. A third mutex protects 
the actualization of data employed by calculations 
involving the radius of gyration. 

A

dhR

bhR

A

Random numbers for the value θ  are generated with 
the reentrant version of the standard function 

drand48() [14]. In this way we placed uniformly 
distributed points on a circle of radius  taking 
the polar coordinates 

bhR
)cos(θbhRx = , )sin(θbhR=y

3
. 

When having an Euclidean dimension =d the 
generation of uniformly distributed random points 
over a sphere is done by generating two independent 
random variables  and u θ , and applying the 
equations 

)θcos(1 2uRx bh −= , )θsin(21 uRy −= bh ,

uRz bh= ; these equations replace those shown in 
the flow diagram from Fig. 6. The functions 
INTERSECTS() and CIRCLE() shown in line 25 of 
Listing 1 are also changed for the 3d case to find the 
intersection of a sphere defining a neighborhood and 
the limits of the space enclosed by a node.  
The VPDIST() function is coded managing 
orthogonal distances whenever possible, avoiding in 
this way unnecessary calls to the standard function 
sqrt(), otherwise the overall time execution will be 
drastically increased as such function calls are 
executed by the floating point unit with a relative 
low instruction latency.  
To handle the distance difference:  

2)), nodep CENTER /)nodeDIAGONAL(((h DIST −=
  required by lines 09 and 10 in Listing 1, we take 

2)22) +2 /(2/( δδ −−−−= cc yyxxh
),( yx ),( cc yx

 where 
 and  are respectively the coordinates 

of the moving point p and the center of the node 
being analyzed. Here δ  is the previously calculated 
value for the diagonal that crosses the space area 
defined by a node and is a unique value for all nodes 
at the same level in the quadtree.  
Points in the data structure are stored using relative 
coordinates based on the center of the leaf at which 
they are kept, the base coordinates are not stored, 
instead they are calculated incrementally while 
traversing the nodes of the trees. At the tree 
structure we have pointers addressing list structures 
containing chunks of 10 particles. Each relative 
coordinate uses 1 byte for storage. At the final node 
of each list there is no next pointer, so we handle 
them with void pointers and in this way we are able 
to address at two kinds of data structures with the 
same pointer.  
Since we used 64-bit architecture we worked with 
integer arithmetic for all data and calculations 
involved, obtaining an improvement on performance 
and yet on precision as each coordinate had evenly 
distributed values under the space taken for the 
simulations. 
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3.4 Results. 
In order to evaluate the performance on the 
simulation of the DLA model for the algorithm with 
variable precision distance search; we needed a 
reference so we have run experiments using the 
algorithm and comparing the results with a classic 
exact nearest neighbor search [17] adapted to a 
quadtree, instead of using a kd-tree as it is exposed 
in the original work. Fig. 3 a) shows the overall 
performance of the methods by presenting the 
number of particles  against execution time N T  
measured in seconds for the case with  Euclidean 
dimension , and Fig. 3 b) shows a comparison 
between the  and . 

2=d
2=d 3=d

For , we can see empirically by fitting the 
obtained data to the curves  
and  with a correlation 
coefficient  (the dashed lines in Fig. 3 a) 
how the complexity of the DLA simulation is 
reduced from an exponential trend to a linear one by 
the use of our techniques. This result is comparable 
with the ones obtained by using bitmaps at different 
levels of resolution [2, 8, 9] but our method has the 
advantages that needs no additional storage for 
external maps, neither needs to update several 
hierarchical representations of the cluster, and can 
be easily extended to dimensions greater than 2. For 

 the fitting is made with  
having a correlation coefficient .  

2=d

=T

3

)109exp(6.9 6 NT −×=

4.25101 4 −×= − NT
9976.02 =r

9.6103 5 −× − N
9981.02 =r

=d

The fractal dimension for the aggregates was 
calculated by the radius of gyration. Table 2 shows 
the values of fractal dimensionality found in several 
experiments. Here  is the number of particles for 
each cluster, P is the number of processors 
employed, d is the Euclidean dimension of the space 
that contains the aggregates, and E the number of 
experiments executed for the computation, the 
fractal dimension calculated is represented by D, 
and 

N

σ  is the standard deviation for this fractal 
dimension. We were taking 103 measurements of the 
radius of gyration as each cluster was evolving.  
 
To evaluate convergence of the clusters on the 
PDLA model to the DLA, implemented as described 
earlier sections, we took data for the radius of 
gyration obtained from both models. Experimental 
data is shown in Fig. 7, where we can see no 
significant variation on the radius of gyration for the 
PDLA with 4 processors model with respect to the 
DLA. This is as expected for a low number of 
parallel processor working with massive clusters [9]. 
A remarkable fact found here is that we have a 
higher variance in the measure in the PDLA model 

and this variance grows with the size of the cluster. 
For clusters of size  we have an average 
value 

1010=N
74310.5=gR  particle diameters with a 

standard deviation 6.1119=σ  for the DLA, and 
5.75796=gR  with 5.1980=σ  for the PDLA 

model. Error bars in Fig. 8 are scaled by a factor of 
two in order to make them perceptible. 
To evaluate multiprocessor efficiency we quantify in 
PDLA simulations an average speedup of 3.74 when 
working with 4 processors. Amdahl’s law [18] 

means 1,
/

1
=+

+
= ps

ps
rr

nrr
speedup  where  

represents the ratio of the serial fraction of the 
program and  the number of processor running the 
program simultaneously, and tells that the fraction 
of parallelizable fraction of our executing code is 
97.5%. This gives that a 2.5% of execution time on 
each processor is consumed executing non 
parallelizable code characteristic of a DLA 
implementation and being blocked while waiting for 
the release of a mutex. Given the size of the 
simulation and the parallelization schemed described 
we assume that this last percentage is mainly spend 
by execution threads waiting in a blocked state. 
These values indicate an acceptable performance 
taking into account the data dependency of all the 
entire process. 

sr

n

 
 
4   Conclusion 
In this paper we have presented the algorithm for 
distance search with variable precision in quadtrees 
and octrees and we have also described how can be 
successfully applied in DLA and PDLA simulations 
using Euclidean dimensions  and 2=d 3=d . One 
of the main benefits of our method is that it does not 
require external representation of the data so we can 
handle a huge amount of particles as we do not have 
to update several states for each representation as 
the simulation evolves. In this way we have 
produced faster simulations with less memory space 
required to manage different precision scales in our 
models. Another improvement over the traditional 
way of performing this kind of simulations is that 
our method can be extended to higher dimensions 
without difficulty. Dealing with a combination of 
software and multiprocessor equipment, we attained 
to build clusters of a size that surpass the ones 
previously published by others. For this reason we 
think that these techniques can help to the design of 
further experiments involving random fractal 
aggregates with a lot of particles and placed on 
spaces with different Euclidean dimensions. We’re 
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also planning to adapt this kind of search to other 
several problems which involve the quadtree and 
octree data structures to test the advantages and 
drawbacks that can be raised by applying the 
algorithm here presented.  
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Listing 1. Pseudo-code for the variable precision distance 
search algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

00  precondition: min_dist=infinity 
01  recursive real function  VPDIST (node,min_dist) 
02  /*Search for accurate or  approximate distance */ 
      /*between one point to a set of points */ 
03  value pointer node node 
04  reference real min_dist 
05  pointer node son, real d 
06  if not ISNULL(node) then 
07      if  DIST(p,CENTER(node)) > DIAGONAL(node)*2  
 then 
08      /*return an approximate distance */ 
09          if DIST(p,CENTER(node)) -DIAGONAL(node)/2 
 < min_dist then 
10              return DIST(p,CENTER(node))- 
 DIAGONAL(node)/2 
11          endif 
12      else 
13          if ISLEAF(node) then 
14              /*if we have a leaf, do an exact search */ 
15              d:=min_dist 
16              for each point in node do 
17                 if DIST(p,point)< d then d:=DIST(point) Figure 1. Region assigned to an approximate distance by 

inspecting the center qc of a node in a quadtree. pa and pb 
show how close and how far a point can be when its 
distance to the cluster is approximately evaluated respect 
to qc. dapp is the returned value. 

18              enddo 
19              if d< min_dist then return d endif 
20          else 
21          /*if we do not have a leaf, ask direction */ 
22              son := DIR_POINT(p, node) 
23              /*now search recursively in the structure */  
24              min_dist:= VPDIST(son,min_dist)  
25              if INTERSECTS(CIRCLE(p,min_dist),  
  LEFT_SIB(son)) then 

 
 26                  min_dist:=     

 VPDIST(LEFT_SIB(son),min_dist)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27              endif 
28              if INTERSECTS(CIRCLE(p,min_dist), 
 RIGHT_SIB(son)) then 
29                  min_dist:= 
 VPDIST(RIGHT_SIB(son),min_dist) 
30              endif 
31              if INTERSECTS(CIRCLE(p,min_dist),  
   OPP_SIB(son)) then 
32                  min_dist:= VPDIST(OPP_SIB(son),min_dist)
33              endif 
34          endif 
35      endif 
36  endif 
37  return  min_dist 
 

Figure 2. Length of the random jump for a particle p 
taken when is beyond Rbh from the center of the cluster. 
The shaded area does not contain any particle belonging 
to the cluster so it is safe for a particle to jump across it. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Processing time (in seconds) T required for the 
simulation of 2D and 3D DLA models of size N. The 
complexity reduction from an exponential to a linear 
trend can be observed in a) .In b) we have time required 
for 2D and 3D simulations using variable precision and 
exact distance search. Correlation coefficients are 0.9981 
and 0.9976 respectively. 
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b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. a) 109 particle DLA cluster and b) 1010 particle 
PDLA cluster. Here exterior radius are approximately 
1.5x105 and 7.5x105 particle diameters respectively. 
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Figure 5. A tiny 3D-DLA cluster consisting of 3500 
particles. Different shadings corresponds to the  arrival 
sequence of the particles at the cluster. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Flow diagram for off-lattice DLA and PDLA 
codification. Dashed lines indicates a test needed only for 
the PDLA model. Procedures in gray boxes show critical 
sections which need to be protected when using multiple 
processor.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Radius of gyration Rg for clusters of size N 
generated with 1 and 4 processor. Error bars are scaled by 
a factor of 2 with the intention of making them visible.  
 
 
 

 
Table 1. Description of functions used in the pseudo-code 
given in Listing 1. 
 
 
 

DIR_POINT(point, node) 
Returns a pointer to the son of node that is in the same 
quadrant than point respect to the center of node. 
CENTER(node) 
Returns the center point of the space covered by node in 
the quadtree. 
DIAGONAL(node) 
Returns the length of the diagonal that goes through the 
area covered by node in the quadtree. Returns infinity if 
node is a null pointer. 
DIST(point1,point2) 
Returns the Euclidean distance between point1 and 
point2. 
ISLEAF(node) 
Returns true if node is at the last level of the quadtree 
CIRCLE(p, r) 
Returns a reference to a circle object with radius r and 
center at p. This is replaced by SPHERE (p, r) in three 
dimensions. 
INTERSECTS(circ, node) 
Boolean function that returns true if the circle (or sphere) 
referenced by circ intersects with the squared area (or 
cubic volume) belonging to node in the quadtree 
LEFT_SIB(node) 
RIGHT_SIB(node) 
These functions return a reference to left and right 
siblings of node in the same level of the quadtree 
hierarchy. 
OPP_SIB (node) 
Returns a reference to the diagonally opposite sibling of 
node at the same the quadtree hierarchy. 

start

get N 

s:=(0,0) 
A:={s} 

i<N? 

select θ∈[0,2π) randomly 
x:=Rbhcos(θ), y:=Rbhsin(θ) 

p:=(x,y) 

|p|<Rdh? 

d(p,A)>tol? 

select θ∈[0,2π) randomly 
x:=x+(d(p,A)-ε)cos(θ) 
y:=y+(d(p,A)- ε)sin(θ) 

p:=(x,y) 

A:=A∪{p}  
i:=i+1

A 

end

NO 
YES 

YES 

NO 

YES

NO 1

2 3 

YES 

collision? 

NO 
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N P d E D σ  

1010 4 2 5 1.716542 0.05793 
109 4 2 80 1.712472 0.01292 
109 1 2 10 1.710590 0.00466 
109 4 3 10 2.479468 0.01644 
108 4 3 80 2.503168 0.01715 
108 1 3 50 2.531181 0.00820 

 
Table 2. Fractal dimension measurements on DLA and 
PDLA clusters of different size N. Here P indicates the 
number of processors. D and d represent the fractal and 
Euclidean dimensions respectively. σ  indicates standard 
deviations for D. 
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