
Variable precision distance search for random fractal
cluster simulations.

SOSA-HERRERA ANTONIO1, RODRIGUEZ-ROMO SUEMI2

1Computational Science Graduate Program, 2Center of Theoretical Research
Universidad Nacional Autónoma de México, Campus Cuautitlán.

Av. 1 de Mayo s/n. Col.Atlanta. 54740 Cuautitlán Izcalli, Edo. Mex.
MEXICO

jasosah@hotmail.com, suemi@servidor.unam.mx

Abstract: - A simple an effective algorithm for performing distance queries between a large number of points
stored in quadtrees and octrees. The algorithm is developed and tested for the construction of diffusion-limited
aggregates. To achieve an enhancement on the searching time we accept approximate distance values with low
precision at the first levels of the hierarchical structure, and accurate ones at the last level. The structure of the
trees is the only feature used for the determination of approximate distances at any stage. These techniques
allowed us to build DLA clusters with up to 109 particles for the two-dimensional case and up to 108 particles
for the three-dimensional case. We also worked with the PDLA model obtaining fractal clusters with up to
1010 and 109 particles for two and three dimension clusters respectively. We worked on a supercomputer to run
the PDLA simulations, as well as a high performance server for DLA simulations. We employed POSIX
threads to provide parallelization and mutexes as control mechanisms to achieve synchronization between
groups of 4 processors, hence simulating PDLA clusters with early convergence to the DLA model.

Key-Words: - DLA , PDLA, distance queries, nearest neighbor, fractal cluster, quadtree, octree

1 Introduction
Distance queries in multidimensional data structures
are a very important matter in computer applications
like robotics, collision detection, computer graphics,
pattern recognition, path planning, and simulation of
physical phenomena, among others. Nowadays there
is a wide variety of well designed algorithms to
handle distance queries in both accurate and
approximate fashions [1]. Here we introduce a new
variant for searching in quadtrees and octrees that
yields accurate and approximate distance values
depending on the relative magnitude of such values.
This paper is focused in the fast calculation of the
distance between a moving query point and a set
consisting of a large number of points scattered on a
space domain. To improve the performance for the
distance queries we take advantage of the precision
degree previously known as acceptable in each
query for the computation of the distance between a
query point and a very large set of points by looking
at the nodes of the structure (a quadtree or an octree)
on which the data is stored, the area they cover in
space, and the distance between the query point and
the environment by means of their relation in terms
of scale.
A previous idea of having several representations for
a diverse set of scales has already been successfully
applied for random fractal cluster simulations by the

use of bitmaps [2]. We introduce in this paper a
different method which has the advantage that it
does not make use any kind of map for storing
additional information about a variety of scale views
of the cluster, instead of that, we take advantage of
the internal structure of the quadtree or octree that
stores data relative to space in a hierarchical way,
this allowed us to save memory and speed up
calculations in order to run dynamical cluster
simulations having a huge number of elements. In
this way, we do not need to store additional data
neither to update states of external maps. Here we
present our method for Euclidean dimensions 2=d
and 3=d , this can be straightforwardly extended to
higher dimensions, remarking the fact that the
number of children for each node in the
corresponding octree will be d2 .
While we present the DLA simulation as a study
case, we think this distance search technique might
be applied to a variety of problems on which
precision requirements can be handled in the same
way as it is shown for this particular example.
Creating fractal clusters with a high number of
particles has been already treated several times, due
to the importance of the exactitude for simulation
and establishment of asymptotical parameters for
many natural phenomena involving fractal growth
[3-6]. The Diffusion Limited Aggregation model,

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1245 Issue 8, Volume 8, August 2009

mailto:jasosah@hotmail.com
mailto:suemi@servidor.unam.mx

described by Witten & Sanders [7] was firstly
simulated with a few thousands of particles. A
significant improvement for simulating the model
was given by Ball & Brady [2] by the introduction
of large step random leaps for particle moving over
empty areas. This was achieved using a hierarchy of
grid maps. These techniques allowed Tolman &
Meakin [8] to build DLA clusters with up to 107
particles. Kaufman et all. [9], introduce the use of
quadtrees for the efficient storage of particles
obtaining clusters with up to 108 particles by using
32 processors working in parallel and based on the
PDLA model also described in the same work. This
last method was later used by Mandelbrot to study
lacunarity [10] over 108 particle clusters created
using a single processor. We started from the
background references cited above and following
the methodology described in the next sections we
have obtained fractal DLA clusters consisting of
N=109 particles generated by a single in processor in
an average time of 14 hours. To improve these
figures, we made use of a parallel multiprocessor
system to generate clusters following the PDLA
model, which converges to the DLA model for a
large number of particles [9]. Implementing these
techniques with our variable precision distance
search algorithm, we constructed 1010 particle
PDLA clusters with a high concordance in the mass-
radius behavior with respect to the DLA model.
These simulations required in average 52 hours of
execution time using four sharing memory processor
per job. For simulation of the three-dimensional
DLA, growing 3D-clusters with 108 particles took
4.5 hours in an average working in 2D, and 25 hours
to obtain a 109 PDLA cluster in 3D with four
processors

2 Diffusion-Limited Aggregation
The diffusion limited aggregation model introduced
by Witten & Sander [7] can be described as the
following iterative process: A seed particle is placed
at the origin, this is the initial cluster. Another
particle makes a random walk starting from one
place far from the origin usually called birth radius

 and ending when the particle visits a location
adjacent to the cluster, then the moving particle
become part of it. If the particle exceeds some
boundaries established by the death radius then
it is discarded. The process is repeated until certain
number of particles conforming the cluster is
reached. The distance from the farthest particle of
the cluster to the origin is sometimes called exterior

radius .The DLA model describes a large
number of natural growth phenomena.

bhR

dhR

extR

Although its algorithmic sketch seems quite simple,
many implementation techniques are required to
achieve the simulation of large clusters. Having
large DLA fractal aggregates is important for the
analysis of asymptotical properties of this model
which covers a wide variety of growth phenomena.
The main difficulty that appears working with large
clusters is that a moving particle must be aware of
all other particles in the cluster, its necessary then to
know the distance from the particle to the cluster
and this value changes at each step of the Brownian
motion, so a massive number of queries has to be
performed in order to get large DLA clusters.
Brownian motion describes the erratic behavior of
microscopic particles suspended in a liquid. Hence it
is an important model to explain diffusive aspects on
many natural processes. Applications of Brownian
motion are extended to many other areas, for
example determination of shapes for natural
landscapes [11, 12].

3 Variable Precision Search for DLA
and PDLA Simulations.
In this section we introduce our variable precision
distance search algorithm to make queries about
distance between one point and a set of points stored
in a bucket quadtree or octree. This kind of search
exploits the implicit information about space
contained in the data structure by looking for the
first area free of particles that encounters and then,
depending on the level in which this area was found
it sets an approximate distance. We applied this
algorithm to DLA and PDLA model simulations and
present the obtained results on performance and
fractal measurements taken from the fractal clusters
generated.

3.1 Variable Precision Distance Queries In
Quadtrees And Octrees.
Roughly speaking, the variable precision distance
search algorithm works by looking for the distance
between a query point and the center of the occupied
nodes at the first levels of the quadtree, if the query
point is far enough, then an approximate distance is
returned, otherwise the algorithm will verify if it is
in a leaf containing points and then returning an
exact distance. This procedure is carried on
recursively through all the levels of the quadtree.
The method is exactly described in the pseudo code
shown in Listing 1. A brief explanation of the
functions used in the pseudo-code is given at Table

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1246 Issue 8, Volume 8, August 2009

1. To examine the potential of our algorithm we
analyze the possible cases and values returned by
the procedure above described. Suppose the
algorithm defined by the function
VPDIST_SEARCH given in Listing 1 is applied to
find the distance between a query point p and a set
of points stored in a quadtree , assume that Ø≠A Q
p is in the geometric domain of Q . Let be the

length of the diagonal that crosses the area covered
by one node at the last level of and let
be the distance between

gd

n Q),d(qp
p and its nearest

neighbor . Then the algorithm returns
if the distance from

Aq ∈),d(qp
p and the center of the node at

level containing is less than , otherwise it
returns with an error of at least
and at most + . To prove this, we take the
cases for which the function returns exact and
approximate distances. For the exact case it is clear
that the condition of line 13 in listing 1 will be true
for a search at level and line 07 tell us that the
exact verification is done when

n q

,qp

n

gd2
),d(qp

.0
),qp

gd2

d(2.

q)

0+

p,d(

)d(4

< .
Moreover, line 07 also tells that if 2≤n the
algorithm will always yield . The calls in
lines 24 to 32 ensure that all the potential nodes for
nearest neighbors will be searched at any level of Q
due to the intersection conditions on lines 25, 28 and
31. On the other hand, if an approximate distance

 is returned then this will be done by inspecting

one node

),qpd(

appd

η at a level k with . Let be
the center of the area covered by

nk< ≤2 cq
η and r be the

distance between and one of the corners of such
area. We have as result of line
10. We can see that the closest that

c

=
q

dapp d(rq,p c −)
p can be from

 is cq r4 due to the condition stated at line 07, in the
same way, the farthest that p can be from is
otherwise the condition at line 07 would have been
true for the preceding node al level , since it
checks for a distance greater than from

cq r9 ,

1−k
r8 p to the

center for the father of cfq η , which is the length of
the diagonal crossing a node at level . Note
that so we have d(. To
ensure the expression

2
9≤

app

−k
qc)

,dapp

rqq ccf =),d(r

]2r

p,

[d)q,d(p +∈

d

consider that is not closer than to q app p because
in that case the circle with center on p and radius

 would intersect with a not-null node at level
 and recursion calls in lines 24 to 32 would

returned a shorter distance than . Furthermore,
although

appd
−k 1

appd
η is not necessarily the node at level k

that contains , it has at least one point, so the
nearest neighbor is not beyond that

q
rapp 2d + from

p . Then we have that for the approximate cases the
relation]2,[, rdd appapp +)qd(p ∈ is held, and this is
equivalent to the positive error range for stated
before.

appd

cq

Fig. 1 illustrates some of the ideas given in the
argument above by showing one case in which the
query point is the closest possible to the center

of the node that is inspected for an approximate
distance . It also shows the case when the query

point is the farthest possible from before the
approximate distance would have been taken from
an upper level on the quadtree inside the recursive
process as the search is performed in a top-down
way. The shaded area corresponds to all those points
for which the algorithm will return an approximate
distance based on at the level depicted in Fig. 1,
where the node with center is the north-east child
of its father.

ap

cq

appd

b

cq

cq

p

Note that the precision given by the algorithm
described above might be inadequate for many
distance search applications. However it can be
pretty useful when a big error is unimportant if it
allows a process to be conducted to a further step, as
in the problem here studied.

3.2 Simulation of the DLA and PDLA Models.
The technique exposed here is an improvement for
the use of the hierarchical data structure called
quadtree storing point data for a fractal cluster
described by Kaufman et al [9], besides simulating
the DLA model we worked too with the PDLA
model which consists in allowing several particles to
move around randomly until they reach the cluster,
each particle being handled by a processor so the
simulation of the Brownian motion for each particle
is done simultaneously. The PDLA model converges
to the DLA model for a large number of particles
belonging to the cluster [9]. We also employed the
hierarchical structure to efficiently store points in
main memory, and we used pointers to chunks of
particles to reduce the memory space required per
particle. The major enhancement we have made with
respect to the cited reference is that we use the
quadtree not only for efficient storage but also we
exploit it to perform approximate distance queries,
avoiding the use of hierarchical maps since we take
all the information we need from the structure of the

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1247 Issue 8, Volume 8, August 2009

quadtree or octree and working in this way we have
a procedure not limited to two-dimensional spaces.
We used the algorithm described in the previous
section to find out the distance between a moving
particle and the cluster. This situation is involved in
the simulation of Brownian motion for particles in a
complex background defined by all the other points
that are already part of the cluster on which we need
to know the length of the clearance where a particle
can move freely in a random way. High precision in
this measure is not a critical issue when the particle
is relatively far of the cluster’s branches. Besides
staying away from hierarchical maps we also avoid
the implementation of killing-free techniques [9,13],
instead of that, when we have a moving particle at a
point p with bhRp > we take extRp − as the
length of displacement for the next move in a
random direction. The idea is illustrated in Fig. 2. In
this way we can put as far as without
slowing down the simulation in a significant way.
This ratio is limited by the use of 64-bit integer
arithmetic used for the simulations applied to get our
data as described in the section corresponding to the
implementation of our program. Using floating point
arithmetic the ratio can be as large as 1020
without affecting too much the processing time.

dhR

dhR /

210×bhR

bhR

We first applied the variable precision distance
search algorithm to work under a Euclidean
dimension .To build 1010 particle PDLA
clusters we ran our simulations on a HP Cluster
Platform 4000 supercomputer. The jobs were run
using groups of 4 AMD Opteron processors at 2.4
GHz with 64 GB of shared memory and a 400MHz
FSB bandwidth. We used only one processor to
grow the clusters up to 107 particles under the DLA
regime, i.e. using only one processor, and then we
brought in the other three processors to achieve 1010

particles for the PDLA model. This gave us a good
convergence from the PDLA to the DLA model as is
presented in a later section. The average time
required to get a 1010 particle PDLA cluster was 42
hours. Memory space required to create a 1010
particle PDLA cluster is 42 GB of RAM. A binary
file containing raw coordinate data for this cluster
occupies about 150 GB of disk space.

2=d

In addition, we created 109 DLA clusters using a
single processor. For these cases the program was
ran over on a PowerEdge 2900 server with 8 Intel
Xeon processors at 2.66 GHz with 32GB of shared
RAM and 1333MHz FSB a bandwidth, as the
memory requirements were not so extensive as for
the 1010 particle clusters. Here the jobs were
executed by a single processor as it is established by
the DLA model. Here the multiple processors were

only providing concurrency to run several jobs at the
same time, so we kept reproducing the original DLA
model taking an average time of 10 hours per job.
This wall-clock time was small as expected because
these simulations were performed on the mentioned
server with an improved front side bus bandwidth
(1333MHz) and a slightly faster CPU speed (2.66
GHz) with respect to the characteristics of the nodes
of the HPCP4000 cluster.
To work with a Euclidean dimension 3=d we
modified the data structure changing from a
quadtree to an octree, we also modified several
functions to be adapted to the new structure but the
main steps of the algorithm were still remaining the
same. The simulations with the variable precision
algorithm were carried out to simulate PDLA
clusters with up to 109 particles in a space with
Euclidean dimension 3=d , and once again we had
one processor working until it reaches a cluster of
107 particles, then we launched other 3 processor
running the algorithm for the construction of the
same aggregate, forming a group of 4 sharing
memory processors to get a cluster with size of 109
particles. It took an average of 12 hours to build a
3d-PDLA cluster in this fashion. For the 3d-DLA
model we built 108 particle clusters in an average
time of 4 hours.
Fig. 4 a). shows a picture of one two-dimensional
cluster conformed by 109 points. In Fig. 4b we can
see a PDLA cluster consisting of 1010 particles. Fig.
5 also shows a tiny three-dimensional DLA cluster
of 3500 particles, this small size cluster is shown in
this paper for practical reasons as the structure of
large 3d-DLA is completely lost when projected
particle by particle to a 2d image.

3.3 Program Implementation.
In this section we describe the details of the code
implementation we made to get the DLA and PDLA
models working in a computer system. The code
was written in C language and was compiled with
the GNU Compiler Collection (gcc) utility [14]. To
give multiprocessing capabilities to the code we
used the the POSIX-threads library [15] running
over the Linux kernel 2.6.39.3 [16]. We made use of
mutexes in order to avoid race conditions that could
be generating data inconsistency and particle
overlaps. The central function in the implementation
performs the simulation of the Brownian motion for
one particle. Sequential and parallel procedures were
coded inside the same application, giving the option
to specify the number of threads that will be
executing the Brownian motion function for each
different particle moving in the space at a given
time. When the parallel model is required a

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1248 Issue 8, Volume 8, August 2009

reference to this function is passed to a different
thread for its simultaneous execution. Note that with
this structure there must be at least the same number
of processors as threads; otherwise there won’t be
any improvement on simulation speed. The flow
diagram detailing the process carried by this central
function implementing an off-lattice DLA model for
the Euclidean dimension 2=d is shown in Fig. 6.
Here represents the number of particles. is the
set of points that compose the aggregate, and

 are the birth and death radius respectively. The
label stands for the tolerance distance that
particles have to be from the cluster to get added to
it and can be interpreted as the particle diameter.
The value

N

tol

A
bhR

dhR

tol<<ε is an adjustment needed to deal
with discrete numeric representation issues.
indicates the distance between the point

), A(d p
p and the

set , and it is obtained by a call to the variable
precision distance search function VPDIST()
described in Listing 1. The main loop for the
Brownian motion process is identified by the label 1.
This performs the Brownian motion simulation for
the current moving particle. The loop labeled with 2
resets the motion for a particle that has travel
beyond from the cluster origin puts it again at a
random point situated at a distance from the
origin. The loop marked with 3 performs the
addition of a new particle to the aggregate . If the
desired number of particles has not been already
reached, the process begins again. In this last loop
the dashed verification shown in Fig. 6 is only
performed for the case of having more than one
thread executing the function. This avoids particle
overlapping as it checks that no particle has been
placed in the space where the new particle is going
to be added. If there were a collision, the new
particle would be discarded. The shadow processes
in the flow diagram indicate critical sections that are
protected from simultaneous execution from
different threads by mutexes. To avoid an excessive
blocking time we used three separate mutexes for
this critical sections. This operation of adding a new
particle to the cluster may involve the creation of
new nodes to the tree structure and the allocation for
memory space reserved to the program. We use one
mutex for the search and possible creation of the
node on which the new particle will be added, and
another mutex to modify or create the bucket list
structure for storing particles. A third mutex protects
the actualization of data employed by calculations
involving the radius of gyration.

A

dhR

bhR

A

Random numbers for the value θ are generated with
the reentrant version of the standard function

drand48() [14]. In this way we placed uniformly
distributed points on a circle of radius taking
the polar coordinates

bhR
)cos(θbhRx = ,)sin(θbhR=y

3
.

When having an Euclidean dimension =d the
generation of uniformly distributed random points
over a sphere is done by generating two independent
random variables and u θ , and applying the
equations

)θcos(1 2uRx bh −= ,)θsin(21 uRy −= bh ,

uRz bh= ; these equations replace those shown in
the flow diagram from Fig. 6. The functions
INTERSECTS() and CIRCLE() shown in line 25 of
Listing 1 are also changed for the 3d case to find the
intersection of a sphere defining a neighborhood and
the limits of the space enclosed by a node.
The VPDIST() function is coded managing
orthogonal distances whenever possible, avoiding in
this way unnecessary calls to the standard function
sqrt(), otherwise the overall time execution will be
drastically increased as such function calls are
executed by the floating point unit with a relative
low instruction latency.
To handle the distance difference:

2)), nodep CENTER /)nodeDIAGONAL(((h DIST −=
 required by lines 09 and 10 in Listing 1, we take

2)22) +2 /(2/(δδ −−−−= cc yyxxh
),(yx),(cc yx

 where
 and are respectively the coordinates

of the moving point p and the center of the node
being analyzed. Here δ is the previously calculated
value for the diagonal that crosses the space area
defined by a node and is a unique value for all nodes
at the same level in the quadtree.
Points in the data structure are stored using relative
coordinates based on the center of the leaf at which
they are kept, the base coordinates are not stored,
instead they are calculated incrementally while
traversing the nodes of the trees. At the tree
structure we have pointers addressing list structures
containing chunks of 10 particles. Each relative
coordinate uses 1 byte for storage. At the final node
of each list there is no next pointer, so we handle
them with void pointers and in this way we are able
to address at two kinds of data structures with the
same pointer.
Since we used 64-bit architecture we worked with
integer arithmetic for all data and calculations
involved, obtaining an improvement on performance
and yet on precision as each coordinate had evenly
distributed values under the space taken for the
simulations.

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1249 Issue 8, Volume 8, August 2009

3.4 Results.
In order to evaluate the performance on the
simulation of the DLA model for the algorithm with
variable precision distance search; we needed a
reference so we have run experiments using the
algorithm and comparing the results with a classic
exact nearest neighbor search [17] adapted to a
quadtree, instead of using a kd-tree as it is exposed
in the original work. Fig. 3 a) shows the overall
performance of the methods by presenting the
number of particles against execution time N T
measured in seconds for the case with Euclidean
dimension , and Fig. 3 b) shows a comparison
between the and .

2=d
2=d 3=d

For , we can see empirically by fitting the
obtained data to the curves
and with a correlation
coefficient (the dashed lines in Fig. 3 a)
how the complexity of the DLA simulation is
reduced from an exponential trend to a linear one by
the use of our techniques. This result is comparable
with the ones obtained by using bitmaps at different
levels of resolution [2, 8, 9] but our method has the
advantages that needs no additional storage for
external maps, neither needs to update several
hierarchical representations of the cluster, and can
be easily extended to dimensions greater than 2. For

 the fitting is made with
having a correlation coefficient .

2=d

=T

3

)109exp(6.9 6 NT −×=

4.25101 4 −×= − NT
9976.02 =r

9.6103 5 −× − N
9981.02 =r

=d

The fractal dimension for the aggregates was
calculated by the radius of gyration. Table 2 shows
the values of fractal dimensionality found in several
experiments. Here is the number of particles for
each cluster, P is the number of processors
employed, d is the Euclidean dimension of the space
that contains the aggregates, and E the number of
experiments executed for the computation, the
fractal dimension calculated is represented by D,
and

N

σ is the standard deviation for this fractal
dimension. We were taking 103 measurements of the
radius of gyration as each cluster was evolving.

To evaluate convergence of the clusters on the
PDLA model to the DLA, implemented as described
earlier sections, we took data for the radius of
gyration obtained from both models. Experimental
data is shown in Fig. 7, where we can see no
significant variation on the radius of gyration for the
PDLA with 4 processors model with respect to the
DLA. This is as expected for a low number of
parallel processor working with massive clusters [9].
A remarkable fact found here is that we have a
higher variance in the measure in the PDLA model

and this variance grows with the size of the cluster.
For clusters of size we have an average
value

1010=N
74310.5=gR particle diameters with a

standard deviation 6.1119=σ for the DLA, and
5.75796=gR with 5.1980=σ for the PDLA

model. Error bars in Fig. 8 are scaled by a factor of
two in order to make them perceptible.
To evaluate multiprocessor efficiency we quantify in
PDLA simulations an average speedup of 3.74 when
working with 4 processors. Amdahl’s law [18]

means 1,
/

1
=+

+
= ps

ps
rr

nrr
speedup where

represents the ratio of the serial fraction of the
program and the number of processor running the
program simultaneously, and tells that the fraction
of parallelizable fraction of our executing code is
97.5%. This gives that a 2.5% of execution time on
each processor is consumed executing non
parallelizable code characteristic of a DLA
implementation and being blocked while waiting for
the release of a mutex. Given the size of the
simulation and the parallelization schemed described
we assume that this last percentage is mainly spend
by execution threads waiting in a blocked state.
These values indicate an acceptable performance
taking into account the data dependency of all the
entire process.

sr

n

4 Conclusion
In this paper we have presented the algorithm for
distance search with variable precision in quadtrees
and octrees and we have also described how can be
successfully applied in DLA and PDLA simulations
using Euclidean dimensions and 2=d 3=d . One
of the main benefits of our method is that it does not
require external representation of the data so we can
handle a huge amount of particles as we do not have
to update several states for each representation as
the simulation evolves. In this way we have
produced faster simulations with less memory space
required to manage different precision scales in our
models. Another improvement over the traditional
way of performing this kind of simulations is that
our method can be extended to higher dimensions
without difficulty. Dealing with a combination of
software and multiprocessor equipment, we attained
to build clusters of a size that surpass the ones
previously published by others. For this reason we
think that these techniques can help to the design of
further experiments involving random fractal
aggregates with a lot of particles and placed on
spaces with different Euclidean dimensions. We’re

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1250 Issue 8, Volume 8, August 2009

also planning to adapt this kind of search to other
several problems which involve the quadtree and
octree data structures to test the advantages and
drawbacks that can be raised by applying the
algorithm here presented.

5 Acknowledgements.
We want to thank DGSCA-UNAM for providing us
access to the HPCP4000 “Kanbalam”
supercomputer. This work was in part supported by
CONACYT.

References:
[1] Samet Hanan. Foundations of Multidimensional

and Metric Data Structures. The Morgan
Kaufmann Series on Computer Graphics, 2006.

[2] Ball R.C., Brady R.M. Large-Scale Lattice
Effect In Diffusion-Limited Aggregation.
Journal Of Physics A-18 (13): L809, 1985.

[3] Vicsek Tamás. Fractal Growth Phenomena.
World Scientific Singapore, 1989.

[4] Bunde Armin, Havlin Slomo. Editors. Fractals
and Disordered Systems. Springer, 1995.

[5] Radu Dobrescu, Loretta Ichim, Stefan Mocanu,
Stefan Popa. A Fractal Approach to Pattern
Formation in Biological Systems. WSEAS
Transactions on Biology and Biomedicine. Issue
6, Volume 5, June 2008.

[6] Radu Dobrescu, Catalin Vasilescu, Loretta
Ichim. Fractals and Scaling Analysis in Tumor
Growth Evaluation. WSEAS Transactions on
Systems. Issue 1, Volume 6, January 2007

[7] Witten T. A. Sander L. M. Diffusion-Limited
Aggregation, A Kinetic Critical Phenomenom.
Physical Review Letters. 47-19 1400, 1981.

[8] Tolman Susan, Meakin Paul. Off-lattice and
hypercubic-lattice models for diffusion-limited
aggregation in dimensionalities 2-8. Physical
Review A. 40-1 428, 1989.

[9] Kaufman Henry, Vespignani Alessandro,
Mandelbrot Benoit B. Woog Lionel. Parallel
diffusion-limited aggregation. Physical Review
E. 52-5 5602, 1995.

[10] Maldelbrot Benoit B. Angular Gaps in Radial
Diffusion-Limited Aggregation: Two Fractal
Dimensions and Nontransient Deviations from
Linear Self-Similarity. Physical Review Letters.
88-5, 2002.

[11] Peitgen Heinz-Otto, Jürgens Hartnut, Saupe
Dietmar. Chaos and Fractals. New Frontiers of
Science. Second Edition. Springer. 2004.

[12] Deng Fang. The Study of Terrain Simulation
Based on Fractal. WSEAS Transactions on
Computers. Issue 1, Volume 8, January 2009.

[13] Menshutin A.Y. Schur Lev N. Test of
multiscaling in a diffusion-limited-aggregation
model using an off-lattice killing-free algorithm.
Physical Review E. 73, 011407, 2006.

[14] gcc.gnu.org.
[15] IEEE. The Open Group Base Specifications

Issue 6. IEEE Std 1003.1, 2004
[16] The Linux Kernel Archives. www.kernel.org.
[17] Friedman J.H., Bentley J.L., Finkel R.A. An

Algorithm for Finding Best Matches in
Logarithmic Expected Time. ACM Transactions
on Mathematical Software, Vol. 3, No 3, pp
209-226. 1977.

 [18] Amdahl Gene. Validity of the single processor
approach to achieving large scale computing
capabilities. AFIPS spring joint computer
conference. 1967.

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1251 Issue 8, Volume 8, August 2009

http://www.kernel.org/

Listing 1. Pseudo-code for the variable precision distance
search algorithm.

00 precondition: min_dist=infinity
01 recursive real function VPDIST (node,min_dist)
02 /*Search for accurate or approximate distance */
 /*between one point to a set of points */
03 value pointer node node
04 reference real min_dist
05 pointer node son, real d
06 if not ISNULL(node) then
07 if DIST(p,CENTER(node)) > DIAGONAL(node)*2
 then
08 /*return an approximate distance */
09 if DIST(p,CENTER(node)) -DIAGONAL(node)/2
 < min_dist then
10 return DIST(p,CENTER(node))-
 DIAGONAL(node)/2
11 endif
12 else
13 if ISLEAF(node) then
14 /*if we have a leaf, do an exact search */
15 d:=min_dist
16 for each point in node do
17 if DIST(p,point)< d then d:=DIST(point) Figure 1. Region assigned to an approximate distance by

inspecting the center qc of a node in a quadtree. pa and pb
show how close and how far a point can be when its
distance to the cluster is approximately evaluated respect
to qc. dapp is the returned value.

18 enddo
19 if d< min_dist then return d endif
20 else
21 /*if we do not have a leaf, ask direction */
22 son := DIR_POINT(p, node)
23 /*now search recursively in the structure */
24 min_dist:= VPDIST(son,min_dist)
25 if INTERSECTS(CIRCLE(p,min_dist),
 LEFT_SIB(son)) then

 26 min_dist:=

 VPDIST(LEFT_SIB(son),min_dist)

27 endif
28 if INTERSECTS(CIRCLE(p,min_dist),
 RIGHT_SIB(son)) then
29 min_dist:=
 VPDIST(RIGHT_SIB(son),min_dist)
30 endif
31 if INTERSECTS(CIRCLE(p,min_dist),
 OPP_SIB(son)) then
32 min_dist:= VPDIST(OPP_SIB(son),min_dist)
33 endif
34 endif
35 endif
36 endif
37 return min_dist

Figure 2. Length of the random jump for a particle p
taken when is beyond Rbh from the center of the cluster.
The shaded area does not contain any particle belonging
to the cluster so it is safe for a particle to jump across it.

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1252 Issue 8, Volume 8, August 2009

a)

b)

Figure 3. Processing time (in seconds) T required for the
simulation of 2D and 3D DLA models of size N. The
complexity reduction from an exponential to a linear
trend can be observed in a) .In b) we have time required
for 2D and 3D simulations using variable precision and
exact distance search. Correlation coefficients are 0.9981
and 0.9976 respectively.

a)

0.0K

0.5K

1.0K

1.5K

2.0K

0E+0 2E+6 4E+6 6E+6 8E+6 1E+7
N

T

exact distance

variable precision

E (

0.0K

0.4K

0.8K

1.2K

1.6K

0.E+0 2.E+6 4.E+6 6.E+6 8.E+6 1.E+7N

T

variable precision 2D

variable precision 3D

b)

Figure 4. a) 109 particle DLA cluster and b) 1010 particle
PDLA cluster. Here exterior radius are approximately
1.5x105 and 7.5x105 particle diameters respectively.

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1253 Issue 8, Volume 8, August 2009

Figure 5. A tiny 3D-DLA cluster consisting of 3500
particles. Different shadings corresponds to the arrival
sequence of the particles at the cluster.

Figure 6. Flow diagram for off-lattice DLA and PDLA
codification. Dashed lines indicates a test needed only for
the PDLA model. Procedures in gray boxes show critical
sections which need to be protected when using multiple
processor.

Figure 7. Radius of gyration Rg for clusters of size N
generated with 1 and 4 processor. Error bars are scaled by
a factor of 2 with the intention of making them visible.

Table 1. Description of functions used in the pseudo-code
given in Listing 1.

DIR_POINT(point, node)
Returns a pointer to the son of node that is in the same
quadrant than point respect to the center of node.
CENTER(node)
Returns the center point of the space covered by node in
the quadtree.
DIAGONAL(node)
Returns the length of the diagonal that goes through the
area covered by node in the quadtree. Returns infinity if
node is a null pointer.
DIST(point1,point2)
Returns the Euclidean distance between point1 and
point2.
ISLEAF(node)
Returns true if node is at the last level of the quadtree
CIRCLE(p, r)
Returns a reference to a circle object with radius r and
center at p. This is replaced by SPHERE (p, r) in three
dimensions.
INTERSECTS(circ, node)
Boolean function that returns true if the circle (or sphere)
referenced by circ intersects with the squared area (or
cubic volume) belonging to node in the quadtree
LEFT_SIB(node)
RIGHT_SIB(node)
These functions return a reference to left and right
siblings of node in the same level of the quadtree
hierarchy.
OPP_SIB (node)
Returns a reference to the diagonally opposite sibling of
node at the same the quadtree hierarchy.

start

get N

s:=(0,0)
A:={s}

i<N?

select θ∈[0,2π) randomly
x:=Rbhcos(θ), y:=Rbhsin(θ)

p:=(x,y)

|p|<Rdh?

d(p,A)>tol?

select θ∈[0,2π) randomly
x:=x+(d(p,A)-ε)cos(θ)
y:=y+(d(p,A)- ε)sin(θ)

p:=(x,y)

A:=A∪{p}
i:=i+1

A

end

NO
YES

YES

NO

YES

NO 1

2 3

YES

collision?

NO

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1254 Issue 8, Volume 8, August 2009

N P d E D σ

1010 4 2 5 1.716542 0.05793
109 4 2 80 1.712472 0.01292
109 1 2 10 1.710590 0.00466
109 4 3 10 2.479468 0.01644
108 4 3 80 2.503168 0.01715
108 1 3 50 2.531181 0.00820

Table 2. Fractal dimension measurements on DLA and
PDLA clusters of different size N. Here P indicates the
number of processors. D and d represent the fractal and
Euclidean dimensions respectively. σ indicates standard
deviations for D.

WSEAS TRANSACTIONS on COMPUTERS Sosa-Herrera Antonio, Rodriguez-Romo Suemi

ISSN: 1109-2750 1255 Issue 8, Volume 8, August 2009

