
A Framework for Teaching Introductory Software Development

ZAIGHAM MAHMOOD
School of Computing, University of Derby

UNITED KINGDOM
z.mahmood@derby.ac.uk

Abstract:- Software development (SD) refers to design and development of software applications. Most
educational institutions teach programming using a procedural paradigm and an imperative language where the
emphasis is often on learning a computer language and not on problem solving or the modeling of realistic
computational problems. Thus, the teaching is dependent on the chosen language, which is not entirely
appropriate for teaching principles of programming or SD as an engineering activity. This paper discusses the
traditional method of teaching programming and suggests an objects-first approach where students adopt a
top-down method of learning to develop software. Our model introduces functions and modules as basic
building blocks for producing software. Thus, students' first programs are written as sequences, selections and
iterations of given functions and it is in the later stages of the course, that they learn the basic constructs of the
language. This paper outlines a complete framework for teaching a first course in programming. It also discusses
the characteristics of a good teaching language to help academics to choose an appropriate first programming
language.

Key-Words:- Software engineering, Software development, Programming, Computer languages, Teaching

1. Introduction

Software Development (SD) refers to design and
development of software applications. It includes
analysis of user requirements, production of
requirements document, design and construction of
applications and software testing using test plans to
ensure that the final products conform to clients'
requirements [1, 2]. It may also involve formal
specifications and formal methods if the application
is large and complex and where the user
requirements are to be precisely written. University
courses in Software Engineering (SE) and other
programming-based subjects normally start with
programming-in-the-small where students begin to
learn a simple design method, basics of a computer
language and methods of testing. The teaching team
provides the program specifications, so there is
normally not much emphasis on requirements
elicitation or systems analysis. Since the programs
are usually small, students do not necessarily
understand the importance and significance of
proper testing.

A primary objective of such courses is to enable its
students to gain the necessary knowledge of a
computer language and acquire some experience of
developing small programs. Whereas, teaching of

the required theory is generally not too difficult,
ensuring that students gain the necessary experience
is far from easy. If the course is well designed,
properly delivered and students show the required
commitment and work as they should – as the
software development is a technical subject and
requires hard work, then the task becomes somewhat
easier. However, being proficient in a skill is a
function of time and the time available on a three or
four-year degree or diploma programme is simply
not enough. Thus, it is essential that the course team
designs the practical elements of an SE and other
programming-based programmes of study with great
care and ensure an effective delivery.

Programming-based courses at educational
institutions normally start with an introductory
programming or an introductory software
development module, right at the beginning of the
course, normally in the first semester of the first
year. This paper focuses on the teaching of such a
programming module.

In this paper, we first discuss the traditional
procedural paradigm and then highlighting the
weaknesses of this method, we outline an objects-
based approach to teaching software development.
Finally, we discuss the characteristics and issues

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1225 Issue 8, Volume 8, August 2009

concerning the choice of first programming
languages and present our conclusions.

In the following sections, the terms ‘programming’
and ‘software development’ and the abbreviation
‘SD’ will be used interchangeably.

2. Software Development Paradigms

There are several SD paradigms including imperative,
object-oriented, functional and logic all of which are
taught on a computing programme at different levels.
For the teaching of programming in the first year,
however, it is the procedural or imperative model that
is most popular, even when the language used is an
object-oriented or object-based. Advocates for this
approach suggest that:

• This approach is highly compatible with von

Neumann architecture of today’s computers.
• The fourth generation languages are highly

suitable for implementing procedural
programming.

• Students find it more natural to break down a
programming project as a set of procedures
rather than objects.

Although, numerous object-oriented, object-based and
scripting languages have been developed over the
years including the scripting languages, and
institutions are beginning to adopt newer approaches to
teaching programming including even the functional
and logic programming methods [3], a majority of
them are still teaching console applications as
opposed to windows applications, at least at the
beginning of a programming module.

2.1 Procedural Programming

Although, the procedural approach may be
considered as suitable for programming-in-the-
small, it is not entirely appropriate for software
engineering. It is a bottom-up approach highly
dependent on the chosen language. The emphasis is
on learning a computer language and not on problem
solving or the modeling of realistic computational
problems. In most cases, teaching of the language
follows a scheme that requires the teaching of the
following normally in the order as presented here:

• General program structure

• Declarations and Variables
• Input/output and Assignments
• Iterations and Selections
• Arrays and Records
• Functions, Procedures and Parameters
• Other features of the language.

In addition to learning the syntax of a computer
language, students also need to master the workings
of the language environment, often called integrated
development environment (IDE). To successfully
execute even a very small program, students need to
have a reasonable knowledge of the following:

• Use of the IDE
• Use of the editor (as part of the IDE) to

input and edit source code
• Use of the compiler system to compile,

link, build and execute their programs.

Furthermore, they need to have an understanding of
the system and other diagnostics including syntax
and runtime errors, all of which adds another layer
of difficulty to the learning process. If a formal
design method is also taught at the same time then
the teaching and learning becomes even more
difficult. However, as Dehnadi and Bornat [4] put it:
Learning to program is notoriously difficult.

To summarize, in order to satisfactorily complete
even a trivial programming exercise, students need
to have the sufficient knowledge of all the
following:

• Basics of a design method
• Syntax of necessary declarative and other

functional statements of a language to
convert design into program code

• Procedures for entering, editing, compiling,
linking and executing the program

• All other procedures such as starting the
IDE, getting into the language system and
closing the project.

Design is often taught using function-oriented
methods. Teaching functional decomposition or
stepwise refinement is relatively easy, however,
teaching a well established formalized method
requires students to master an additional skill at the
same time as learning a language and its
environment. Additionally, if the module requires

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1226 Issue 8, Volume 8, August 2009

students to learn a formal design method then
learning software development becomes a two stage
process: leaning the design first and learning the
program development later [11]. In this case, the
time set aside for SD generally reduces to half,
which is highly unsatisfactory.

Thus, there is much to do in the first few weeks of a
programme of study. Although, it is essential that all
this is well understood, learning it all at the
beginning of the course can be so daunting that there
is a real danger that novice programmers may loose
their confidence and get so disappointed with the
experience that some may even give up never to get
to the next stage or transfer to another programme of
study.

Not withstanding the difficulties mentioned above, a
careful observation reveals that the process, that is
usually followed, does not teach construction of
software as an engineering activity. Although,
applications are being designed and developed, the
emphasis is not on building software based on
accepted engineering principles (modularity, reuse,
information hiding, functional independence, etc),
which students will need to employ when they
engage in the development of complex software.
Also, we find that the course team is so busy
teaching the essentials that the approach does not
leave much time for teaching or learning
documentation, quality, professionalism and
elements of good practice.

An objects-first approach, as described in the
following sections, will resolve some of the issues as
mentioned above.

2.2 An Objects-First Approach

An objects-first approach to teaching a first course
in programming suggests that:

• Modules and functions (also called
methods) are regarded as basic building
blocks

• Software applications consist of interacting
modules

• New modules are built using existing ones,
whenever possible.

This forces a structured approach to modular
programming where use of modules and functions

(also called methods) establishes the principles of
code reuse and functional independence. Clearly, the
emphasis is on modularization, encapsulation,
recursion and reuse. Programming thus becomes an
activity based on engineering principles. This
contrasts sharply from the traditional procedural
approach where modularity, functions and recursion
do form part of the curriculum but attract much less
emphasis as they are taught much later in the
module.

3. Software Development Using An
Objects-First Approach

To implement an engineering approach to software
development, we propose an Objects-First Approach
to Procedural Paradigm. Our model is loosely based on
the work of Richard Bornat [5] and regards the
construction of software as an engineering activity
where modules and functions are the fundamental
building blocks. The method helps to produce properly
structured and good quality modular software. It is a
top-down approach where the important concepts of
object technology and principles of engineering are
introduced right at the beginning: in the first semester
of the first year of the programme of study. Although
an engineering activity also has an emphasis on
teamwork [13, 14], which SE necessarily requires, it
is recognized that in an introductory SD course,
there may not be enough time for students to work in
groups.

Our method requires the establishment of a library of
functions on a suitable topic (e.g. graphics) prior to the
delivery of the programming module. When students
begin to learn SD, their programs will be initially
written as sequences of given functions where students
will regard these as black boxes and consider only the
external behavior of these functions. Building
programs in terms of functions will help students to
understand modularization, reuse and encapsulation
mechanisms, without knowing the intricacies of the
computer language being used.

It is important that students are able to successfully
execute their programs early on in the course. This
provides a sense of achievement and increases
students' confidence. After successfully running a
number of simple programs and understanding the
basics of the language environment, programs are
written as selections and repetitions of the same

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1227 Issue 8, Volume 8, August 2009

functions. It is at this point that students learn the
general syntax of selection and iteration statements of
the language. Now, the importance of modularity and
code reuse can be re-emphasized and mechanisms for
reducing software complexity, incremental
development, polymorphism and overloading of
functions explained which can be practiced in later
sessions when students produce their own libraries of
functions.

Students who come this far are now ready to learn the
syntax of input, output, assignment and other basic
statements of the language for producing more realistic
programs. This is the time to practice functional
independence, quality, code readability,
maintainability and other elements of good
programming style.

Now that students have the necessary practice and
knowledge of the language, they can begin to 'problem
solve', design and build their own programs from given
specifications.

In an introductory programming module, the focus
should be on problem description and problem solving
strategies. We suggest that the design technique be a
simple one so that students do not feel that they are
learning an additional method - Stepwise Refinement
[7] is a perfectly acceptable approach. Although,
students will learn by producing their own programs,
use of good quality, well structured and properly
documented worked examples will greatly advance the
learning process – all taking place in a computer
laboratory so that teaching and practice can be usefully
combined.

3.1 Teaching Strategy

We now outline a teaching plan based on the above
model [19]. We assume the module duration to be
twelve weeks and suggest four hours per week of
contact time including lectures, tutorials and
practical sessions.

Before Week 1:
The teaching team is required to create a library of
functions on an appropriate topic e.g. graphics. This
requires a certain amount of investment of time and
effort but there is no need to create an extensive
library. As an example, two such methods might be
LINE and CIRCLE:

• LINE - to draw a straight line of a given
length in a given direction starting at a given
point. This will require 4 parameters to be
supplied: length, direction, x-coordinate and
y-coordinate

• CIRCLE - to draw a circle of a given radius
at a given point. This will require three
parameters: radius, x-coordinate and y-
coordinate

Initially, just the two methods may be sufficient to
produce simple programs. In the following sections,
the terms ‘methods’, ‘functions’, ‘routine’ and
‘modules’ will be used interchangeably.

Weeks 1-2:
Today’s languages work within an Integrated
Development Environment (IDE), which adds a certain
amount of additional learning. So, introduce the IDE
and get students to familiarize with the toolkit,
especially the editor within the IDE. So:

• Give students a simple working program

with a complete set of instructions.
• Ask them to follow the instructions to enter

and execute the program to understand the
compiling and execution process.

• Introduce the general program structure in
the chosen language.

• Give students more working programs,
which they enter and execute.

It is important that examples given to students are well
constructed and properly commented to illustrate good
programming practice and style. It is important that
students understand the essentials of IDE well.

Week 3:
Teaching of programming concepts – e.g. sequences of
actions - can now begin:

• Introduce the concept of functions (also

called modules and methods) as components
which, when put together in the right
manner, result in the required software
system.

• Explain the purpose and use of the library
methods introduced e.g. LINE and CIRCLE.

• Explain the significance and meaning of
required parameters and use of argument
(i.e. parameter) lists.

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1228 Issue 8, Volume 8, August 2009

• Provide examples of the use of library
methods such as LINE and CIRCLE.

• Ask students to write simple programs
calling (i.e invoking) the given methods in a
sequence.

• Give students more examples of well-
designed similar programs.

In the first exercise, they can be asked to draw a chair
(consisting on a number of straight lines) or a table
(consisting of a circle and a number of straight lines).
Refer to Figures 1 and 2.

Figure 1: Sequence of LINE method

Figure 2: CIRCLE and Sequence of LINE method

Week 4:
Now that students understand the sequences of actions
(or programming statements), iterations (i.e.
repetitions) can be introduced. At the same time,
students can learn the construction of new methods as
sequences of existing methods:

• Provide examples of new methods e.g. a

method called CHAIR, which consists of
sequences of LINE method.

• Ask students to construct new similar

methods and invoke them to draw a row of
chairs (Figure 3).

• Ask students to construct a new method
called, say, TABLE and write programs to
draw a row of tables.

Figure 3: Sequence of CHAIR method

Weeks 5-6:
Now that students have written a few programs, it is
time to introduce program design as well as further
explanation of the programming constructs and
concepts they have studied so far. Also explain the
selection mechanism:

• Explain what ‘problem solving’ is.
• Explain a simple design method e.g. pseudo-

code or Stepwise Refinement [7]
• Provide simple program specifications and

ask students to produce pseudo-code based
on Stepwise Refinement.

• Explain the selection (and iteration)
statements of the language being used.

• Ask students to design (by writing pseudo-
code) and write programs using newly learnt
constructs e.g. a program that draws,
depending on an option, either a row of
chairs or a row of tables.

• As the next example, ask students to design
and develop a program that draws,
depending on an option, either a row of
chairs or a table surrounded by a number of
chairs. Refer to Figure 4.

• Give students more examples of pseudo
code using Stepwise Refinement.

At the end of week 6, it is hoped that students have
learnt the following:

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1229 Issue 8, Volume 8, August 2009

• The basics of an IDE.
• The basic programming constructs:

sequences, repetitions and selections.
• The syntax of basic language statements.
• Concepts of methods and parameters.
• A simple design method.

If this is the case, the initial difficulty of learning
programming has been overcome.

Figure 4: CIRCLE and Sequence of CHAIR method

Weeks 7-8:
From now on, the remaining teaching will become
easier and now other aspects of SD such as
documentation, programming style, quality, program
testing, etc, can be introduced and practiced.

• Explain the significance and importance of

good programming style: use of comments,
indentation, blank lines etc.

• Explain modularity, code reuse, functional
independence and other engineering
principles – emphasizing that SD is an
engineering activity.

• Explain the need to design first even for
trivial programs.

• Explain the advantages of incremental
development (often referred to as growing
software) i.e. building the main functionality
first and then adding the new features [14].

• Explain the benefits of producing proper

designs and test plans.
• Explain how to produce test plans and

emphasize importance in relation to proper
testing of software.

• Discuss the benefits of using appropriate
standards, developing quality software,
keeping accurate records and producing
proper documentation.

• Explain, now, that modules students used in
earlier programs (e.g. LINE, CIRCLE,
CHAIR, TABLE) represented objects and
classes and that they were using these to
create new objects (chairs and tables).

• Explain basic concepts of object technology
noting that the purpose is not to teach object-
oriented approach but merely to introduce
the essential terminology.

The above will provide a welcome break from
technicalities of design and development of programs.
Certain basic language statements can now be
explained and exemplified to develop non-graphical
programs e.g. programs, that manipulate numbers and
characters:

• Teach the syntax and use of input, output

and assignment statements of the language.
• Explain types of variables and numbers

available in the language.
• Give students examples of programs using

these statements e.g. a program to read a
series of numbers and calculate the average
value.

Week 9:
Students are now, hopefully, reasonably confidant to
design and write their own functions and objects. Next
set of exercises can require them to design and produce
methods called, say:

• ANOTHERCHAIR to draw a chair of a

different style.
• ANOTHERTABLE to draw a different style

of table.
• CHAIRSANDTABLES to draw a number of

chairs and tables arranged differently and
using existing methods such as CHAIR,
TABLE, ANOTHERCHAIR,
ANOTHERTABLE, etc.

• AVERAGE to read a series of numbers and
output their average.

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1230 Issue 8, Volume 8, August 2009

• Give students examples of well-written
programs.

It is important that designs produced at this point are
correct and the programs that students write exhibit
good programming style.

Weeks 10-12:
Students can now explore further. Windows-oriented
programming, using forms and controls, can now be
explained and examples provided – especially if using
a language such as VBasic, C# and Java [8-10]:

• Ask students to produce more complicated

programs and practice what they have learnt.
• Ask students to produce programs to handle

numbers and character variables.
• Provide more examples.
• Explain the concept of arrays and records

and ask students to develop programs using
these.

• Explain advanced features of the language
and other engineering concepts.

Make students aware of the difference between
programming-in-the-small and programming-in-the-
large. Re-emphasize the advantages of incremental
development and benefits of producing proper designs
and test plans.

3.2 Summary

The strategy for teaching introductory programming
presented in this paper suggests that teaching of a
language should follow the sequence, as given
below:

• Language IDE
• Program structure and program layout
• Use of libraries and sequences of statements
• Functions, methods and parameters
• Selection and repetition statements
• Input, output and assignment statements
• Data structures: arrays and records
• Advanced features of the language.

In the current scheme, the teaching of other elements
of program development will follow the sequence, as
given below:

• Development of a set of methods for
students to use e.g. LINE and CIRCLE.

• Development of example programs for
students to learn by examples.

• Problem solving.
• Design method e.g. stepwise refinement.
• Engineering principles such as modularity,

reuse, functional independence, etc.
• Incremental development.
• Test planning and program testing.
• Quality.
• Documentation.

4. Programming Languages

The primary objective of an introductory programming
module should be to teach the principles of
programming. In this respect the choice of a language
becomes irrelevant [6]. However, the teaching team
needs a language to illustrate the principles and
provide practice of SD. Choice of the language, then,
depends on the programming paradigm employed.
Since, procedural programming is the most favored
approach, first languages tend to be mainly procedural.
However, object-oriented, object-based and visual
languages (e.g. C++ and Visual Basic) can also be
used for procedural programming (i.e. for console
applications). Some institutions are using declarative
languages where the teaching is based on logic and
functional programming paradigms [3].

It is often suggested that a first language should be
well structured, available (in the sense of staff
expertise) and easy to teach, learn and use [6].
Whereas, this may be acceptable for programming-in-
the-small, when teaching principles of engineering and
elements of good practice with a view to producing
complex software, the criteria is not sufficient. Since
choice of a language depends, also, on the
programming and design methods used, the above
criteria need to be extended. We suggest that a first
language should possess at least the following
characteristics:

• Small and simple but powerful.
• Strongly typed and block structured.
• Procedural but offering extensions to

implement object technology.
• Features allowing implementation of

engineering principles and concepts.
• Industrially relevant.

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1231 Issue 8, Volume 8, August 2009

Simplicity and smallness imply ease of use as well as
ease of learning and debugging. It is important that
students can produce and execute simple programs
quickly. Power of a language is its ability to deal with
complex problems as well as simple ones. Strong
typing reduces debugging problems and block
structuring helps to produce structured and modular
software. Features to implement object technology and
engineering principles are essential when
implementing an object-oriented approach or a model
similar to the one suggested in this paper. Industrial
relevance is important for the reasons of students’
employability after the completion of their studies.

TIOBE [16] publish a programming community index
each month that indicates the popularity of
programming languages in the industry. According to
their latest report in July 2009, Java and C have been
the most popular languages since 2002, followed by
PHP and VB as the next two favorite languages in the
last two years (2008 and 2009).

Fischer [3] suggests the following criteria for the
choice of first programming languages:

• Powerful enough to demonstrate the

programming concepts.
• Easy to learn.
• Not error-prone i.e. get running fast.
• Easy to use development tools.
• Well supported by ways of availability of

library functions.

Britton [12] suggests the following technical
characteristics for a good programming language, not
just for industry but for academia as well:

• Ease of learning.
• Ease of understanding.
• Speed of development.
• Help with enforcement of correct code.
• Performance of compiled code.
• Supported platform environments.
• Portability.
• Fit-for-purpose.

Ease of learning and understanding requires the
language to be as close to a natural language as
possible so that the written code can be easily
understood for maintenance purposes. In this respect,

Java is much easier to learn than C++. These two
characteristics will also help with the enforcement of
correct code. Speed of development and performance
refer to agility and efficiency. Platform support and
portability are useful feature when programming is
conducted on different platforms using different
operating systems. This feature is also important in
today’s age of open source projects.

Joseph [15] conducted a survey in 2008, of 17 UK
universities, chosen at random, to determine what
languages were being taught and the reason for the
choice of first languages at these institutions. Java was
the most popular language, VB.Net was the 2nd most
popular language followed by PHP and C. Four key
factors, generally considered by the 17 universities,
when deciding on a first language to teach introductory
programming important, were:

• Ease of learning.
• Easy to teach.
• Academic soundness – teach good

programming principles.
• Relevance to industry – for students’

employability.

Currently available languages such as Visual Basic,
Java, and C# [8-10] are all highly suitable first
languages for an introductory course in programming
or SD:

• VB.Net is a good tool for building windows
and web applications. Its key features
include simplified development, power and
flexibility, platform independence and
interoperability.

• Java is an object-oriented structured general-
purpose language. It is simple, robust, high
performance and interpreted language.

• C# is Microsoft’s answer to Java and is very
similar to Java. It is a general-purpose object
oriented language, which is simple, secure
and excellent for screen handling and
developing applications rapidly.

C is another popular language that is highly suitable
for teaching introductory SD. It is a general-purpose
language widely used on many different software
platforms for building portable applications software
[17].

According to TIOBE [16], Java and C have been

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1232 Issue 8, Volume 8, August 2009

consistently the most popular languages in the industry
since 2002, followed by PHP [18] and VB [8] as the
next two most popular languages for software
development in the last two years (2008 and 2009).

As mentioned by Joseph [15], PHP [18] is also
becoming popular in academic circles. It is simple and
easy to learn but a powerful general-purpose scripting
language that includes an easy to use command line
interface. It supports object-orientation and is platform
independent.

5. Conclusion

Procedural paradigm is the traditional and most
favored approach for teaching a first course in software
development. It is a bottom-up and syntax driven
approach, which is highly dependent on an imperative
language. Students learn not only the syntax of a
language but its environment as well - as the current
languages are generally available for use through an
IDE. If a formal design method is also taught at the
same time as the language then students can get so
overwhelmed by the amount of learning that some may
loose their confidence and get disappointed with the
learning experience. Also, the traditional approach
teaches programming in the sense of producing code
and does not teach SD as an engineering activity.

To resolve the inherent issues in the traditional
approach to teaching programming, this paper suggests
an objects-first approach to procedural paradigm. This
is a top-down approach, which regards functions and
modules as the fundamental building elements for the
construction of software. The emphasis is on
modularity, code reuse, practice of engineering
principles as well as quality, standards and
professionalism right from the start. A teaching
scheme is also presented which can be used as a
basis to construct a first course in teaching software
development.

A discussion on the characteristics of a good
teaching language as well as a brief introduction to
most popular languages, have also been presented to
help decide a computer language for teaching
introductory programming. Java, C, VB.NET and
PHP are highly suitable languages for teaching an
introductory course in software development.

References

[1] Sommerville I, “Software Engineering”, 8th
Edition, Addison Wesley, 2006

[2] Bell D, “Software Engineering for students”,
4th Edition., Addison Wesley, 2005

[3] Fischer P, “Teaching programming to
beginners”, IMM, DTU,

 Available at:
 www2.imm.dtu.dk/~tb/ fischer.pdf

[4] Dehnadi S and Bornat R, 2006, “The camel
has two humps”,

 Available at:
 www.cs.mdx.ac.uk/research/PhDArea/
saeed/paper1.pdf

[5] Bornat R. “Programming from first principles”,
Prentice Hall.

[6] Busschots B, “Teaching programming – why
the choice of first language is irrelevant”,
Bloggs dated 8 Jan 2008,

 Available at:
 http://www.bartbusschots.ie/ blog/?p=634

[7] Wirth N, “Program development by stepwise
refinement”, Comm. ACM, Vol 14, No 4, pp
221-227, 1971

[8] Balena F, “Programming microsoft Visual
Basic”, 2nd Ed, Microsoft Press, 2006

[9] Murach J, “C# 2008”, by dissection, M
Murach & Associates, March 2008

[10] Deitel and Deitel, “Java: How to program”, 7th
ed, Prentice Hall, 2007.

[11] Kambhampaty S, et al, “ Architecting for Next
Generation Business Applications”, WSEAS
Trans. on Business and Economics, Issue 4,
Vol. 3, April 2006

[12] Britton C, “Choosing a Programming
Language”, January 2008,

 Available at:
 http://msdn.microsoft.com/en-us/library/
cc168615.aspx

[13] Kumlander D, “On Using Software
Engineering Projects as an Additional
personal Motivating Factor”, WSEAS Trans.
on Business and Economics, Issue 4, Vol. 3,
April 2006

[14] Kumlander D, “Supporting Software
Engineering”, WSEAS Trans. on Business
and Economics, Issue 4, Vol. 3, April 2006

[15] Joseph M, “Choice of Language for Teaching
First Year Students”, BSc final year project,
School of Computing, University of Derby,
UK, Oct 2008

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1233 Issue 8, Volume 8, August 2009

[16] TIOBE Software, “TIOBE Programming
Community Index for July 2009”, July 2009,

 Available at:
http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html

[17] Harbison H P, “C: A Reference Manual”, 5th
Ed, Prentice Hall, 2002

[18] Converse T, “PHP Bible”, 2nd Ed, John Wiley,
Sept 2002

[19] Mahmood Z, “An Objects-First Approach to
Teaching Introductory Software
Development”, Proc. 6th WSEAS Int. Conf on
Engineering Education, Rhodes, Greece, July
2009.

WSEAS TRANSACTIONS on COMPUTERS Zaigham Mahmood

ISSN: 1109-2750 1234 Issue 8, Volume 8, August 2009

