WSEAS TRANSACTIONS on COMPUTERS

Adel Smeda, Adel Alti , Abbdellah Boukerram

An Environment for Describing Software Systems

ADEL SMEDA", ADEL ALTI" ' ABBDELLAH BOUKERRAM ™

“University of Al-Jabel Al-Gharbi, P.O. Box 6473, Gharian, Libya
Adel.Smeda@univ-nantes.fr

““Computer Science Department, Faculty of, Engineering, Ferhat ABBAS University of Sétif,
19000 Sétif, Algeria
altiadel2002@yahoo.fr , aboukerram@univ-setif.dz

Abstract. Describing the architecture of complex software systems need a comprehensive models and
complete tools. The description of software systems can be achieved by using an architecture description
language (ADL) or an object oriented modeling language. In this article, we show how we can build a
hybrid model to describe the architecture of software systems. This model is based on the two
approaches. First we define a metamodel for software architecture, next based on this metamodel we
implement an environment for describing the architecture of software systems.

Key-words: Software Architecture, COSA, Architecture Description Languages, UML 2.0 Modeling

Language, Component, Connector

1 Introduction

There are at least two different techniques of
describing the architecture of a software system,
either by using object-oriented notations (e.g
UML) [1], [4], [5] or by using special notations
for software architecture (e.g. Architecture
Description Languages ADL) [2], [8], [17]. The
two techniques are successively called Object-
Based Software Architecture (OBSA) and
Component-Based Software Architecture
(CBSA).

Actually, UML becomes a standard language
for specifying, visualizing, constructing and
documenting architectural description concepts.
However, with the introduction of UML 2.0 [5]
new notations have been constructed and
existing ones have been modified to answer
software architecture description demands.
UML 2.0 provides a suitable base to define
UML profiles for software architecture.

In this article, we are interested of building a
modeling tool for software architecture based on
object oriented modeling and component based
modeling called COSA [13][3]. Recently, the
concepts of COSA are mapped into UML 2.0
[6]. Using the capacities of UML profiles and
models technological space (MTS), also known
as MDA technological space [10], we define a
plug-In called COSAStudio for software
architectures modelling. The main objective of
this plug-In is to show the ability for modelling
a complex applications. The plug-In offers to the

ISSN: 1109-2750

architects the possibility to verify the structural
coherence of a given system and to validate its
semantics with COSA approach.

2 COSA : Component-Object

based Software Architecture

COSA (Component-Object based Software
Architecture) is hybrid model, based on both
object and component modeling to describe
software systems. The basic principal of this
model is to base on architectural description
languages formalism extended with object-
oriented concepts and mechanisms to specify
software architectures. A major advantage of
COSA is that it defines and manipulates
connectors as first class entities by explicitly
define them.

In COSA, components, connectors and
configurations are defined as classes which can
be instantiated to define different architectures.
In addition to instantiation mechanism, basic
elements of COSA can be beneficiated also of
others object concepts and mechanisms, such as
encapsulation, composition, reuse and
specialisation. COSA architectures description
approach is not based on any particular notation
or language, but it is considered as a metamodel
which describe a concept set of vocabulary and
modelling elements used to express a software
architecture description. This allows simplicity,
extensibility, and genericity in software

Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

architecture description. Figure 1 presents the
model of the COSA software architecture.

3 The metamodel COSA
(Architecture modeling)

COSA supports number of architectural
elements including configurations, components,
connectors, interfaces, properties and constraints
[3]. These architectural elements are types that
can be instantiated to construct several
architectures.

3.1 Components

Components represent the computational
elements and data stores of a system. Each
component may have an interface with multiple
ports and multiple services. The interface
consists of a set of points of interactions
between the component and the external world
that allow the invocation of the services. Each
interaction point of a component is called a port.
Ports are named and typed. We distinguish
between required and provided ports. Each port
can be wused by one or more services.
Components semantics is modeled to enable
evolution, analysis, enforcement of constraints
and consistent mappings of architectures from
one level of abstraction to another. The structure
of component is the specification of its required
and provided ports. The behavior of a
component is the specification of its required
and provided services exchanged with its
environment. A component may have several
implementations. A component can be primitive
or composite [3].

3.2 Connectors

Connectors represent interactions among
components; they provide the link for
architectural designs. A COSA connector is
mainly represented by an interface and a glue
specification [4]. In order to enable proper
connectivity of components and their
communication, a connector should export as its
interface those services it exports.

COSA refers to connector interactions points
as roles. Explicit connection (attachments) of
components ports and connector roles s
required in an architecture configuration. Roles
are named and typed and are in many ways
similar to component ports. In principle, the
interface shows the necessary information about
the connector, including the roles, service type
that a connector provides (communication,
conversion, coordination, facilitations).

ISSN: 1109-2750

Adel Smeda, Adel Alti , Abbdellah Boukerram

Connector services are described inside the glue
code [4]. Therefore, a connector’s interface is a
set of interactions points between it and
components/configurations attached to it.

3.3 Configuration

Architecture configuration has a name and
defined by interfaces (ports and services), which
are the visible parts of the configuration and
support the interactions among configurations
and between a configuration and its components.
Configuration is connected graph of components
and connectors that describe architectural
structure. This information is needed to
determine whether appropriate components are
connected, their interfaces mach, connectors
enables proper communication, and their
combined semantics results in desired behavior.
The key role of configurations in COSA is to
abstract the details of different components and
connectors. They depict the system at a high
level that can be potentially be understood by
actors with various levels of technical expertise
and familiarity with the problem at hand.

For more clarity, in COSA model each
component or connector is perceived and
handled from the outside as primitive element.
But their inside can be real primitive elements,
or composite with a configuration which
encapsulates all the internal elements of this
composite. These configurations are first-class
entities. A configuration may have ports similar
to components ports, and each ports is perceived
like a bridge (binding) between the internal
environment of the configuration and the
external one. In COSA this binding is realised
using connectors. Generally configurations can
be hierarchical where the internal components
and connectors can represent sub-configurations
with their proper internal architectures.

3.4 Interface

Interfaces in COSA are first-class
entities. They provide connection points among
architecture elements. Likewise, they define
how the communication between these elements
can take place. A component/configuration
interface’s connection point is called port and a
connector interface’s connection point is called
role. In addition to ports and roles interfaces
have services that express the semantics of the
element with which they are associated. To
establish connections between elements we use
required/provided ports for component and
configuration elements and required/provided
roles for connector elements and we assign the

Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

services to each port and role with the necessary
set of constraints to be respected during the
connections. From conceptual view ports, roles
and services are concrete classes inherited from
the interface abstract class as shown in Figure 1.
Also, at modeling level we use the cardinality to
describe the multiplicity of each connection
between architectural elements. This cardinality
express the number of ports associated with
components and configurations and the number
of roles associated with connectors. Each port
or role is considered as a channel to carry in/out
required/provided services exchanged with
elements of the environment.

3.5 Properties

Properties represent additional information
(beyond structure) about the parts of an
architectural description. Typically they are used

Implementation

Adel Smeda, Adel Alti , Abbdellah Boukerram

to represent anticipated or required extra
functional aspects of an architectural design.
There are two types of properties: functional
properties and non-functional properties [11].
Functions that relate to the semantics of a
system and represent the requirements are called
functional properties. Meanwhile non-functional
properties represent additional requirements,

such as safety, security, performance, and
portability.
3.6 Constraints

Constraints are specific properties, they

define certain rules and regulations that should
be met in order to ensure adherence to intended
component and connector uses.

+implementations
0..* |+elements o 4 +parent
ArchitecturalElement| +interfac
o Interface
+name +owner 0..%
+name
Glue +source
+glue [0..1 +target
N : +connectors!
Configuration Connector
“+components +detail Mo..1
[UserConnector BuiltInConnector
+bindings 0..*
> Binding| |Attachement| | Use |
+bindings g .
+connectorinterfaces
S Connectorinterface
0..*
+configurationinterfaces 0..*
Componentinterface
+componentinterfaces o «.
N ; Port o ConnectorService Role
<<enumeration>> <<enumeration>> Service
ConnectionMode ServiceType odeConnactiontode v +type: ServiceType +mode: ConnectionMode
+synchronous “+communication A

+asynchronous
+continuous

ISSN: 1109-2750

+conversion
+coordination
+facilitation

X

| RequiredPort |

ProvidedPort ” ProvidedService| | RequiredService| | ProvidedRole

| RequiredRoIe|

Figure 1. COSA Meta-model

1612

Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

3.7 The metamodel of COSA Instances
(application modeling)

In the real word application is an instance of
the architecture model. The architect has the
possibility to select and instantiate COSA
architectural elements as many times as he needs
to describe a complete application. Instances are
created from types that are defined in COSA
metamodel. Elements are created and assembled
with respect to the different constraints defined

ArchitecturalBlementInstae g

D. I*
Configurationlrnstance ™ elements DetalableInstance

—_—
0.1 detal /j I\

ComponentInstace

UserConnectorInstante

Adel Smeda, Adel Alti , Abbdellah Boukerram

at COSA architecture models. Figure 2 shows
the COSA instance meta-model.

ElementInstae

instanceType
instancehlarme

interfaceslnstank g

builtInCornectiors

Interfacelnstae

RequiredPortInstace

D. .*
ProvidedRolelnstance

ProvidedPortInstaoe RequiredRolelnstanoe

Figure 2. COSA Instance Meta-mode

ISSN: 1109-2750

1613 Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

4 Development of COSA Modeling
and Instantiating Tool

This section presents the development of the
model COSA in Eclipse. For this, we chose to
adopt a modeling point of view as described in [5,
6], since the issue is a language and a modeling
problem rather than an architectural point of view.
First we explain how we implement this approach
to convert the COSA architectural description
language into a modeling language that can be
processed by tools. Next we focus on what tool is
needed to realize this, after that we present an
example.

4.1 Definitions

Our job is to provide a tool that allows the
production of architectural models, in accordance
with the COSA meta-model. These activities (i.e.
modeling and meta-modeling) are part of Model
Driven Engineering concerns. Generally, Model
Driven Engineering community considers four
different levels of modeling [6, 7]: “reality” level
(My), models level (M;), meta-models level (M,),
meta-meta-models level (Ms).

Each level uses a syntax (a language) that is
defined at its higher level, except the level M;
which is defined by itself. The relations between
elements of two levels are called “meta”, and they
are strictly “syntactical” links. Semantics of levels
are absolutely not correlated (i.e. there is no
semantic correlation between a UML diagram and
the UML meta-model for instance?).

Each level deals with the modeling of its lower
level, except My which is considered as the
“reality” and therefore can not represent something
else. Note that “reality” is a concept that is adapted
according to the general domain and/or
technological space on which we focus. For the
rest of this article, we call this approach models
technological space (MTS), also known as MDA
technological space [7].

Architecture meta modeling presented in [8]
describes another technological space based on the
initial works of OMG (see Figure 3). It defines an
architecture with four levels:

e M2A (Meta-meta-architecture) level:
correspond to meta-meta-architecture
level. It is an architecture of all
architectural concepts. At this level,
Smeda et al. [8] introduced MADL a
language for Meta Architectural

! Defining a UML model for UML meta-model is just a
special case.

ISSN: 1109-2750

1614

Adel Smeda, Adel Alti , Abbdellah Boukerram

Description. MADL is similar to MOF but
it is a component oriented.

* MA (meta-architecture) level: contains
architectural meta-elements such as
Component, Connector, allowing the
description of Architectures. COSA is
defined at this level. All operations
undertaken at this level are always in

conformance with the top level of
pyramid.

» A (architecture) level: contains
architectural elements describing

architectures. These elements are instances
of meta elements.

* Ao (application) level: contains instances
architectural types. At this level the
developer has the possibility to select and
instantiate elements any times as he needs
to describe a complete application.
Elements are created and assembled with
respect to the different constraints defined
at architecture level.

Instance_d | M2A Level
Meta Meta Architecture a/gMADL)

Metacomponent, MetaConnector, MetaAttribute

Instance OT MA Level
COSA, ACME, UML 2.0

Componeht, Connector’, Attribute

Instance O T A Level
Model of Architecture

Client Component, RPC Connector, Server

Instance O T Ag Level

Architecture Instance
e.g. Application

(Client1, Client2, RPC1, Serverl,)

Figure 3. Architectural technological space.

For the rest of this article, we call this approach
architectural technological space (ATS). In ATS,
the passage from one level to its higher level is
achieved by an « instanceOf » relation. Contrary to
the previous approach, this relation has an
important semantic role. Due to this fact, we
should distinguish between these two technological
spaces. MTS is appropriate for models tooling
developers based on model processing (such as
MDA approach, models transformations, Domain
Specific Languages, etc.). ATS is adapted for
anyone interested of architectural abstractions, and
wants to have a strict distinction between an
architecture (M; level) and an application (M,
level).

Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

Since our intention is to create a tool to
implement the meta-model COSA, we adopt the
“language” point of view for this purpose. In the
tooling development point of view, we don’t focus
on the semantics of ATS, but we consider it as the
“reality” that we want to model.

Given this organization, we focus on the
different stakeholders (actors) that will act on the
architecture process as given in [8]. At My we find
only concerns. We consider that every work is
always some kind of a model and therefore
situated at M;. Figure 5 introduces the different
actors that intervene in the process (Architecture
Language Designer, Architecture Language
Developer, and Architect Developer).

As an architecture language developer, our
work is to provide an eCore compliant meta-model
for COSA from the COSA meta-model that is
created by the Architecture Language Designer.
This highlights the following remarks:

» Since eCore is an implementation of MOF,
it is not as rich as UML. COSA meta-
model uses number of UML specific

constructions that are not available in
eCore.
e« COSA meta-model has number of

constraints that are applied to architectural
elements. eCore does not support this
directly. The solutions to this problem are
discussed in the next section.

4.2 Mapping COSA model into UML 2.0

Mapping architectural elements: The
architectural element is a basic concept that defines
all COSA architectural concepts. This concept is
not defined explicitly in UML. The UML profile
must include a «COSAArchitecturalElement»
stereotyped class to represent COSA architectural
element. This class may have properties and
constraints and can be implemented by another
class.

Mapping components, connectors and
configurations: Components and connectors are
treated differently in COSA. Components are
abstractions that include mechanisms of
computation and connectors are abstractions that
include mechanisms ~ of communication.
Meanwhile configurations are graphs of
components’ and connectors’ types. Our choice is
based on using UML components to represent
COSA components and configurations and each
one is associated with a stereotype. COSA
connectors are represented by a stereotype
corresponds to UML class.

A UML 2.0 component is as expressive as a
UML class and provides services through ports,

ISSN: 1109-2750 1615

Adel Smeda, Adel Alti , Abbdellah Boukerram

these services must belong to an interface. COSA
component types correspond to UML 2.0
component types, and COSA component instances
correspond to UML component instances. The
UML Class defines and specifies connectors in
COSA. A class can contain ports as points of
interaction. COSA Connector must have at least a
port stereotyped by «Connectorinterface» and
contains single Glue. A COSA connector defines
the behavior of each of the interacted parties. How
these behaviors are combined to form a
communication is described by the glue. In UML
the AssociationClass concept is relative to the
COSA glue concept. A UML port, which has at
least two interfaces (provided and required),
matches COSA connector roles. An important
aspect of COSA architecture is to offer a graph of
components and connectors types called
configurations. Since a UML component can
contain subcomponents and subclasses, the
configurations of COSA are mapped into UML
components.

Mapping ports and roles: The class Port of
UML represents COSA components’ interface and
COSA connectors’ interface in the UML
metamodel 2.0, but they remain well distinguished
by stereotypes assigned to each one of them.

Mapping specific connectors: A UML
delegation connector corresponds to the COSA
concept Binding, which is used to bind an external
interface into an internal interface. A UML
assembly connector corresponds to the COSA
concept Attachment. Attachments define the link
between a provided port (or a required port) and a
required role (or a provided role).

4.3 Implementing the modeling tool

Once we have the COSA Meta-model mapped into
an UML model, we can take advantage of the tools
developed around Rational Software Modeler. The
UML 2.0 metamodel for COSA is implemented in
IBM Rational Software Modeler for Eclipse 3.1
[14]. This visual modeling tool supports creating
and managing UML 2.0 models for software
applications, independent of their programming
language, and provides a common language for
describing formal semantics with OCL language
and have been used successfully to define profiles
and to valid models of complex systems.

The Plug-In is developed with three levels of
abstraction. In the high level, the meta-model of
COSA with all tagged values and its OCL 2.0
constraints is defined by the UML 2.0 profile. This
diagram plays an important role in the second level
when it is used by to model of software
architecture. Once we ensure that the given model

Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

complies with the semantic constraints defined by
the profile, a set of instances for the types are
defined and evaluated in this level.

The main objective of this plug-In is to show the
ability to apply the profile for a complex
applications. The plug-In offers to the architects
the possibility to verify the structural coherence of
a given system and to validate its semantics with
COSA approach. First we create a components
diagram in UML 2.0 for the described system and
then we add the needed OCL constraints. After
that, the model is evaluated by the profile. COSA
is defined in UML 2.0 by using the mechanisms of
creating profiles of RSM.

4.4 Final evaluation results

We have implemented a full modeling
application tool based on COSA metamodel. It has
two options to generate the graphical editor: from
an existing COSA-Ecore model as XMl file or
from a new COSA architecture as a COSA file.
The instance diagram is then elaborated using the
JET (Java Emitter Templates) as the language for
the parameterization of the interfaces, components,
connectors and configurations which allows the
use of Java code in the parameterization process.
Once we have selected correctly the architectures
as an Ecore file, the COSA instance editor is
generated and opened as the model instance
contains graphical information. Figure 5 presents
an overview of the graphical editor of the Client-
server architecture with the different views: COSA
instance editor with its palette, the Outline, and the
Properties view. If we look at the ““palette” and we

ISSN: 1109-2750 1616

Adel Smeda, Adel Alti , Abbdellah Boukerram

will discover that all the elements of the Client-
Server architecture model are presented, so we
have just to drag and drop the appropriate element
into the area that contains the Client-Server
application diagram to describe a complete
application. Figure 5 shows the eCore model of the
Client-Server example.

The model is tested and validated with the
semantic constraints defined by the profile, a set of
instances (ex: arch-1) for the types are defined and
also evaluated for the final mapped system as
shown in figure 6.

o Modeling - SnlpeCS:dain - Eoipse Plathom

CORAITClemwntatins
& Chent-SereerimpTepe

Figure 6. Validating Client-Server system in UML 2.0
with RSM

Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

& Resource - ArchitectureTestProject/clientsenver.cosi

diagram - Eclipse SDK

Adel Smeda, Adel Alti , Abbdellah Boukerram

File Edit Disgram Mavigate Search Projeck Sample Window Help
o = 3 »
A i-HE ik AR =]
B . %o - - [1o0% -
r[b Project Explorer £3 D clientserver.cosa @ clientserver.cosa =0
Palette >
= ° RPCConnect [Select
onneckor elec
= = ArchiteckureTestProject calles } caller repReq - | =]dlient 5 =
), Zoom
14 elientserver.cosa o
@ clientserver, cosa_diagram = Mok M
externalSocket o -
[Properties >
= | server =] Property
7
externalsocket Q {2} Constraint
ServerConfigurabion = Struchures &
22 Configuration
caller = | Component
externalSocket Q fSQLQuerycaIIEE
=] ConnectionManager _(= JDatabase o Connector
[Connectors Interfaces &
= dbQueryIntf N
. queryIntf
securityCheck 70 S Required Role
(5 & Provided Role
managementIntf
request [~ Components Interfaces #
" ClearanceRequest requestor o Provided Port
& SecurityQuery L Required Port
5= outline 52 i | F|= 8 ~ securibyManager @ Service
- arantar & | SecurityManages] §
| te o (= Connexions >
—IF - securityAuthorization = credentialQuery ,__f'Bindinl;
— ~° Attachement
- <7 ~ Service Use
L = maxConnections: integer
{7} crecLimitations -> self. maxConnections <=5000
-
Ce S
—_ L
]
E Properties 22 Problems | 1= |:=:¢> ¥ =0
q q q ~
Care == Configuration clientserverConfiguration =
(s i Property Value
Appearance Elements = | Component Client, Companent Server, User Con
Interfares
Mame = clientserverConfiguration —
Parent
¥
ek
(= clientServeur.cosa
1 SR e O 7 i il I Resource Set
¢ [CleeerarCongigumanian wnivezedansi2. 00 slne timi SUheep e amg g/ HT 1 sanlne s erd s
"R e 5 0rg 2001 AHLSThena-instanse smlns £o3as Retp:/Lina atlanstic net/modal/cosat nanes = L& platform:fresourceftest/clisntServeur . cosa
"Eliant faemma =
5[] <elomens neictypeticosa Gampensnt® nanesClismtts
4 — : " pkag = | Component Clienk
5 <felmmers> =-=_] Camponent Server
: El <rtamanes oiioppestoosa Campanans! nane=!Samvests {2} Constraint nombreMaxDeConnection
wai ey " »
8 [<elemembs xsi mfu " n s =l Property maxConneckions
1 Cintarfaces xsi:typesiaosa FrovidedPort® namet'ExternalSocket!s> = Provided Port ExternalSocket
uw <almens ity sora:Compemet g Senmastiasianapes”> = I Configuration ServerConfiguration
i‘: ::::= . s . »~ Prowvided Pork ExkernalSocket
12 s bpest " . = | Component ConnectionManager
i g <feLements = | Component SecurityManager
ELNE | <elaments wri:typesn * nanest " = | Component Database
i e iyp e @
1-; i itgp Lo) = User Connector ClearanceRequest
ST <relemernsy + User Conmeckor SecuribyCiusry
i: <elements i typeticosa u,ucmctox-‘]:mws:mqu\kq-u , " User Connector SOLOuUery
. s
o e @ o~ ~% Attachment a3
@ L <l —~ artachrnent a4
s] <slemens neiseypesress Comprmens nanesSsminenarsE —° aAttachment a5
: e e 7 Attachment as
M et —~7 Attachment a7
i <tlaments wriitypes"aosa Campanent” naes'Database"s —~ Aattachment as
1 wriseyp 3 " = " 7 Binding b1
zs wai ey " ey »
ET <Ltz © Binding bz
2] <elomenbs xsiseypestcosn Userlomnector! mames'SQLuery"> = & User Connector RPC
z <m.x§m; e chyprtansa ;m:: mm.:ﬂci,--f > Provided Rale caller
<imazfacer wiitypesiosa Bequirediale’ name="salles”/>
0 pelemnnes - = = A~ Required Role callee
= --fe Attachment az
Xtensible Markup Langu nb char : 4137 Ln:1 Col:39 Sel:D Dos\Windows ANST NS —~% Attachment a1

Figure 4: Different views of the same COSA Client/Server Architecture.

ISSN: 1109-2750

1617

Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS Adel Smeda, Adel Alti , Abbdellah Boukerram

| Client_Serwver.ecore 55

=l ## | platform: fresourcefClientServer_Projectfapplications M ClientServer_instanceClienk_Server.ecare

= HE Client_Serwer

ES Zlienk_ServerrecRaeq

Zlient_ServerClient
=) meka

== classMame - = Camponenk
o=F recreq : Clienk_ServerrecReq
Zlienkt_ServerexternalSaocksek
ServeraxkrenalSockst
Serwer_onfiguratione=xternalSacksk
Serwer_onfigurationsecurityCheck
Serwer_onfigurationdbuesrwInkF
Serwer_onfigurationConnectionManager
=exkernalSocket__to_exkbtrenalSockst
SerwerConfigurationrequeaesk
Serwer_onfigurationgrantor
Server_onfigurationCleaanceR.equeskt
securikwCheck _bto_requesk
Server_onfigurationsecuribvautharizakion
ServerConfigurationsecuritvManager
Server_onfigurationSecurikyMManager
grantor_ko_securibyauthaorizakion
ServerConfigurationsecuritvManager
ServerConfigurationrequeskar
SerwverConfigurationSecuribw uery
SerwerConfigurationguerw+InkF
SerwerConfigurationmangemenktInkF
SerwverConfigurationDataBase
Serwer—onfigurationcaller
Serwer_onfigurationcallee
SerwverConfigurationSLuer s
securibtywMManager_ko__securibtwManager
requesktor_Eto_mangemenktInkeF
callese_kto_querwInkF
dbuerwInkf_to_caller
Serverserver_onfiguration
s meta

= classame - = Configurakion

1R

e 8 e e e e e

- I () (2) Y C T) CE OO) T D D

=

Zlienk_Server

=+ = extrenalsocket | ServerextrenalSocket
= = connechionmanager @ ServerConfigurationConnectionMManager
+l-- = bz : externalSocket__to_extrenalsocket
=+l = cleaancerequest : Server_onfigurationCleaanceRequest
+l-- = a3 securitvw”heck__to_requesk
+- = securitymanager | ServerConfigurationSecurityManager
+-- 5= a4 grantor_to__securitwyaucthorization
=+ L=F securibyguery | ServerConfigdarationSecurity uers
=+l = database | ServerConfigurationDacaBass
=+l =F =gqlguery @ ServerConfigarationSoLOuerys
+l-- = a5 securibvManager_bto__=securibvManager
+l-- = a5 reqguestor_Eto_mangemenktInkF
+l-- = a7 : callee_to_guerwInkF
+l-- = a5 : dbhuerwInkfF_kEo_caller
= H externalSocket_to_exkrenalSockeke
= H cClient_Serverserwer
= H Client_Serwvercaller
= H cClient_Servercalles
=
=l---le= meka
+--- =F caller @ Client_Servercaller
+l--- =E calles @ Client_Serwvercalle=
ES H recRreqg_to_caller
ES H callee_to_externalsSockske
=
== meka
==l classMHams - = ConfFigurakion
=+l =F clienk : Client_ServaerClient
+|--- =F cerver @ Client_SerwverSerwer
=+l =F rpcconneckor @ Client_SerwverRPP O Conneckar
+l--=F a1 : recReq_tbto_caller
=+l =FF az : callee_to_exktermalSockste

Figure 5. The eCORE model of the Client-Server system

ISSN: 1109-2750 1618 Issue 9, Volume 8, September 2009

WSEAS TRANSACTIONS on COMPUTERS

5 Conclusion and perspectives

In this article we have presented a multi-
paradigm approach for software architecture
based on object-oriented modeling and
architectural description (COSA: Component-
Object based Software Architecture). It
describes systems as a collection of components
that interact with each other using connectors. In
COSA, components and connectors are defined
in configurations which describe the topology of
the system. We have also shown how this model
can be implemented as a plug-in for Eclipse. For
this, we have created an eCore meta-model from
the original UML COSA meta-model. This
meta-model allows us to model any architecture
that conforms to COSA language specification.
It opens the door to other tools that can take
advantage of architectural models in order to
conduct architectural analysis, transformations,
etc.

References

[1] G. Booch, J. Rumbaugh., I. Jacobson, The
Unified Modeling Language User Guide.
Addison-Wesley Professional, Reading,
Massachusetts, (1998).

[2] P. Clements, F. Bachmann, L. Bass, D.
Garlan, J. lvers, R. Little, , R. Nord, J.
Stafford, Documenting Software
Architectures: Views and Beyond. Boston,
MA, Addison-Wesley, (2002)

[3] M. Qussalah, A. Smeda, T. Khammaci, An
explicit definition of connectors for
component based software architecture. In:
Proceedings of the 11th IEEE Conference
Engineering of Computer Based Systems,
Czech Republic (May 2004)

[4] 1. Jacobson, Object-Oriented Software
Engineering: A Use Case Driven Approach.
Addison Wesley Professional. (1992).

[5] OMG, Unified Modeling Language
Specification V.14,
http://www.omg.org/docs/formal/01-09-
67.pdf , Sept 2001.

[6] Alti A.,, Khammaci T., Smeda A,
Representing and Formally Modeling
COSA software architecture with UML 2.0
profile. IRECOS Review, 2007, 2(1): 30-
37.

[7] Garlan D., Monroe R.T., and While D.,
Acme: Architectural Description of
Component-Based Systems. G.T. Leavens
and M. Sitaraman, Eds, Cambridge
University, 2000.

ISSN: 1109-2750

Adel Smeda, Adel Alti , Abbdellah Boukerram

[8] Medvidovic, N., Taylor, R.N.. A
Classification and Comparison Framework
for Software Architecture Description
Languages. IEEE Transactions on Software
Engineering, Vol. 26. N°. 1. 2-57, 2000.

[9] Amirat A., Oussalah M., “Enhanced
Connectors to Support Hierarchical
Dependencies in Software Architecture”, 5™
NOTERE’08 International Conference on
New Technologies in Distributed Systems,
Lyon, France, Voluome.l, pp. 252-261,
June 23-27, 2008.

[10] Moore B., Eclipse Development using the
Graphical Editing Framework and the
Eclipse Modeling Framework, 1. Redbooks,
2004.

[11] Z. PANIAN, "Recent Advances in Data

Engineering and Management”, in
Proceedings of the 8th WSEAS
International Conference on

Telecommunications and Informatics
(TELE-INFO'09), May 30- June 1, 2009,
Istanbul, Turkey.

[12] Luckham D.C, Augustin LM,
“Specification and Analysis of System
architecture using Rapide,” IEEE
Transactions on Software Engineering,
1995, 21(1): pp. 336 — 355.

[13] Smeda A., Oussalah M., and Khammaci T.,
“A Multi-Paradigm Approach to Describe
Complex Software System”, WSEAS
Transactions on Computers, Issue 4, Vol.,
3, pp. 936-941, October 2004,

[14] Rational Software Modeler, http://www-
128.ibm.com/developerworks/downloads/r/
rswm

[15] Amirat A., Oussalah M., “Enhanced
Connectors to Support Hierarchical
Dependencies in Software Architecture”, 5t
NOTERE’08 International Conference on
New Technologies in Distributed Systems,
Lyon, France, Voluome.l, pp. 252-261,
June 23-27, 2008.

[16] Aldrich J., Chambers C., Notkin D.,
“ArchJava: Connecting Software
Architecture to Implementation”,
Proceedings of the 24th International
Conference on Software Engineering
(ICSE’02), Orlando, USA, 2002.

[17] M. Oussalah, N. Sadou, D. Tamzalit,
SAEV, "a Model to ensure a Static and
Dynamic Software-Architecture Evolution™,
WSEAS TRANSACTIONS on SYSTEMS,
Issue 5, Volume 4, May 2005

1619 Issue 9, Volume 8, September 2009

http://www.omg.org/docs/formal/01-09-67.pdf
http://www.omg.org/docs/formal/01-09-67.pdf
http://www-128.ibm.com/developerworks/downloads/r/rswm
http://www-128.ibm.com/developerworks/downloads/r/rswm
http://www-128.ibm.com/developerworks/downloads/r/rswm

