
Data Attribute Reduction using Binary Conversion

FENGMING M. CHANG
Department of Information Science and Applications

Asia University
Wufeng, Taichung 41354

Taiwan
paperss@gmail.com

Abstract: - While learning with data having large number of attribute, a system is easy to freeze or shut down
or run for a long time. Therefore, the proposed Binary Conversion (BC) is a novel method to solve this kind of
large attribute problem in machine learning. The purpose of BC is to reduce data dimensions by a binary
conversion process. All the attributes are reserved but combined into few numbers of new attributes instead of
that some attributes are removed. To prevent the information loss problem during the conversion, each binary
type data value occupies its own digital position in BC. In addition, 4 data sets: nbuses, ACLP, MONK3, and
Buseskod data are used in this study to test and compare the learning accuracies and learning time. The
results indicate that the proposed BC can keep about the same level of accuracy but increase the learning
efficiency.

Key-Words: - Binary conversion, Large attribute, Machine learning, Neuro-fuzzy, Mega-fuzzificaiton

1 Introduction

Recent have shown widely applications in the
fields of Artificial intelligence (AI) for data
classification or prediction [1-14]. Many methods
were proposed. For most of the examples in
previous studies, the number of input attributes is
not large. They probably only provide a theoretic
model for researchers. However, real data in some
theoretic studies and some practical applications
have plenty of input attributes. It causes some
problems. First, some systems will easily shut down
because the calculations of the machine learning are
too large. Second, some learning programs have
their limits. The learning methods that mostly need
to reduce input attribute numbers are Artificial
Neural Network (ANN), Fuzzy Neural Network
(FNN, neuro-fuzzy), and Mega-fuzzification, the
later is improved based on FNN. FNN and Mega-
fuzzification are more difficult to perform than
ANN. FNN deals with the network learning using
fuzzy membership functions. Because the
defuzzification calculations in FNN are complex
and difficult, most of the time fuzzy membership
functions are setup as triangular, generalized bell,
trapezoidal, and so on so that they are easy to
calculate. Anomalous shapes fuzzy membership is
not recommended because it is almost impossible to
defuzzify using programs beforehand even though
the defuzzy calculation is still not efficient. When

the input attribute amounts are larger than 6, the
FNN program could not perform normally. Most of
the time, the computer went on hold without any
response, it froze. In this article, nbuses data set has
9 input attributes. These data are used as “fail for
learning” when using FNN or Mega-fuzzification
methods because they have too many attributes. On
the other hand, some machine learning programs
have upper limit of network nodes, and reduction of
the input attribute amounts is also necessary.

2 Literatures Review
The relative works and machine leaning methods

that are used for comparison are reviewed in this
section.

2.1 Data attribute reduction

It is a way to improve machine leaning efficiency
by reducing number of data attributes. In the
relative researches, Shen and Chouchoulas proposed
the first data attribute reduction method, a Rough
Set Attribute Reduction (RSAR) method, to remove
redundant input attributes for discrete values from
complex systems. Besides, an “approximate
reducts” concept was offered by Beynon. In the
mean time, he also proposed a Variable Precision
Rough Sets (VPRS) model to find out the smallest
set of attributes [16]. Afterwards, VPRS was

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1144 Issue 7, Volume 8, July 2009

applied in other studies, such as Hsu et al. used
VPRS model for mobile phone test procedure [17],
and Inbarani et al. used VPRS for feature selection
of web usage mining [18]. In addition, although
Ang and Quek did not reduce data attriubute but
reduce fuzzy rules by combined rough set and
neuro-fuzzy learning to improve machine learning
efficiency[19].

2.2 Bayesian networks [23]

Bayesian networks (BN) is a hierarchical
classification method. They are consists of graph
and probability theory as graphical models [22].
BN is defined as a directed acyclic graph or a
probabilistic graphical model that presents a set of
variables and their causal influences. The causal
dependencies between the variables are expressed
by conditional probability distributions. It usually
set up numeric values with normal or Gaussian
distribution in BN [23].

2.3 Decision tree ID3 and C4.5 [23]

ID3 is another hierarchical classification method
to be a decision tree [24]. A decision tree performs
categorical split following the value number of input
attributes. A decision tree is a predictive model
mapping from observations to predict the target
values. Written by C, C4.5 is an improved version
of ID3. Both symbolic and numeric values of input
attributes can be classified and then outputs a
classification tree.

2.4 Support vector machine [23]

Basically SVM separates data points into two
groups of linear separable data sets. It tries to find
out the optimal hyperplane by minimizing an upper
bound of the errors and maximizing the distance,
margin, between the separated hyperplane and data
[25]. It was first invented for binary classification
problems based on statistical theory. A maximal
separating hyperplane is built by SVM to map input
vectors to a higher dimensional space. Two parallel
hyperplanes are built and the data are separated on
each side of the hyperplane. Given training dataset

()ii yx , , ki ,,1K= , where n
i Rx ∈ and

{ }ky 1,1−∈ , SVM tries to find out the optimal
solution problem using the following form mainly:

ε,,
min

bw
 ∑

=

+
k

i
i

T Cww
12

1 ε

subject to

ii
T

i bxwy εφ −≥+ 1))((, 0≥iε

2.5 Artificial neural network [23]

An ANN consists of nodes that are
interconnected using mathematical model with
computational model. It computes inputs data by
above models to gain its output. In more practical
terms, an ANN is a non-linear tool. It can model
complex relationships between inputs and output
data. In most of times, an ANN is an adaptive
system that can adjust the parameters to improve its
performance for a given task. There are three types
of neural network learning algorithms: supervised,
reinforcement, and unsupervised leaning. Back-
propagation neural network (BPN) is the best
known supervised learning algorithm.

2.6 Neuro-fuzzy [26]
 The ANFIS [10], a fuzzy neural network (FNN)
tool, performs neural learning using fuzzy typed
numbers. Given a set of input and output data, the
ANFIS can constructs a fuzzy inference system with
membership functions values adapted using a
backpropagation algorithm or in combination with a
least square method. The adaptation function of the
ANFIS provides the machine learning system with
FNN characters.
 The basic model of the ANFIS is the Sugeno
fuzzy model [12]-[14]. In the model, assuming x
and y are two input fuzzy sets and z is the output

fuzzy set, and the fuzzy if-then rules is formatted as:

If Px = and Qy = then),(yxfz =

 Consider two first-order rules of Sugeno fuzzy
model, the if-then rules can be:

Rule A : If aPx = and aQy = , then

aaaa cynxmf ++= ,

Rule B : If bPx = and bQy = , then

bbbb cynxmf ++=

where aP , aQ , bP , and bQ are fuzzy set values and

am , an , ac , bm , bn , and bc are constants. In

figured presentation, Fig. 3 shows ANFIS structure
with a five-layer artificial neural network.
 Denote that the output of the i th node of layer l
are ilO , . In Layer 1 of the ANFIS,

)(,1 xO

iMi µ= , i =1, 2, or

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1145 Issue 7, Volume 8, July 2009

)(
2,1 yO

iNi −
= µ , i =3,4

where

iMµ and
2−iNµ are fuzzy membership

functions that can be any membership type such as
triangular or generalized bell function.

Layer 1
Layer 2

Layer 3 Layer 4

Layer 5

x
y

2A

X

1A

1B

Y

2B

xf

yf

Fig. 3. The ANFIS structure.

 For nodes in Layer 2, the outputs iw are the

product of the outputs of layer 1 and are used as the
weights of Layer 3:

)()(,2 yxwO
ii NMii µµ== , i =1,2

 In Layer 3, the output of every node is
normalized by a calculation as the following:

21
,3 ww

w
wO i

ii +
== , i =1, 2.

 Next, Layer 4 is the defuzzy layer which adapts
node values with equation:

)(,4 iiiiiii cynxmwfwO ++== , for i =1, 2

where im , in , and ic are consequent parameters of

the nodes.
 Finally, the fifth layer is to compute the output of
all the input signals using the equation:

∑
∑

∑
==

i
i

i

i
ii

ii w

fw
fwO 1,5 , for i =1, 2

2.7 Mega-fuzzificztion [9, 27, 28, 29, 30, 31]

Mega-fuzzification method was proposed for the
purpose of solving the prediction of the best strategy
problem in the Flexible Manufacturing System
(FMS) when data are small [2, 4, 6]. In the studies
of [2, 4, 6] for the Mega-fuzzification, several
concepts were offered, such as data fuzzified,
continuous data band, domain external expansion,
and data bias adaptation.

The concept of the continuous data band was
first proposed by Li, et al. [2]. Such a data
continuing technology aims to fill the gaps between
individual data and make incomplete data into the
more complete status as presented by Huang and
Moraga [11-12].

Furthermore, in the studies of Li, et al. and
Chang [2, 4, 6], the domain range external
expansion concept was also proposed into the
procedure of the continuous data band method. In
addition to filling the data gaps within the data set,
the purpose of domain external expansion is also to
add more data outside the current data limits,
because possible data are expected not only inside
but also outside the current data range.

To fill the gaps between crisp data, crisp learning
data are transformed into continuous data as Figure
1 illustrates. In Fig. 2, there are five original crisp
data. When these data are transformed into
continuous type, virtual data between the crisp data
are thus generated.

continuous datacrisp data

Fig. 2. Crisp data are transformed into continuous

The data effects have to be estimated also. In
this research, continuous data are presented in fuzzy
membership function forms. The fuzzy membership
function can be a general bell, triangle, or even
anomalous type and is the data’s effective weight in
the FNN learning later. Most of the time, an
asymmetric fuzzy membership function is initiated.
For example, a triangular fuzzy membership can be:

−
−

−
−

=

0
max

max
min

min

0

)(~

mid

x
mid

x

x
i

i

iA
µ

max,

max,

min,

min,

>

≤≤

≤≤

<

i

i

i

i

x

xmid

midx

x

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1146 Issue 7, Volume 8, July 2009

where min is the minimum value and max is the
maximum value of the crisp learning data, and

2

maxmin+=mid .

When crisp are transformed into continuous,
boundaries of the continuous data band are
minimum and maximum value of the original crisp
data. However, the real data range is possible
outside this data band. In order to build up real
knowledge, the data band is externally expanded to
the possible range in this study as illustrated in Fig.
3.

(a)

(b)

Original learning data

Fuzzy membership function

minimum maximum

new
minimum

new
maximum

 Fig. 3. Two triangular membership function values:
(a) before, (b) after domain range external

expansion

Because data have been transformed into a
continuous data band, FNN are used in this study.
During the learning process, the shape of fuzzy
membership function is adapted to fit the best
learning results.

3 The Proposed Method
First, a data set of nbuses [20] that consists of 9

input and 1 output attributes is used to explain the
proposed BC method first. The nbuses can not be
performed well in FNN and mega-fuzzification
methods. Values of its 10 attributes are integers.
The values of the first attribute are {1, 2, 3, 4},
values of the second, the 8th, and output attributes
are {1, 2, 3}, and values of the other attributes are
{1, 2}.

The process of the BC method is simple. Each
decimal number can be transferred into a Boolean
number one on one mapping. For example, in the
first instance of our nbuses data, 9 attributes are
combined into 3 new attributes. We combine the

first to the third attributes to be the first new
attribute. On the left of the Fig. 4, 3 decimal
numbers, 4, 3, and 1, are transferred into 3 Boolean
numbers accordingly. Considering the maximum
value of each attribute, Boolean number for decimal
number 1 should be 01. So that the number of bit in
Boolean number for each attribute is fixed. Next,
the 3 Boolean numbers are physically combined to
be a unique Boolean number as shown in the middle
part of Fig. 4. Each original Boolean number
occupies its own digital position in the combined
Boolean number format without mixing with other
numbers. After that, for the convenience of
calculation in the real world, this combined Boolean
number is transferred to a decimal number. In the
above process, the 3 input values are combined into
a unique decimal value 77 and the input attributes
are reduced. The reason for not combining the
decimal number directly, such as combine 4, 3, 1 to
be 431 is because that 431 is bigger than 77, the
result of BC. Smaller number is easier for
calculation.

4

1 0 0 77

3 decimal
numbers

Transferred to 3
Boolean numbers

Combined 6 Boolean
numbers to one

Transferred to a
decimal numbers

3

1

11 10

1 0 0

11

10

Fig. 4. The process of the Boolean Conversion.

With Fig. 4 as an example, there are 3 inputs were
converted into a single new input. First, the original
3 inputs {4, 3, 1} are converted into a Boolean digit
number that is {100, 11, 01}. Second, these 3
Boolean digit numbers are physically combined into
one Boolean digit number: 1001101. The
corresponding decimal number is 77. It can be
expressed by the binary system as:

{ }

1*

100*

10000*

1001101

01

11

100

01 11, 100,

+
+
=
→

It could be a Boolean weight expressed by Boolean
system as:

]110010000[=BBBB

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1147 Issue 7, Volume 8, July 2009

Table 1. An explanation of converting 9 attributes to 3 new decimal attributes.

 #1 #2 #3 #4 #5 #6 #7 #8 #9

Original decimal value 4 3 1 2 1 2 1 3 1

Converse to Boolean value 100 11 01 10 01 10 01 11 01

Combine to three Boolean value 1001101 100110 011101

Converse to three decimal value 77 38 29

or expressed by decimal system:

{ } 024 2*2*2*77 1341 3, 4, ++=→

and the binary weight vector is

]222[024=BBBB

4 Results and Comparisons
In this study, 4 data sets are offered to check

learning accuracies and time of the results of both
non-applying and applying BC. These data sets are
nbuses, ACLP, MONK3 and Buseskod data sets.

4.1 nbuses data

The nbuese data that has been mentioned in
section 3 is used by the proposed method in this
subsection. Table 1 shows one record of the data.
There are 9 input and one output attributes in the
data. The 1st to the 3rd attributes are converted into a
new input attribute, the 4th to the 6th attributes are
combined into the 2nd new input by BC, and the 7th
to the 9th are combined into the 3rd new one.
Therefore there are only three new input attributes.
As shown in Table 1, the new input record is {77,
38, 29}.

After all attributes are converted using BC, the
data are tested and compared using BN, C4.5, SVM,
ANN, FNN, and Mega-fuzzification methods with
10-folds cross-validation testing. Each fold are used

as testing data in turn and the remaining total of 9
folds data are used as training data. The results are
presented in Table 2. Without using BC, FNN and
Mega-fuzzification fail to perform. After applying
BC, it can easily perform machine learning using
FNN and Mega-fuzzification methods. Most of the
prediction accuracies after using BC are even a little
higher than without using it in this case, and
learning time decreases. Fig. 5 compares the
prediction accuracies under different learning
methods. Fig. 6. illustrates the learning time. For
nbuses data, even after using BC, time for FNN and
mega-fuzzification is still large. For other learning
methods, learning time reduced.

4.2 ACLP data

There are in total 140 instances in ACLP data
with 6 input and 1 output attributes. The 1st, the 5th,
and the 6th attributes have values of {1, 2, 3}, and
the other attributes have values of {1, 2}. For
neuro-fuzzy learning, 6 input attributes cause
learning process very slowly. Fortunately, the
values of each attribute are not large. We can
compare the results of FNN and mega-fuzzification
methods. The results are presented in Table 3, Fig.
7, and Fig. 8. Accuracies after using BC are a little
lower than before, but time is saving. Before
applying BC in FNN and mega-fuzzification, time
for learning is very large. After using BC, time is
saved largely.

Table 2. The comparison of nbuses data.

 Method Bayesian C4.5 SVM ANN FNN Mega-fuzzification

Accuracy 93.42 % 93.42% 86.84% 85.53%
Non-BC

Time(sec) 0.05 0.16 0.56 0.56
Fail to perform Fail to perform

Accuracy 94.74% 93.42% 84.21% 92.11% 95% 95%
BC

Time(sec) 0 0 0.42 0.22 3 3

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1148 Issue 7, Volume 8, July 2009

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

ac
cu

ra
cy

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

accuracy without using BC accuracy after using BC

Fig. 5. The accuracy comparison before and after using BC method by six methods for nbuses data.

0

0.5

1

1.5

2

2.5

3

tim
e

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

learning time without using BC learning time after using BC

Fig. 6. The learning time comparison before and after using BC method by six methods for nbuses data.

Table 3. The comparison of ACLP data.

 Method Bayesian C4.5 SVM ANN FNN Mega-fuzzification

Accuracy 86.43 % 87.86% 90.71% 84.29% 84.73% 84.73%
Non-BC

Time(sec) 0 0 0.17 0.41 650 650

Accuracy 80.71% 89.29% 81.43% 81.43% 80.38% 81.23%
BC

Time(sec) 0 0 0.02 0.2 5 5

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1149 Issue 7, Volume 8, July 2009

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

ac
cu

ra
cy

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

accuracy without using BC accuracy after using BC

Fig. 7. The accuracy comparison before and after using BC method by six methods for ACLP data.

0

100

200

300

400

500

600

700

tim
e

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

learning time without using BC learning time after using BC

Fig. 8. The learning time comparison before and after using BC method by six methods for ACLP data.

4.3 Monk3 data
Monk3 data were created by Sebastian Thrun

(see UCI Machine Learning Repository [21]) which
has 432 instances, 6 inputs and 1 output attributes.
Because the number of attributes is not large in this
case, we can compare the learning accuracies of
FNN and mega-fuzzificatioin with and without
using BC again. Table 4 shows the results. In this

case, FNN and mega-fuzzification can be performed
but waste large time before using BC. All the
accuracies after using BC are a little lower than
before. The learning accuracies are also compared
in Fig. 9 and learning time is compared in Fig. 10.
Still, leaning time before using BC for FNN and
mega-fuzzification is very large, but becomes very
small after applying BC.

Table 4. The comparison of Monk3 data.

 Method Bayesian C4.5 SVM ANN FNN Mega-
fuzzification

Accuracy 92.36 % 100% 80.56% 100% 100% 100%
Non-BC

Time(sec) 0 0.02 0.03 1.19 700 700

Accuracy 89.21% 96.06% 76.90% 98.87% 97% 98%
BC

Time(sec) 0 0 0.02 0.61 10 10

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1150 Issue 7, Volume 8, July 2009

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

ac
cu

ra
cy

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

accuracy without using BC accuracy after using BC

Fig. 9. The accuracy comparison before and after using BC method by six methods for Monk3 data.

0

100

200

300

400

500

600

700

tim
e

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

learning time without using BC learning time after using BC

Fig. 10. The learning time comparison before and after using BC method by six methods for Monk3 data.

4.4 Buseskod data

There are 76 instances in Buseskod data set
with 8 inputs and one output attributes. The
values of the 1st to the 7th inputs are {0, 1} and
the value ranges of the 8th input are {0, 1, 2}
with the values of output {1, 2}.

Still, the learnings of FNN and Mega-
fuzzification fail to perform before applied BC. The
comparison results are shown in Table 5, Fig. 11,
and Fig. 12. The learning accuracies after BC are a
little worse or equal than those before BC, but the
learning efficiencies are improved after BC.

Table 5. The comparison of Buseskod data.

 Method Bayesian C4.5 SVM ANN FNN Mega-fuzzification

Accuracy 100% 98.68% 100% 100%
Non-BC

Time(sec) 0.05 0.02 0.27 0.33
Fail to perform Fail to perform

Accuracy 99.05% 98.68% 98.42% 100% 100% 100%
BC

Time(sec) 0 0 0.14 0.13 5 5

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1151 Issue 7, Volume 8, July 2009

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ac
cu

ra
cy

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

accuracy without using BC accuracy after using BC

Fig. 10. The accuracy comparison before and after using BC method by six methods for Buseskod data.

0

1

2

3

4

5

tim
e

Bayesian C4.5 SVM ANN FNN mega-
fuzzification

learning time without using BC learning time after using BC

Fig. 12. The learning time comparison before and after using BC method by six methods for Buseskod data.

5 Conclusions
In this study, a novel BC method is proposed to

deal with the problem of that data with a large
number of attributes may cause a system freezes or
shuts down. BC reduces attributes number by
combining some of the attributes into smaller
number of new attributes instead of that removing
some attributes from data.

After attributes are combined and reduced,
learning accuracies and learning time are compared
by BN, C4.5, SVM, ANN, neuro-fuzzy, and Mega-
fuzzification learning methods. Different learning
methods have different learning characteristics, and
a good learning method for one data is possible not
suitable for another data [32]. The purpose of the
comparison for neuro-fuzzy, such as BN, C4.5,
SVM, and ANN, is to compare the learning
accuracies and efficiencies by BC because FNN and
Mega-fuzzification methods can not be performed in
large attribute data.

The purpose of the proposed BC is not to improve
learning accuracy but to solve the problem of failing
to perform in large attribute data. Hence, learning
accuracies are not improved in some data sets, but
BC becomes a method for large attribute condition
and learning accuracies are not too worse than
before BC.
 In this study, 4 data sets, nbuses, ACLP,
MONK3, and Buseskod are used to test and
compare the learning results. Some of their learning
accuracies after using BC are a little lower than
before, some have a little higher accuracies. In
general, the learning accuracy after applying BC is
not worse. In addition, leaning time is shortened
after BC is used. Facing the problem of “fail to
perform” in neuro-fuzzy, the proposed BC method
indeed solves the problem of data have large
attributes in learning in brief.

Acknowledgement

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1152 Issue 7, Volume 8, July 2009

Thanks are due to the support in part by the National
Science Council of Taiwan under Grant No. NSC
96-2416-H-468-006-MY2.

References:
[1] Y.Y. Yao, “Granular computing: basic issues

and possible solutions,” Proceedings of the 5th
Joint Conference on Information Sciences,
1999, pp. 186 – 189.

[2] L. Polkowski and A. Skowron, “Towards
adaptive calculus of granules,” Proceedings of
1998 IEEE International Conference on Fuzzy
Systems, pp. 111 – 116.

[3] T.Y. Lin, “Granular computing on binary
relations I: data mining and neighborhood
systems, II: Rough set representations and
belief functions,” in L. Polkowski and A.
Skowron eds., Rough sets in knowledge
discovery 1. Heidelberg, Physica-Verlag, 1998,
pp. 107 – 140.

[4] Y.Y. Yao, “Granular computing using
neighborhood systems,” in R. Roy, T.
Furuhashi , and P.K. Chawdhry (eds.)
Advances in Soft Computing: Engineering
Design and Manufacturing, Springer-Verlag,
London, 1999, pp. 539 – 553.

[5] T.Y. Lin, “Data mining: granular computing
approach,” Proceedings of the Third Pacific-
Asia Conference on Methodologies for
Knowledge Discovery and Data Mining, 1999,
pp. 24 – 33.

[6] A. Skowron and J. Stepaniuk, “Information
granules: towards foundations of granular
computing,” International Journal of
Intelligent Systems, Vol. 16, 57 – 85, 2001.

[7] Y.Y. Yao, “Information granulation and rough
set approximation,” International Journal of
Intelligent Systems, Vol. 16, 87 – 104, 2001.

[8] J.-S. R. Jang, “ANFIS: Adaptive-Network-
based Fuzzy Inference Systems,” IEEE
Transactions on System, Man, and Cybernetics,
vol. 23, no.3, pp. 665-685, 1993.

[9] D. C. Li, C. Wu, and F. M. Chang, “Using
data-fuzzifying technology in small data set
learning to improve FMS scheduling
accuracy,” International Journal of Advanced
Manufacturing Technology, Vol. 27, No. 3-4,
pp. 321-328, 2005.

[10] F. M. Chang, and C. C. Chan, “Improve Neuro-
Fuzzy Learning by Attribute Reduction,” The
27th Annual Meeting of the North American
Fuzzy Information Processing Society, The
Rockefeller University, NY, USA, May 18-21,
2008.

[11] B. Predki, R. Slowinski, J. Stefanowski, R.
Susmaga, and Sz. Wilk, “ROSE - Software
Implementation of the Rough Set Theory,” In:
L. Polkowski, A. Skowron, eds, “Rough Sets
and Current Trends in Computing,” Lecture
Notes in Artificial Intelligence, vol. 1424, pp.
605-608,. 1998.

[12] B. Predki and Sz.Wilk, “Rough Set Based Data
Exploration Using ROSE System,” In: Z. W.
Ras, A. Skowron, eds, “Foundations of
Intelligent Systems,” Lecture Notes in Artificial
Intelligence, Vol. 1609, pp.172-180, 1999.

[13] A. Øhrn and J. Komorowski, “ROSETTA: a
rough set toolkit for analysis of data,” Proc.
Third International Joint Conference on
Information Sciences, Vol. 3, pp. 403 - 407,
Durham, NC, March 1997.

[14] Z. Pawlak, Rough Sets: Theoretical Aspects of
Reasoning about Data, Kluwer, 1991.

[15] S. Qiang, and C. Alexios, “A modular approach
to generating fuzzy rules with reduced
attributes for the monitoring of complex
systems,” Engineering Applications of
Artificial Intelligence, Vol. 13, No. 3, pp.263-
278, 2000.

[16] M. Beynon, “Reducts within the variable
precision rough set model: A further
investigation,” European Journal of
Operational Research, Vol. 134, pp.592-605,
2001.

[17] J. H. Hsu, T. L. Chiang, and H. C. Wang,
“VPRS model for mobile phone test
procedure,” Journal of the Chinese Institute of
Industrial Engineers, Vol. 23, no. 4, pp.345-
355, 2006.

[18] H. H. Inbarani, K. Thangavel, and A.
Pethalakshmi, “Rough set based Feature
Selection for Web Usage Mining,”
International Conference on Computational
Intelligence and Multimedia Applications,
pp.33-38, 2007.

[19] K. K. Ang, and C. Quek, “Stock Trading Using
RSPOP: A Novel Rough Set-Based Neuro-
Fuzzy Approach,” IEEE Transactions on
Neural Network, Vol. 17, no. 5, pp.1301-1315,
2006

[20] Laboratory of Intelligent Decision Support
Systems, Poznan University of Technology,
http://www-idss.cs.put.poznan.pl/site/rose.html

[21] UCI Machine Learning Repository,
http://mlearn.ics.uci.edu/MLRepository.html

[22] E. J. M. Lauría, J. Duchessi, “A methodology
for developing Bayesian networks: An
application to information technology (IT)
implementation,” European Journal of

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1153 Issue 7, Volume 8, July 2009

Operational Research Vol. 179, No.1, pp.234-
252, 2007.

[23] F. M. Chang, “The Characteristics of Learning
in Limited Data and the Comparative
Assessment of Learning Methods,” WSEAS
Transactions on Information Science and
Applications, Vol. 5, No.5, pp.407-414, 2008.

[24] J. R. Quinlan, “Learning decision tree
classifiers,” ACM Computing Surveys Vol. 28,
No. 1, pp.71-72, 1986.

[25] K. Seo, “An application of one-class support
vector machines in content-based image
retrieval,” Expert Systems With Applications
Vol. 33, No. 2, pp.491-498, 2007.

[26] F. M. Chang, “Determination of the Economic
Prediction in Small Data Set Learning,”
WSEAS Transactions on Computers, Vol. 5,
No.11, pp.2743-2750, 2006.

[27] F. M. Chang and M. Y. Chiu, “A Method of
Small Data Set Learning for Early Knowledge
Acquisition,” WSEAS Transactions on
Information Science and Applications, Vol. 2,
No.2, pp.89-94, 2005.

[28] F. M. Chang, “An intelligent method for
knowledge derived from limited data,”
Proceedings - 2005 IEEE International
Conference on Systems, Man, and Cybernetics,
Vol. 1, pp.566-571.

[29] D. C. Li, C. Wu, T. I. Tsai and F. M. Chang,
“Using mega-fuzzification and data trend
estimation in small data set learning for early
FMS scheduling knowledge,” Computers &
Operations Research, Vol. 33, No.6, pp. 1857-
1869, 2006.

[30] D. C. Li, C. Wu, and F. M. Chang, “Using data
continualization and expansion to improve
small data set learning accuracy for early
flexible manufacturing system (FMS)
scheduling,” International Journal of
Production Research, Vol. 44, No.21, pp.4491-
4509, 2006.

[31] F. M. Chang and Y. C. Chen, “A Frequency
Assessment Expert System of Piezoelectric
Transducers in Paucity of data,” Expert Systems
with Applications, Vol. 34, No.4, pp.2747-2753,
2008.

[32] M. Y. Kiang, “A comparative assessment of
classification methods,” Decision Support
Systems, Vol. 35, pp.441-454, 2003.

WSEAS TRANSACTIONS on COMPUTERS Fengming M. Chang

ISSN: 1109-2750 1154 Issue 7, Volume 8, July 2009

