
Efficient Message Authentication Protocol for WSN

MOISES SALINAS ROSALES, GINA GALLEGOS GARCIA, GONZALO DUCHEN SANCHEZ

Graduate School, ESIME Culhuacan

Instituto Politecnico Nacional

Av. Santa Ana Num. 1000, 04430, Mexico City.

MEXICO

msrosales@acm.org, gganig@gmail.com, gduchen@ieee.org, http://calmecac.esimecu.ipn.mx

Abstract: - This paper describes a solution for nodes and message authentication problems in wireless sensor

networks, this solution allows effectively avoiding node-impersonation and messaging falsification among the

WSN nodes. The resulting protocol address authentication at two level using identity based cryptography and

message authentication codes with SHA-1, for node and message authentication respectively. An

implementation of the message authentication process into a TinyOS-based node is presented; also power

consumption measurements obtained are discussed. Based in experimental results we show that message

authentication process is suitable in terms of power consumption.

Key-Words: - WSN, Authentication, MAC codes, Cryptography, Pairings, TinyOS.

1 Introduction
Wireless Sensor Networks (WSNs) belong to a

particular case of ad-hoc networks, sharing their

main characteristics as flexible routing and latency

management strategies among others. However

WSNs add a challenging requirement for their

operation: extra-low power consumption. This

requirement impacts on all design areas of WSN

components: hardware, OS, application software

and communication protocols.

 Nowadays WSNs represent a very interesting

field for application designers. The applications for

WSNs have spread over the last five years, varying

from simple environmental monitoring systems to

critical in situ military surveillance systems or even

high precision patient monitoring systems for health

support [1][2][3].

 A WSN is composed by a set of interconnected

sensor nodes. Sensor nodes are small devices,

commonly consisting on a microcontroller, a short

range radio unit and one or more transducers acting

as sensors. A sensor node commonly is equipped

with a power source like batteries that represents the

only power source available. This configuration

makes power-saving a strict design principle for any

WSN.

 Among current applications, there is a group

with high data security requirements. Such

requirements are in terms of secure transmission,

secure storage and secure network management, just

like above listed applications [4]. In most cases, it is

necessary to involve cryptographic services, such as

confidentiality, data integrity and authenticity, in

order to satisfy those security requirements.

 However, due to a sensor node is a constrained

device, any security addition to its functionality

requires solving design tradeoffs between security

and efficiency, even cryptographic services. About

cryptographic services, each WSN application will

have different requirements, however there are a set

of common elements to all applications that arise a

set of common basic security requirements. Those

requirements are associated with the usage of the

wireless channel.

 Confidentiality seems to be most comprehensive

service, because it can minimize the traffic capture

effect during a communication among two nodes,

avoiding information eavesdropping. Nowadays,

most radio units for nodes are based on industrial

technologies such as Bluetooth or ZigBee, this

makes possible to relay confidentiality service to

radio units, commonly equipped with industrial

level hardware encryption, featuring AES or similar

algorithms. However, in order to operate symmetric

key ciphers, there is a symmetric key to be agreed.

This job can be done running key agreement

protocols over the air.

 Authenticity is another mandatory service for a

secure WSN, because message falsification and

message modification as well as node impersonation

are problems that need to be solved. Message

authentication is required in order to prevent that

malicious agents be able to inject messages to the

network without be detected.

 Authenticity can be established using

authentication techniques, such ones can be based

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 895 Issue 6, Volume 8, June 2009

on symmetric o asymmetric key cryptography. But

because the limitations of symmetric techniques,

related to the small storage capacity on nodes and its

limited scalability to establish huge WSN, the usage

of asymmetric cryptography is the starting point for

this research.

 This work describes an authentication protocol

that allows to WSN nodes to be authenticated each

other, as well to authenticate exchanged messages

between them. Nodes authentication make use of

Identity Based Cryptography (IBC) in order to

establish new authenticated links between nodes;

message authentication is obtained applying

message authentication codes for each message.

 This document is organized as follows: section 2

presents related works found in the literature.

Section 3 describes specific authenticity

requirements for WSN. In Section 4 this work

approach is described as well as the involved

cryptographic techniques. Section 5 presents the

proposed protocol, while section 6 shows the

obtained results in terms of efficiency of the

protocol, particularly during message authentication

stage. Finally in section 7 present the conclusions

and possible further works.

2 Related Works
Besides there are several proposals for

implementing authenticity services on WSN, the

most are based on symmetric techniques and only a

few ones involve public key cryptography

indirectly. Symmetric cryptography offers low

complexity in algorithms and small data pieces to

manipulate and store. At this point, as above

mentioned, flexibility and scalability appears to be

the main drawbacks for these techniques. This

approach has been explored in several proposals for

implement security services using symmetric

encryption, keyed and un-keyed hash functions, and

pre-distribution key techniques as proposed in the

work of Du [5] and Li [6] among others.

 Regarding to asymmetric techniques, one of the

more interesting is Du’s work. He established that it

is possible to use public key algorithms such as

digital signatures; however public key

authentication has to be solved jet. In [7] Du

proposed to use a Merkle Tree as a mechanism to

construct an authentication path for public keys

between all nodes in the WSN using hash values.

Actually Du also proposes to divide a global WSN

tree into regional trees not so taller in order to speed

up the lookup into the tree. The main drawback of

this proposal is that each node has to exchange

almost the authentication path with any other node

in order to be authenticated; this makes costly the

execution of the protocol, considering the associates

channel usage cost.

 Other related works are the classification for

PKC alternative proposed by Gaubatz [8], and the

TinyOS implementation of RSA proposed by Watro

[9]. Uhsadel proposed a scalar multiplier for 8 bits

platforms in [10] and Gura proposed an efficient

Elliptic Curve Cryptography (ECC) implementation

in [11]. Finally Piotrowski provided in [12] a power

consumption profile for PKC primitives on WSN.

 Recently However Oliveira et al. proposed in

[13] a key distribution method that allows to two

nodes to agree a common key. Oliveira’s approach

explodes the use of IBC to accomplish the key

exchange.

3 Authenticity in WSN
Wireless Sensor Networks are composed by

hundreds of even thousands of sensor nodes. In real

applications, all nodes can be managed by a single

entity or by a set of such ones. Prior to deployment

all nodes are considered to be able to an inhouse

setup, setting network parameters, as well as

security parameters. In this way, all nodes prepared

to deployment at the same time can be considered to

belonging the same brood.

 However, as the time pass over, the WSN will be

reflect some changes as node destruction, node’s

battery exhausting, new alert and sensing patterns,

and finally new sensing granularity requirements.

All such cases would require to increase the number

of nodes on the network, even for replace defeated

nodes or to increase network coverage. Adding new

nodes to the WSN involve preparing a new brood of

nodes and executing their deployment.

 Once the new nodes have been deployed, those

ones have to be connected to the already established

WSN. The procedure to establish such connection

requires so assure that only authentic nodes will be

allowed, avoiding any other entity to interfere on

WSN operation. Then, after the fresh nodes are

connected, all messages, coming-from and received-

at, have to be assured to be authentic in order to

prevent attacks by message injection o message

alteration.

 Upon this point, the following security

requirements for WSN can be established:

1. Once deployed, each node has to be

authenticated against the WSN before any other

action is allowed.

2. Once authenticated, each node has to be able to

verify any received message’s authenticity, that

is, that effectively was sent by the claimed

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 896 Issue 6, Volume 8, June 2009

source. Any message not satisfying this

condition has to be discarded and sender’s

information added can be used to form a black

list.

 In the next section an approach to satisfy such

requirements and the techniques involved are

discussed.

4 Our approach
In order to address security requirements for

authenticity in WSN, the proposed protocol

explodes the combination of asymmetric and

symmetric key techniques in order to address each

authentication process and minimizing the amount

of power consumption.

 Node authenticity is established using a

challenge-response protocol, where two nodes are

supposed to share a secret if and only if the belong

to the WSN, so they can be considered as authentic.

In this scenario two nodes are considered to interact,

one node already belongs to the WSN and is labeled

as authenticator, the other node is requesting to be

connected to the networks and has supplicant label.

 The challenge-response protocol is constructed

using IBC primitives, specifically Identity Based

Encryption (IBE) proposed by Boneh and Franklin

in [14]. The main reason to use an identity based

protocol is that, as proposed by Shamir, the

verification of the public key is avoided by

substituting such value by public identity-related

information, such as network address or serial

number for sensor nodes. During the challenge-

response protocol, a secret value is agreed, and it is

proposed to be used as a symmetric key for message

authentication purposes.

 Once two nodes have been authenticated each

other, they are capable to authenticate any message

exchanged between them by applying a Message

Authentication Code (MAC) over the message and

using the agreed secret value as symmetric key.

 In the following subsections, a brief introduction

to those main techniques is presented.

4.1 Identity Based Cryptography
Due PKC approach require key authentication

mechanisms, such as digital certificates, it would be

convenient to avoid those ones, by exploring

alternative mechanisms.

 IBC is an idea originally proposed by Shamir in

1984 [15], but first implemented by Franklin and

Boneh. IBC allows users to derive public keys from

identity or other simple strings, demanding private

keys have to be cleared by a trusted authority, and

enabling to users to avoid public key authenticity

verification. Most common IBC implementations

are based on bilinear functions or pairings. The most

important characteristic of this construction is the

bilinearity property, expressed as ê�[�]�, �	 =
ê��, [�]�	 = ê��, �	�, where ê is a bilinear

function.

 Bilinear Pairings are rational functions defined

over a field of functions [16]. In cryptography the

most common used arrangement is set of rational

functions defined over the field of functions over an

elliptic curve E defined over a finite field [17].

Commonly used pairing functions are Wëil pairing,

Tate pairing, and recently Ate and Eta-t pairings

[18].

 Besides pairings evaluation demands high

amounts of processing quotes, recently some

improvements have been developed achieving

considerable savings on processing, enabling in

such way the use of pairings usage in resource

constrained environments like WSN [19].

4.2 Message Authentication Codes
Message Authentication Codes are cryptographic

constructions that are designed to identify

manipulation and falsification on electronic

messages. Although there are MAC constructions

defined over symmetric cipher as modes of

operation, the most known MAC codes are

constructed using one-way hash cryptographic

functions, just like SHA-1 [20] or MD5. Examples

of former are HMAC, NMAC and UMAC.

 One way hash functions are also known as

Modification Detection Codes, but are commonly

called hash functions providing a very efficient

integrity verification method.

 A message authentication code uses a secret key

k which is known for two entities that communicate

a message of arbitrary length m, the code gives a

MAC output value MAC = Hk(m). The MAC value

generated by the issuer protects the integrity and its

authenticity in a message, enabling the receiving

entity to recalculated MAC value through the secret

key, to verify any change in content message, as

well as the source of the sender indicated.

 The construction of HMAC was proposed by

proposed by Bellare et al. in [21], it uses the

notation H for the iterated hash function initialized

with its value fixed usual IV. The HMAC function

works with m entries of arbitrary length and uses a

single secret key k of length l which is included as

part of the message in a block b, the HMAC of the

method can be defined as:

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 897 Issue 6, Volume 8, June 2009

������	 = ����⨁���� 	||����
⊕ ����	||�		

 Where k is the padded key with zeros to a full

block length b iterated the hash function, | |

represents the concatenation of the information, ⊕

is the logical operation XOR, The ipad string is

consisting of the 0x36 hexadecimal number

(00110110 in binary) because each hexadecimal

character is formed by 4 bits, this value is repeated

as many times as necessary to fill a block of b bits,

in the case of MD5 and SHA-1, the blocks are 512

bits, then the hexadecimal value must be repeated

64 times, another string opad is defined similarly

using the hexadecimal number 0x5C (01011100 in

binary).

 Additional processes for this function are not

made in the external structure of the hash function,

just calling the function without any modification.

The results of the second hash function are directly

dependent on the outcome of the first, thus the

dependence of the processes and security of the

algorithm.

 HMAC is also defined as an IETF keyed hash

function under the RFC 2104 and is considered to

be secure against attacks under the assumption of

that the underlying hash functions is secure.

5 Authentication Protocol
The proposed authentication protocol follows the

previously outlined approach. In the subsection 5.1

some general parameters are explained. Subsection

5.2 provides a detailed description of the protocol

itself, and in subsection 5.3 some consideration for

its evaluation are discussed.

5.1 Protocol Parameters
The authentication protocol uses the Identity Based

Encryption scheme assuming that the network

manager would be able to act as Trusted Authority

(TA).

 The following considerations have been adopted

as part of the environment under the protocol will

operate:

 - There exists a binary finite field K = GF(2m).

 - There exists an elliptic curve

 ���	: �� + �� = !" + #!� + $! + �,

where E is defined over a finite field

with�, #, $, � ∈ �.

- Each point in the elliptic curve is denoted with

capital letters, like P.

- [a]P denotes the scalar multiplication of point

the P by a times.
- There exists an additive group consisting of

points over the elliptic curve, denoted by &'.

- There exists a field extension &(�2�	�of order

k constructed over K

 - There exists a bilinear pairing function

*: &' × &' → &� that is defined over a group of

points on the elliptic curve: ê��, �	 = -./
with . ∈ &(�2�	�, � ∈ ℤ1 is a security

parameter according to the embedding degree of

the elliptic curve.

5.2 Protocol Description
The protocol consists on the stages described in the

following paragraphs.

 Setup: This stage is to be executed by the WSN

manager acting as a TA, using its own facilities for

processing in order to minimize the nodes power

consumption. During this protocol stage the TA

proceeds as follows:

1. Generates two groups &' and &� with

prime order q satisfying the bilinear pairing

ê: &' × &' → &�.

2. Chooses a random generator point -�/ ∈
&'.
3. Selects randomly TA’s master key, s ∈ ℤ3∗

and set TA’s public key �567 = [8]�.
4. Selects a suitable space for identity labels

ℒ: :0,1=> for some value m in accordance to

maximal network size expected.

5. Chooses three cryptographic hash functions

 �': :0,1=∗ → &' , ��: &� → :0,1=? for some n

, and a keyed hash function �": :0,1=? ×
:0,1=> → :0,1=@ for a small h value, i.e. 160 or

128.

 Key extraction: During this stage all nodes will

be assigned with an identity label AB ∈ ℒ and their

corresponding cryptographic keys. In order to

accomplish that, the TA runs the following

procedure for each node:

1. Computes the node public key

�CD = �'�CD	 ∈ E'∗ .

2. Obtains the node private key for ID by

evaluating �CD = [8]�CD.

3. Sets an empty link-key list denoted by

F�8GCD with capacity to store :0,1=? × :0,1=>

pairs.

4. Loads the node with values

(AB, �CD , �CD , F�8GCD	.

 Once Key extraction stage had completed, all

nodes are ready to be powered on and be deployed

into field to start the network operation.

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 898 Issue 6, Volume 8, June 2009

 During its operation into the network, each node

will sense the channel for detect other nodes in

order to establish a neighbourhood.

 Node discovery: Once a non-WSN node detects a

reachable link to an unknown neighbour, it will

adopt a supplicant role, denoted here by ABH.

 The counterpart will be managed within an

authenticator role ABI under the consideration that it

would have to a valid link the whole network.

 The nodes ABH and ABI will try to establish an

authenticated link by performing the following

message exchange:

1. Node ABH generates a message 8 =
ℎ*FF��ABH, KL	 containing the origin node

identifier as well as a timestamp mark.

2. Node ABH sends s to node ABI.

3. Once node ABI receives s, it will validate

the TS. If TS is within a pre-specified t threshold,

it will accept and process the request. The TS

timestamp will prevent abuse and DoS attacks

from a hostile node.

 Challenge generation: Once node ABI has

received the request, it will generate a challenge

message to verify that the node ABH belongs to the

WSN. The verification will be successful only in

case that the supplicant holds a TA-cleared private

key. To generate and send the challenge, node ABI

will proceed as follows:

1. Computes �CDM = �'�CDN	
2. Selects randomly a value O ∈ ℤ3∗ and

computes P ′ = �� QQêR�CDM , �567ST
U

T

3. Selects � $W :0,1=X
4. Computes P = � ⊕ P′ and Y = [O]�

5. Sends the pair �ℎ = �Y, P, ABI	 as challenge

to ABH.

 Response generation: With the challenge

�ℎ = �Y, P, ABI	 received, the supplicant node ABH

will proceed as follows to generate a valid response:

1. Computes � ′ = P ⊕ �� QêR�CDM , YST

2. Sends Z = �"R�′, ABHS as response ticket to

the node ABI.

3. Saves k as a link key to be used to

authenticate messages with the node ABI, adding

the pair ��, ABI	 to its list F�8GCDM

 Due to bilinear properties of pairing, it is

required that the node ABH holds a valid �CDM

corresponding to the value of its public key.

 Challenge verification: Once Z is received, the

node ABI will verify it validating the following

condition:

1. If Z = �"��, ABH	 then:

a. Add the pair ��, ABH	 to its list F�8GCD[

b. Then � is established as link-key for the

link ABI − ABH.

2. Elsewhere do nothing or collect information

from the supplicant node for generate a

black list.

Up to this point, the two nodes have been

authenticated itself and are ready to exchange

messages over an authenticated link. From the stage

of Node discovery until the stage of challenge

verification, the protocol will be executed by a node

once with each neighbour node, the rest of the

protocol is related to message authentication, which

will be the most recurrent operation among the

network operation.

 Message authentication: From this point any

message exchanged between two nodes AB] and AB̂

can be authenticated on a hash basis:

1. When message �� is sent by node AB] to

node AB̂ , it is accompanied with its MAC code

�"R�]_^ , �S. So the data exchanged are

��"R�]_^ , ��S, ��	.

2. Once AB̂ receives ��, it validates its

authenticity verifying the MAC code. If both

MAC codes coincide then AB̂ accept the

message, elsewhere it will reject the message.

 The only condition is that a value �]_^ exists in

both F�8GCD` and F�8GCDa. Elsewhere both nodes have

to run this protocol from Node Discovery stage in

order to arrange a link-key.

5.3 Considerations for viability evaluation
The viability of the above protocol involves several

aspects to consider. Firstly the efficiency is

determined by the operational cost for the protocol

and it can be established according to the amount of

memory, processing and transmission needs.

 From the observation of the protocol, it is

possible to distinguish between the two processes

that have to be executed by the WSN nodes. The

first one, node authentication, has be executed only

one time per each pair of nodes in the neighborhood.

The second one, message authentication, will be

required to be executed for each message

transmitting and receiving. This situation has to be

observed carefully in order to accurately determine

the cost of the protocol and then its efficiency.

Definitively, a MAC code routine will be executed

more frequently that a pairing routine, no matter that

the cost of last would be several times the cost of

the first one.

 Other aspects to consider about viability

concerns to security, flexibility, scalability, and

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 899 Issue 6, Volume 8, June 2009

interoperability among others, but in the mean time

all those were out of the scope of this work and have

to be considered for further analysis.

 In the next section we present results about

efficiency of the protocol in terms of estimations

and experimental measurements.

6 Results on Protocol Efficiency
 The protocol for authentication has to be

evaluated in terms of its efficiency in order to

establish how its use would impact on node’s power

consumption.

 This evaluation on the protocol is focused

exclusively into the execution of the MAC routine

and its power consumption on the node. This is

because its usage frequency is greater that the

pairing routing routine. However, a further

evaluation of the pairing routine would raise data for

comparison and to obtain a complete perception of

the related costs.

 The first step into the evaluation has been to

establish some parameters like the MAC code and

hash function to be used, as well the target platform

where the protocol will be executed.

 For practical reasons, HMAC code and SHA-1

hash function have been selected. The target

platform is a TelosB sensor node manufactured by

CrossBow Technology and featured with a 16-bit

MSP430 microcontroller, a ZigBee radio unit and a

set of transducers for light, humidity and

temperature measurement.

 The rest of this section describes the operations

involved during protocol execution, estimations of

cost and measurements obtained doing

experimentations with the mentioned sensor node.

6.1 Involved operations
In order to determine how processing and storage

requirements are distributed among the protocol, the

list of the cryptographic primitives executed by each

node was collected and showed in Table 1, where

the following notation is used:

- R stands for random number generation

- H stands for hash or MAC evaluation

- P stands for pairing evaluation

- E stands for modular exponentiation over the

field extension.

- M stands for scalar multiplication

- X stands for bitwise xor computation.

 As showed in Table 1, the authenticator node has

processing needs for one random number

generation, two MAC code evaluations, one pairing

evaluation, one exponentiation over the field

extension and one scalar multiplication over a curve

point. In counterpart the supplicant node requires

only three MAC code evaluations, one pairing

evaluation and one XOR that can be ignored.

 As previously discussed, the protocol involves

two functions: node authentication and message

authentication. A node pair authentication involves

generation and response of challenge, requiring two

evaluations of pairings that are known to be quite

expensive due to operate on the field extension. The

other function, message authentication, requires

only the evaluation of two MAC codes; those are

commonly considered a cheap primitive.

Stage Cryptographic operations per node

 Authenticator Supplicant

Ch. Gen. 1 R, 1 H, 1 P,

1 E, 1 M, 1X

Ch. Resp. 2 H, 1 P, 1 X

Resp.

Verifying

1 H

Message Auth 1 H 1 H

Table 1 Distribution of cryptographic operations

among the protocol.

 Those both functions have to be evaluated on the

amount of resources consumed, but as previously

established message authentication deserves special

attention due its frequently execution that is

expected during intensive message exchange. In the

following section we proceeded to establish the

processing and storage needs associated to the

evaluation of MAC codes into two nodes AB] and

AB̂ .

6.2 Cost estimation for HMAC evaluation
In this paper, for estimation purposes, the HMAC

has been selected. It is based on a cryptographic

hash function.

 From simple observation of the construction

defined in subsection 4.2, it is possible to establish

that the evaluation of HMAC is composed by two

evaluations of XORs and two evaluations of the

underlying hash function. As mentioned above,

SHA-1 is assumed to be used as the hash function. It

produces a hash value of 160 bits, short enough for

a WSN environment. In this way is possible to

obtain a closer estimation of the message

authentication process cost.

 Another interesting observation is that HMAC is

defined upon the assumption that at least four hash

evaluations has to be done, or a hash pre-calculating

alternative can be followed in order to reduce to two

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 900 Issue 6, Volume 8, June 2009

hash routine invocations during message processing.

Using this alternative requires the node key to be

pre-combined with the ipad and opad padding

strings, and then storing the resulted values carefully

as the key itself.

 This alternative assumes some pre-processing to

be done during the challenge verification and key

agreement stage. Following this alternative a slight

modification to the link-key list is required in order

to use a :0,1=? × :0,1=? × :0,1=> triple instead the

pair denoted in the step 4 of key extraction stage.

The two first values of the triple now should

correspond to the values k XOR ipad and k XOR

opad respectively, those ones that have to be

obtained once the link-key has been agreed.

 Due the HMAC operations are defined in terms

of SHA-1 function, it is required to obtain cost

estimation for the hash evaluation.

 The main structure of SHA-1 is a block of logic

and arithmetic modulo 2
32

 operations on 32-bits

variables. This main block is invoked 80 times from

the main loop of the function while the 512-bit

expanded message is processed. The expanded

message consists on the original 16 32-bit words

plus 64 words calculated as expansion of the

original message.

 Considering that the selected platform is able to

process 16-bit operations, we can estimate the cost

of evaluating SHA-1 as follows.

 Basically bit-logical and bit-shifting operations

do not require extra computations more than the

double of operations defined by SHA-1, remain that

it is necessary to map 32-bit values to 16-bit

variables.

 Considering arithmetical additions modulo 2
32

executed during the iterated block, it requires

performing the addition for the low end 16-bit word,

and then doing it for the high end reusing the carrier

resulting from the low end addition. Then the result

of the simple addition has to be reduced modulo 2
32

.

This reduction requires an additional subtraction, in

case that the carrier bit becomes high. So one

modular addition involves (in average) 1.5 32-bit

simple additions, which are translated to 3 16-bit

additions each one. No extra arithmetic operations

are required by SHA-1. However other operations as

bit shifting and logical evaluations are also required

for the hash evaluation.

 After analysis of involved operations, an

estimation resulted from mapping SHA-1 hash

function to the available operations into a MSP430

MCU are showed in the Table 2 and the following

notation is used to represent assembler mnemonics:

 - ROTL: left word rotation,

 - ROTL: right word rotation,

 - AND: bitwise logical and

 - XOR: bitwise logical xor

 - NOT: bitwise logical negation

 - ADD: arithmetic addition

 - ASG: assignation operation

 - CMP: comparison

 - INC: arithmetic incremental

 All operations denote 16-bits operations.

MSP430 Instr. Ops.

ROTL 1254

ROTL 480

AND 334

XOR 376

NOT 40

ADD 1041

ASG 715

CMP 96

INC 96

Table 2 Operations for SHA-1 evaluation on

MSP430.

 From the estimations for the SHA-1 evaluation

cost, it is possible to estimate the evaluation cost for

HMAC code. Applying a factor of 2 (remembering

that HMAC involves at least 2 calls to SHA-1), it

can be observed that each MAC code will consume

approximately 8,864 instructions on the MCU,

excluding data loading and storing. The 8,864

operations must be affected by a tentative load and

store factor of 4, this would lead the estimation to a

closer result once the loading and storing operations

are included. From this data and considering an

average of 8 cycles per instruction it would take

283,648 cycles that would take 70.912 milliseconds

per MAC, according with a simple mapping from

operations to assembler instruction for the target

platform.

 In the next two sections, the implementation of

HMAC is showed and the experimental

measurements using the node are reported and

discussed.

6.3 HMAC Implementation in TinyOS.
For experimental purposes, the component of the

protocol related with MAC codes evaluation for

messages authentication has been implemented in

software as a TinyOS [22] component and then

compiled and transferred to the node.

The implementation of HMAC consists on a

component of TinyOS that is defined by two calls to

another component that evaluates SHA-1 hash

function.

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 901 Issue 6, Volume 8, June 2009

As a required part within MAC methods, the

SHA-1 algorithm was implemented for iterating the

hash function F(x) used to calculate the MAC value.

SHA-1 creates an image of 160 bits on a message of

up to 2bc bits, however in this work a message with

size minor than 448 bits has been defined

considering that messages exchanged between

nodes will be so small.

The process for calculating the hash value using

the SHA-1 algorithm uses 32 bit data, while TelosB

can process data of 16 bits; this requires an

adaptation to the code in nesC that is carried out by

the compiler.

 The developed code for SHA-1 requires the

implementation of two components:

• ShaToolsC: Containing the tools that the

algorithm needs to calculate the Hash value.

Fig. 1 shows a module containing the code

ShaToolsC about commands defined in the

interface ShaTools.

Fig.1 ShaTools component

• Sha1C: contains the procedure for calculating

the hash value. This component makes use of

the interface ShaTools, which is an access

point that contains the commands ShaToolsC.

Figure 2 shows the module Sha1C, whose

commands are defined in the interface

Comp_sha1, which in turn uses the command

interface using ShaTools to link

ShaToolsAppC component.

Fig. 2 Sha-1 component

Once the SHA-1 function has been implemented,

the implementation of the HMAC is possible. The

usage of the call boot() into the code is to associate

the boot process of the node with the call the

HMAC routine during the initializing of the node.

This call makes a double call to the iterated hash

function F(x), assuming the secret key needed to be

included in a block of 512 bits is loaded in the

initialization vector, instead to be part of the

message. The general structure of HMAC is showed

in Figure 3.

Fig. 3 HMAC component

6.4 Experimental Results
Once the HMAC component has been implemented,

and compiled into TinyOS, the resulting system

image can be transferred into the node in order to

observe the real behavior of the component and

determine operational costs.

 During coding, the HMAC component has been

loaded with a fixed message to be used for mac

value calculation; the message used was the

corresponding to the string “abc”. No matter the

message length is extremely short the SHA-1

function completes it with a conventional padding

that normalizes the message to a regular up to 448-

bit message.

 A testbed was prepared for measuring sensor

behavior during the experimentation, collecting

processing time for the HMAC evaluation, current

consumer drawn and finally power consumption.

The testbed consist on the circuit showed in figure 4

and the following specifications:

 - Power source for 2.8 volts.

 - Digital oscilloscope

 - Digital multimeter.

 - 10 ohms resistor

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 902 Issue 6, Volume 8, June 2009

Fig. 4 Testbed used for measure

power consumption

 In order to measure the current drawn during the

HMAC evaluation, the component was modified to

run a infinite loop calling the calculus routine.

During this experiment, the multimeter sensed a

current on the circuit of 1.624 mA. differing

substantially from the current drawn of 10.3 µA.

sensed during an idle period.

 Another experiment conduced was to measure

the voltage drop at the resistor during the HMAC

evaluation. For this test, the component was

modified to call the calculus routine by intervals of

10 seconds, time enough for sampling the voltage

drop using the oscilloscope. The output sampled in

this experiment is showed in the Figure 5.

Fig. 5 Voltage drop at resistor.

 From observation from the equipment, the

voltage drop was about 30 mV at the resistor,

corresponding to the increase of current in the

circuit consumed by the node during HMAC

evaluation.

 Once that voltage and current measurement have

been established, finally it is possible to obtain the

power consumption for HMAC corresponding to the

message authentication process. The results are

showed in Table 3.

 Idle period HMAC evaluation

Current

drawn

10.3 µA. 1.624 mA.

Source

Voltage

2.8 V 2.8 V.

Voltage

drop

10.6 mV. 40.7 mV.

Power

consumed

28.84 µW. 4.547 mW.

An additional measurement collected was an

approximation of the time consumed for HMAC

evaluation, it can be observed in Figure 6, where the

horizontal resolution is setup to 50 milliseconds per

division, and the approximate duration of duty cycle

is about 80 milliseconds. This measurement is close

to the estimation reported in section 6.2.

Fig. 6 Duty cycle duration.

 According with Piotrowski [12], the power

consumption during radio transmitting at -25dBm is

25.5 mW while receiving is 56.4 mW. Using this

information as reference for comparing the

measurements obtained in our experiments, the

message authentication cost represents an overhead

of 8.06% for the receiver node, and 17.83% for the

transmitter node. This means that with this HMAC

implementation, the overhead cost is about 12.5% in

average. This makes clear the need to work in

improvements for reduces the component power

consumption, but the current results are promising.

7 Conclusions and further work
Traditionally the MAC codes evaluation are

considered to have a small impact over power

consumption on a sensor node, and it that can be

traduced to an efficient operation for the proposed

protocol when long-term links are operated between

nodes. However, the studies of estimation for node

authentication, as well as the experimental

measurements reported a small over cost for the

nodes that suggest their impact is about 10% but not

more.

 Estimations obtained in section 6.2 correspond

closely to the measurement obtained during

experimentation; this represent that the followed

technique analysis is valid and it would be desirable

to apply it in order to corroborate is effectiveness.

 Results presented describe only the message

authentication stage of the protocol that effectively

corresponds to the more frequent invoked operation

during the network operational life, however the

evaluation of the node authentication relates stages

is required in order to obtain a full caption of the

impact of the protocol to a WSN operation.

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 903 Issue 6, Volume 8, June 2009

 Cost reported were obtained in a static fashion

view, where only a one node scenario was

considered, reflecting only local effects. Another

interesting issue to be addressed is to obtain

estimation methods about the dynamic behavior of

the network.

 Finally, it is important to recall that the results

reported have been obtained using specific software

and hardware components, so there would be minor

variations among other platforms that have to be

estimated in order to use such results as a general

case.

References:

[1] A. Perrig, J. Stankovic, and F. Wagner,

Security in Wireless Sensor Networks,

Communications on The ACM, Vol. 47 No. 6,

pp. 53-57, 2004

[2] Z. Bojkovic, B. Bakmaz, A Survey On

Wireless Sensor Networks Deployment,

WSEAS Transactions on Communications, Vol.

7, No. 12, pp. 1172-1181, 2008.

[3] T. Shih., W. Chang, Hierarchical Localization

Strategy For Wireless Sensor Networks,

WSEAS Transactions on Computers, Vol. 7,

No. 8, pp. 1260-1269, 2008.

[4] P. Huang, The Investigation Of The Elliptic

CurveCryptology Applies To The New

Generation Protocol, Transactions on

Computers, Vol. 7, No. 6, pp. 694-703, 2008

[5] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J.

Katz, and A. Khalili, A Pairwise Key

Predistribution Scheme for Wireless Sensor

Networks, ACM Transactions on Information

and Systems Security, Vol. 8, No. 2, 2005, pp.

228-258.

[6] G. Li, H. Ling, T. Znati, and W. Wu, A robust

on-Demand Path-Key Establishment

Framework via Random Key Predistribution

for Wireless Sesor Networks, EURASIP

Journal on wireless Communications and

Networking, Vol. 2006, ArtID 91304, pp. 1-10,

2006.

[7] W. Du, R. Wang, and P. Ning, An efficient

scheme for authenticating public keys in sensor

networks. In Proc. of the 6th ACM

international Symposium on Mobile Ad Hoc

Networking and Computing, pp. 58-67, 2005.

[8] G. Gaubatz, J.P. Kaps, and B. Sunar, Public Key

Cryptography in Sensor Networks—Revisited,

in Lecture Notes on Computer Science, Vol.

3313, pp. 2-18, 2005.

[9] R. Watro, D. Kong, S. Cuti,, C. Gardiner, C.

Lynn, and P. Kruus, TinyPK: securing sensor

networks with public key technology, In Proc.

2nd ACM Workshop on Security of Ad Hoc and

Sensor Networks, pp 59-64, 2004.

[10] L. Uhsadel, A. Poschmann, and C. Paar,

Enabling Full-Size Public-Key algorithms on

8-bit Sensor Nodes, in Proceedings of 4th

European Workshop ESAS, LNCS 4572, pp.

73-86, 2007.

[11] N. Gura, A. Patel, A. Wander, H. Eberle, and S.

Chang-Shantz, Comparing elliptic curve

cryptography and RSA on 8-bit CPUs, in

Proceedings of CHES'2004: Workshop on

Cryptographic Hardware and Embedded

Systems, pp. 925-943, 2004.

[12] S. Peter, P. Langendorfer, and K. Piotrowski,

Public key cryptography empowered smart dust

is affordable, International Journal of Sensor

Networks, Vol. 4, No. 1/2, pp. 130-143, 2008.

[13] L.B. Oliveira, M. Scott, J. Lopez, R. Dahab,

TinyPBC: Pairings for authenticated identity-

based non-interactive key distribution in sensor

networks, In Proc. of International Conference

Networked Sensing Systems INSS2008, pp.

173-180, 2008.

[14] D. Boneh and M. Franklin, Identity Based

Encryption from the Weil Pairing, SIAM J. of

Computing, Vol. 32, No. 3, pp. 586-615, 2003.

[15] A. Shamir, Identity-Based Cryptosystems and

Signature Schemes, in Proceedings of

CRYPTO’84 Conference, pp. 47-53, 1984.

[16] L.C. Washington, Elliptic Curves: Number

Theory and Cryptography, Chapman & Hall,

2003.

[17] N. Bardis, N. Doukas, K. Ntaikos, A New

Approach Of Secret Key Management

Lifecycle For Military Applications,

Transactions on Computers, Vol. 7, No. 12, pp.

2011-2021, 2008.

[18] F. Hess, N. P. Smart, F. Vercauteren, The Eta

Pairing Revisited, IEEE Transactions on

Information Theory, Vol. 52 No. 10, pp. 4595-

4602, 2006.

[19] P. S. Barreto, S. D. Galbraith, C. Héigeartaigh,

and M. Scott, Efficient pairing computation on

supersingular Abelian varieties, Designs,

Codes and Cryptography, Vol. 42, No. 3, pp.

239-271, 2007.

[20] National Institute of Standards and

Technology, FIPS 180-2, 2002.

[21] H. Krawczyk, M. Bellare, and R. Canetti,

HMAC: Keyed-Hashing for Message

Authentication, Internet RFC 2104, 1997.

[22] TinyOS Website. http://www.tinyos.net

WSEAS TRANSACTIONS on COMPUTERS
Moises Salinas Rosales, Gina Gallegos Garcia,
Gonzalo Duchen Sanchez

ISSN: 1109-2750 904 Issue 6, Volume 8, June 2009

