
Design and Evaluation of FPGA Based Hardware Accelerator for
Elliptic Curve Cryptography Scalar Multiplication

Kapil A. Gwalani, Omar Elkeelany
Department of Electrical and Computer Engineering

Tennessee Technological University
Cookeville, Tennessee, USA.

Kagwalani21@tntech.edu OElkeelany@tntech.edu

Abstract: Embedded systems find applications in fields such as defense, communications, industrial
automation and many more. For majority of these applications, security is a vital issue. Over the last decade,
security has become the primary concern when discussing e-commerce. The rapid development in the field of
information technology has led to the increase in need of techniques capable of providing security.
Cryptography plays an important role in providing data security. Until recently, symmetric key encryption
schemes were used for a majority of these applications. Now however, asymmetric key encryption schemes
such as Elliptic curve cryptography are gaining popularity as they require less computational power and
memory and are still capable of providing equivalent security when compared to their counterparts. Elliptic
curve cryptography was first introduced in 1985 and has always been around since. Scalar or point
multiplication in elliptic curve cryptography has been a topic of research interest. Improving the performance
of scalar multiplication can improve the overall performance of elliptic curve cryptography. One popular
method to improve scalar multiplication is by means of hardware accelerators.

The authors of this paper have implemented scalar multiplication, the most time consuming operation
in elliptic curve cryptography using binary non-adjacent form algorithm. The results of the software
implementation have been presented in section- 4. Methodology to improve the performance of the scalar
multiplication by use of hardware accelerators has also been presented in this paper.

Key Words: Binary Non-adjacent Form, ECC, Prime Field, System on Programmable Chip.

1. Introduction
Cryptography is defined as the art of encoding

data using a key so that only authorized users can
decode and access the data. Cryptography can be
classified into two categories, public key
cryptography and private key cryptography. Private
Key cryptography, also known as symmetric key
cryptography uses a single key for encryption and
decryption. Examples of such encryption scheme
are, Advanced Encryption Standard (AES), Data
Encryption Standard (DES), and Triple DES. Public
key cryptography also known as asymmetric key
encryption, on the other hand uses two keys, one for
encryption and other for decryption. Examples of
this cryptographic scheme are RSA, Diffie–Hellman
and Elliptic curve cryptography (ECC).

Symmetric key algorithms are easy to
implement but there is always a possibility of the
key being intercepted. Asymmetric key algorithms
on the other hand, are immune to this attack and
thus provide better security than their counterparts.
However, they have the disadvantage of being
complex and so reduce the overall performance of
the embedded system. Hence the use of asymmetric
algorithms in cryptography is a research challenge.
Designers of embedded systems are faced with
making a decision between providing improved
security at the cost of reduced performance or vice
versa.

Elliptic curve cryptographic systems are
known to provide better security per bit than RSA;
at the same time they can be feasibly implemented
on embedded systems at higher speeds and less
memory requirements. As a result they are now

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 884 Issue 5, Volume 8, May 2009

being recognized as a true alternative not only to
RSA but also to symmetric key systems such as
Triple data encryption standard and advanced
encryption standard.

To provide higher security, key sizes are
usually in the range of hundred's of bits. The longer
the key length the more secure the system becomes.
This fact also makes cryptographic procedures slow
in software.

ECC relies on the elliptic curve discrete
logarithmic problem (ECDLP) to provide security.
ECDLP is to find k in the equation Q=kP, where Q
and P are points on the elliptic curve. The critical
operation k.P is called point multiplication. The
overall performance of ECC can be improved
drastically if the operation of point multiplication
can be accelerated. The aim of this work is, to speed
up the operation of point multiplication through the
use of a hardware accelerator.

Elliptic Curve Cryptosystems can be
implemented over two fields, the prime field GF (p)
and the binary field GF (2m). GF (p) contains a
prime ‘p’ number of elements. The elements of this
field are the integers modulo p, and the field
arithmetic is implemented in terms of the arithmetic
of integers modulo p. GF(2m), contains 2m elements
where m is degree of the field. Elements in GF (2m)
can be considered as polynomials of degree m-1.
The coefficients of these polynomials can be 0 or 1
only. This work focuses on speeding up the
performance of point multiplication over the prime
field.

The paper has been divided into five sections.
Section two covers the related work. This section
briefly discusses the previous work done in this
field. Section three presents the mathematics
involved with ECC over prime field, section four
illustrates the hardware design and implementation.
Section five presents the results of the software
implementation. Section five also presents the initial
results of hardware implementation. Future work to
be done has also been discussed in section five.

2. Related Work
There have been several implementations of

hardware accelerators for elliptic curve
cryptography but most of them focus on the binary
field.

Siddika Berna et al. [2], in their paper have
presented a hardware implementation of ECC over
GF (p). The authors of [2] used Montgomery
modular multiplication in their hardware
implementation. The algorithm used for point
multiplication is the Double and Add algorithm.
The target hardware platform in [2] was the Xilinx
V1000E-BG-560-8 (Virtex E) FPGA. The current
work uses Binary non-adjacent form algorithm for
the point multiplication and the target hardware
platform is the Altera Cyclone II FPGA.

Satoh and Takano [3] present an ASIC
elliptic curve processor which supports both the
binary and prime fields. The authors of [3] have
used a 0.13 μm CMOS ASIC as their target platform
and Montgomery multiplier in their hardware
implementation. The current implementation
concentrates only on the prime field; algorithm used
for point multiplication is the binary non-adjacent
form algorithm. The authors of the current work use
ripple adders in their hardware implementation.

Orlando and Paar [4], in their paper
presented elliptic curve processor architecture for
computing point multiplication using a high-radix
Montgomery multiplier. The authors of [4] use
double and add algorithm for point multiplication.
The target hardware platform used by the authors in
[4] was Xilinx XCV1000E-8-BG680 FPGA.

As seen, a majority of the hardware
accelerators are implemented using the double and
add algorithm and using Montgomery multiplier
hardware architecture. The current work utilizes the
Binary Non- Adjacent Form algorithm for point
multiplication. The hardware implementation is
carried out using a series of ripple adders

Applications of elliptic curve cryptography
are many; recently a lot of focus has been placed
particularly in the field of wireless communications
and e-commerce. Jang Ho and Jou Yang [10], in
their paper discussed the need for improved security
over the wireless mobile network. In their paper, the
authors have made a comparison amongst the
several secure connection mechanisms in mobile
commerce. A comparison between wireless
transport layer security (WTLS) and the KiloByte
SSL (KSSL) was made. Even though WTLS came
up short, there is still work in progress on ways to
improve it.

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 885 Issue 5, Volume 8, May 2009

Po - Hsian Huang [11] in his paper has described the
possible application of Elliptic curve cryptography
in IPv6. The paper discusses the advantage of
employing ECC over RSA in IPv6. Andrew
Georgiades et. al. [12], in their paper have focused
on security issues pertaining to route optimizations,
the solution proposed by them – the trinity protocol
utilizes the elliptic curve cryptography for providing
security. Some of the other work also includes use
of elliptic curve diffie hellman key exchange
protocol (ECDH) to establish a secure connection
between a base station and a sensor node [13].

3. Mathematics behind Elliptic Curves
on Prime Field Fp

The operations which can be performed on
points on an elliptic curve are, point addition,
subtraction and doubling. All the operations are
carried out using modular arithmetic which means
that all the elements of the finite field are integers
between 0 and p-1 [5], where ‘p’ is the prime
modulus. It’s recommended to choose p between
112-521 bits [2]. The elliptic curve over prime field
is defined by the equation below:

y2 mod p = x3 + ax + b mod p (1)
where p is the prime modulus defined for the finite
field Fp. Parameters ‘a’ and ‘b’ define the elliptic
curve (1). The above mentioned three parameters
along with two other parameters ‘n’ and ‘G’
constitute the domain parameters of the elliptic
curve defined by equation (1). The order of the
elliptic curve is denoted by ‘n’. ‘G’ denotes the
generator point, a point on the elliptic curve which
is chosen for performing cryptographic operations
[5].

3.1 Point Addition
Consider two distinct points A and B on an

elliptic curve where A and B have the co-ordinates
(xa, ya) and (xb, yb) respectively and a third point C
(xc, yc) which is the result of adding A and B then,

xc = (m2 - xa - xb) mod p (2)
yc = (m(xa-xc)-ya) mod p (3)
m = (ya-yb / xa - xb) mod p (4)

Where, m is the slope of the line through the points
A and B.
3.2 Point Subtraction

Point subtraction utilizes the same equations
as that of point addition, consider the points A and
B again on an elliptic curve where, A and B have
the co-ordinates (xa, ya) and (xb, yb) respectively and
a third point C (xc, yc) which is the result of
subtracting A from B then,
 A – B = A + (-B) where – B = (xb, -yb) (5)

3.3 Point Doubling
Consider the point A (xa, ya), where ya is not

equal to zero, then C = 2A is given by the following
equations

xc = (m2 - 2xa) mod p (6)
yc = (m(xa-xc)-ya) mod p (7)
m = ((3xa

2 + a)/ 2 ya) mod p (8)

If ya is zero then m is zero as a result C = O, the
point at infinity. The slope equation (8), above
utilizes the curve parameter ‘a’.

4. Elliptic Curve Encryption
The mathematics of elliptic curves can be

used for encrypting a message as well as decrypting
it. Assume there are two users, user A - Alice and
user B - Bob who want to share top secret data. The
process of encryption is the same, users convert
plaintext to cipher text by means of a key and the
send this to the other users involved in the
communication. The difference here is how the key
is calculated at either end and how the message is
decoded.

The first step to encrypting data is deciding on
the generator point ‘G’ [8]. The point is chosen such
that the smallest value of n – order of the curve for
which n.G = 0 is still a very large prime number [8].
The elliptic curve group and the generator point G
are made public. Now, if the two users want to
communicate with each other, they first select their
private key, this is then used to generate the public
key. The relation between public key and private
key can be understood from the equation below.

Public Key = Private Key * Generator point ‘G’ (9)
The public key is a point on the elliptic curve; the
private key is a random number.

The algorithm for encryption is described in
below.

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 886 Issue 5, Volume 8, May 2009

Algorithm - Encryption

 User A – Alice first select a random
generator point (x, y) lying on the elliptic
curve.

 Message (M) to be encrypted is coded on
to an elliptic curve point Pm = (xm, ym).

 Alice selects a random private key ‘nA’
and then computes the public key as:

PA = nA (x,y) (10)

 To encrypt her message, Alice uses her
private key and Bobs (user B) public key.

 The encrypted message denoted by Cm is
created as follows:

Cm = { PA, (Pm + nA . PB)} (11)

PB is the public key of Bob – user B.

As it can be seen from the above algorithm, point
multiplication plays a major role during the
encryption process. The same hold during
decryption too.

The encrypted message is then communicated
to the receiver. The receiver - bob then decrypts the
message using the decryption mechanism. The
algorithm for decryption at the receivers end is as
follows:

Algorithm - Decryption

 When Bob receives the encrypted
message, he first multiplies the public key
of Alice, which happens to be the first
point in the encrypted message with his
private key nB.

 The result of this is then subtracted from
the second point the cipher text in
equation 11.

 This gives him the original message Pm.
The advantage here is, Bob’s private key is only
known to him and not anyone else and therefore

only bob can extract the original message by
subtracting the product of his private key and
Alice’s public key with the second point.

Elliptic curve cryptography can also used for
key generation and digital signatures as well. ECC
can also be used for the verification of digital
signatures. In all of the above ECC primitives, scalar
multiplication is the core operation. The
implementation of this operation is discussed in the
next section.

5. Design and Implementation
There are two phases of implementation for

the current work, software and hardware. Software
implementation of point multiplication was carried
out on Altera Cyclone II 2C35C6 FPGA. The results
achieved have been discussed and compared with
[1] in the next section. The second phase of
implementation is performed on hardware; this is
done to improve the results obtained in software.

5.1 Software Implementation
The software implementation was carried

out on Nios II processor.
The algorithm used for the software

implementation of point multiplication is binary
non-adjacent form (NAF) and the co-ordinate
system used in the current implementation is affine
co-ordinate system.

5.1.1 Binary Non – Adjacent Form Algorithm
Non adjacent form, as the name suggests is,

to ensure that no two non-zero numbers are adjacent
to each other. This algorithm is used to better
represent the scalar k. When this algorithm is used k
is of the form:
 m-1

k = Σ ki 2 i (12)
 i=0
ki can have a value of {-1, 0,1}. Every positive
integer has an exclusive non adjacent form. It’s also
represented as NAF (k).The algorithm utilizes both
addition and subtraction to compute the product k.P.

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 887 Issue 5, Volume 8, May 2009

 The algorithm used in the current work is
presented in figure1.

Inputs: P and k where, P is a point on the
elliptic curve having coordinates (x, y) and k is a
scalar.
Output Q = k.P; product of k and P.

Algorithm
while (k>0)
 begin

if k is odd then
v = 2 – (k mod 4)
k = k – v

if
v =1 then Q = Q + P
v = -1 then Q = Q – P
end

k = k/2
P = 2P

end
return Q

Fig.1. Binary Non- adjacent Form Algorithm

5.2 Hardware Implementation
The target platform for the current

implementation is the Altera DE2 board with
Cyclone II FPGA (EP2C35672C6). To the best of
the authors’ knowledge no earlier implementation
on this hardware exists.

Fig.2. Target Hardware – Altera DE2 board with the
Cyclone II FPGA

Fig.3. Hardware Architecture for the Accelerator
Implementation

5.2.1 Hardware Architecture
From figure 3 it’s clear that the ALU has

inputs from three registers, each of these registers
are 168 bit long. The ALU has a function select
input which determines whether an addition is to be
performed or subtraction. The shifter is used to left
shift the input P by one and right shift the value of k
once, as needed in the ECC algorithm. The status
register definition is specified in the table1.

 Table.1. Definition of Status Register

The ALU can consist of ripple adders as seen in
figure 4; the layout of ripple carry adder is simple,
which allows for fast design time.
The advantage with using ripple adders is that
the delay is proportional to the number of

Bit Definition
IRQ When set requests for interrupt
Qr When set selects the register Q
Pr When set selects the register P
Start Active high to start processing
Done When set indicates completion

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 888 Issue 5, Volume 8, May 2009

adders, in our implementation it’s twenty one.
The figure below represents a general ripple
adder.

Fig.4. 168 bit Ripple Adder

5.3. Integrating Hardware and Software
The interface between the Nios II processor

and the hardware accelerator is provided by means
of an Avalon bus [1]. The Avalon bus allows us to
connect several components in the FPGA thereby
reducing the complexity of the design [6]. There are
several standard interfaces available; the ones used
in this work are the Avalon interrupt interface, clock
interface, the master – slave memory mapped
interface and the conduit interface.

Hardware accelerators can operate in parallel
with a host processor; interrupt interfaces allow
slave components (hardware accelerator here) to
signal events to master (processor) [6].

The processor moves data into the internal
registers of the accelerator and sets the start bit in
the status register, from here on all the calculations
are done in the hardware which are going to be
faster than the software. While the accelerator
processes registered data, the host processor can
perform other tasks. Once the calculations are done,
the result is moved onto the output register. At that
time, the ‘done’ bit will be set, and an interrupt
(IRQ) will be signaled to the processor, to collect
the result from the output register. The processor
can then clear the interrupt by writing to the status
register using the accelerator slave interface [7].
The timing of the (IRQ) signal must be synchronous
to the rising edge of its associated clock. The figure

5 [7], presents how the hardware accelerator and
processor interact with each other.

Fig.5. Communication between the Accelerator and
Processor

The communication between the Nios II processor
and the FPGA is further explained in the next
subsection.

5.3.1 Software Design
The software design deals with the firmware

which is executed by the Nios II processor. The
firmware was developed using the C programming
language. The core function of the firmware was, to
write data to and to read data from the custom user
component system, i.e. from the multiplication
accelerator.

The software for the firmware of the Nios II
processor was developed in the Nios II Integrated
Development Environment (Nios II IDE). A
standard Nios II system for specified target
hardware consists of an application file which
contains the user code and the system file that
contains the Hardware Abstraction Layer (HAL)
drivers. These drivers enable the hardware to
interface with the software [9]. The Nios II IDE
thus provides the user with the flexibility to access
the hardware of a system without having to write
any device driver software.

Multiplication
Accelerator

Clock Interface

Avalon Master
Interface

Avalon Slave Interface

Interrupt Interface

Nios II
Processor

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 889 Issue 5, Volume 8, May 2009

The goal of this work is to fasten the point
multiplication operation; for this reason, the whole
operation was shifted to hardware. The processors
task is to write the data into the accelerators internal
register and read the data from the external register
once the whole operation is completed.

The read and write operations are carried
out using the IORD and IOWR macros respectively.
IORD macro reads data from a register or device
port and IOWR writes data to a device port. The
syntax of IORD is IORD (base address, offset). The
syntax of IOWR is IOWR (base address, offset,
data). This macro writes data to a register at the
specified offset.

5.3.2 Hardware System Design
The hardware system design consists of

building a custom component that carries out the
point multiplication operation. For the current work
the custom component is called scalar_rd_write. The
functionalities of the component have been
described in the previous section.

The System on Programmable Chip (SOPC)
builder, which is included in the Altera Quartus
design suite, is used to build and configure the
embedded microprocessor systems [9]. The SOPC
builder is a tool which can be used to develop
systems not necessarily having a Nios processor also
[15]. The SOPC builder consists of several standard
library controllers like memory controllers, network
controllers and many more. Apart from the standard
library components, the sopc builder provides the
user with the flexibility of developing custom
components and then connecting them to the
processor by means of the Avalon interconnect
fabric.

The SOPC builder allows the user to specify
the components required in the system through a
graphical user interface (GUI) and then generates
the Avalon interconnect logic automatically [15].

The figure 6 depicts the graphical interface
of the SOPC builder.

Fig.6. Snapshot of the SOPC builder GUI

6. Results & Conclusion
The results of the software implementation

have been presented in the table below and a
comparison of the achieved results with that of [1]
has been made.

Table.2. Results of Software Implementation
Field Size Timing (cycles)

This Work - 168 39k

This Work - 192 50k

Jian Yang et al.- 163 10k

From table 2 it’s clear that even though the
present implementation takes more time, it’s still
comparable to [1]. This research is still a work in
progress. Table 3 presents the initial results of our
hardware implementation. The table presents a
rough estimate of the number of registers and logic
elements our implementation utilizes.

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 890 Issue 5, Volume 8, May 2009

Table 4 presents a comparison between the
number of registers and logic elements utilized in
[1] and the current implementation.

Table.3. Number of Logic Elements and Registers
Utilized

This
Work

(192 bit)

Before
Accelerator

Implementation

After
Accelerator

Implementation
Logic

Elements 3262 3757

Registers 2470 2803

As seen form table 4, our implementation
requires only 3918 logic elements out of 33,216
available (only 12% of the FPGAs resources).

Table.4. Comparison of Hardware Implementation
Results

Accelerator Logic
Elements Registers

This Work –
Multiplication 3757 2803

Jian Yang et al.-
Multiplication 2939 690

6.1. Hardware Accelerator VS Software
The communication of data between the

Nios II processor and the hardware accelerator was
carried out in two ways. The results acquired from
both have been presented in this section.

The first way was to pass the data from Nios
II to the FPGA sequentially 32 bits at a time. The
FPGA would then carry out the scalar multiplication
operation on the received data and then send the
result back. To send 192 bits of data the whole
process is repeated 6 times.

The second method is to transmit 192 bits of
data at once, i.e. 192 bits of k, P (px, py) are
transmitted. The method of transmission is still the
same; the Nios processor still transmits 32 bits at a
time but in this case all of them are combined into
single registers of 192 bits. Once this is done, the

scalar multiplication operation is carried out and the
result calculated. The result is then sent back to the
processor. Table 5 below presents the results
obtained from both the implementation schemes.

Table.5. Fmax achieved for the Hardware
Implementation Schemes

Another factor that was calculated is the
speed-up achieved through hardware
implementation. The value of speed up is calculated
as the ratio of software to hardware performance,
based on Fmax set to 50MHz for both hardware and
software for comparison fairness.

If we denote Speed up by SP, then SP can
be calculated as:

SP = Hardware Performance/ Software Performance

Software performance (SW)

Considering the case with field size of 192,
the timing is 50000 cycles per product (table 2). The
frequency of operation is 50 MHz or 50000000
cycles per second.

Cycles per product / Cycles per second:
50000 / 50000000 = 0.001

SW = 1 / 0.001 = 1000 products per second

Therefore, the number of products per second on the
software platform would be 1000.

Hardware Performance (HW)

Hardware performance in ideal case would be
as follows:

1/ [1 cycle (192 bit) running at 50000000]
= 1/ 20 nsec
= 50,000,000 products per second.

Implementation
method

Fmax

Transmitting 32 bits
serially

148.06 MHz

Transmitting 192 bits
serially

132.49 Mhz

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 891 Issue 5, Volume 8, May 2009

The Speed up with this ideal case is 50,000.
Thus for fairness and presenting a real scenario, the
delay is taken into account and the Fmax for both
hardware and software is set to 50MHz for fairness.

We need 8 cycles for transmitting px, 8 for py,
8 for k, 16 for receiving qx 16 for qy, plus 2 cycle
for calculating products qx, and qy.

The speed up now, based on total of
[8+8+8+16+16+2] /2 = 29 cycles is:
SP =50,000/29 = 1724. The speed up achieved after
taken delay in to account is almost 1725 times
faster.

Table 6 presents a comparison between the
results obtained by [1] with that of the current work.

Table.6. Comparison of Hardware Results

The results included in the table above are for
the second hardware – software communication
scheme where 192 bits of data are sent. Jian Yang et
al. [1] in their paper have mentioned that the above
results were available in 6 iteration cycles, for the
current work the number of cycles as shown above
would be 29. The results achieved imply that the
current implementation is able to accelerate the
overall performance of scalar multiplication, thus
the goal of improving the performance through
hardware acceleration is achieved.

Figure 7 presents simulation results of our
hardware accelerated multiplication. First half of the
figure presents output generated with random 192
bit inputs. The second half is for verification where
inputs were provided in the final clock cycle of the
test bench, the output is acquired in the next cycle.
The inputs provided were of powers of two for ease
of verification. The simulation was carried out using
ModelSim.

The authors of this paper use [1] as a
standard for comparison even though the field of
operation used in [1] is different. This has been done
because literature survey revealed that the authors of
[1] used the same target hardware as the current
implementation does.

.

Fig.7. Implementation Results on ModelSim

ACKNOWLDEGEMENT
The authors of the paper would like to

sincerely thank Mohammed Abdallah, for his help
during the course of this work.

Reference Field
Size

Logic
Elements Registers Fmax

(MHz)
Speed
- Up

Jian Yang
et al. 163 2939 690 94 1666

This
Work 192 3757 2803 132.49 1724

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 892 Issue 5, Volume 8, May 2009

References:

[1] Jian - Yang Zhou and Xiao - Gang Jiang,
“Accelerating Elliptic Curve Cryptography
On System-on- Programmable- Chip,” IEEE
International Workshop on Anti-Counterfeiting,
Security, 2007, pp. 292-295.

[2] S. B. Ors, L. Batina, B. Preneel and J.
Vandewalle, “Hardware Implementation of an
Elliptic Curve Processor over GF (p),” IEEE
International Conference on Application-
Specific Systems, Architectures, and Processors,
2003, pp. 433-443.

[3] A. Satoh and K. Takano, “A Scalable Dual-
Field Elliptic Curve Cryptographic Processor,”
IEEE Transactions on Computers, Vol. 52
NO.4, 2003, pp. 449-460.

[4] G. Orlando and C. Paar, “A scalable GF (p)
Elliptic Curve Processor Architecture for
Programmable Hardware,” Proceedings of
Workshop on Cryptographic Hardware and
Embedded Systems, 2001, pp. 356–371.

[5] J. Lopez and R. Dahab, An Overview of Elliptic
Curve Cryptography, Technical report, Institute
of Computing, State University of Campinas,
2000.

[6] Altera SOPC Builder Component Development
Walkthrough, available on:
http://www.altera.com/literature/hb/qts/qts_qii54007.pdf

[7] Altera Avalon Interface Specification, available
on:
http://www.altera.com/literature/manual/mnl_avalon_spec.
pdf

[8] K.Rabah, “Implementation of Elliptic Curve
Diffie – Hellman and EC Encryption Schemes,”
Information Technology Journal, 2005, pp. 132
– 139.

[9] Altera Nios II Software Developer’s Handbook,
available on:
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

[10] J. Ho and R. Yang, “A Comparison of Secure
Mechanisms for Mobile Commerce,”

Proceedings of the 7th WSEAS International
Conference on Mathematics & Computers in
Business & Economics, 2006, pp. 24 -28.

[11] P.H. Huang, “The Investigation of the Elliptic
Curve Cryptology Applies to the New
Generation Protocol,” WSEAS Transactions on
Computers, Vol. 7 No. 6, 2008, pp. 694-703.

[12] A. Georgiades et al., “Trinity Protocol for
Authentication of Binding Updates in Mobile
IPv6,” Proceedings of the 9th WSEAS
International Conference on Communications,
2005.

[13] S. Kumar et al., “Embedded End-to-End
Wireless Security with ECDH Key Exchange,”
Proceedings of the 46th IEEE Midwest
Symposium on Circuits and Systems, 2003.

[14] Altera Introduction to SOPC builder, available
on:
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf

WSEAS TRANSACTIONS on COMPUTERS Kapil A. Gwalani, Omar Elkeelany

ISSN: 1109-2750 893 Issue 5, Volume 8, May 2009

	29-202
	29-206
	29-207
	29-214
	// wxWidgets main header file
	#include <wx/wx.h>
	// wxXmlSerializer main header file
	#include "wx/wxxmlserializer/XmlSerializer.h"
	//
	// SerializableObject class
	//
	class SerializableObject : public xsSerializable
	{
	 // RTTI must be provided by the class
	 DECLARE_DYNAMIC_CLASS(SerializableObject);
	 // constructor
	 SerializableObject();
	 // destructor
	 virtual ~SerializableObject() {;}
	 // protected data member
	 wxString m_sTextData;
	private:
	 // private data member
	 static int m_nCounter;
	};
	// constructor
	SerializableObject::SerializableObject()
	{
	 // initialize member data
	 m_sTextData = wxString::Format(wxT("'SerializableObject' class instance No. %d"), m_nCounter++);
	 // mark the data members which should
	 // be serialized
	 XS_SERIALIZE(m_sTextData, wxT("text"));
	}
	// static data members
	int SerializableObject::m_nCounter = 0;
	// implementation of RTTI for serializable
	// class
	IMPLEMENT_DYNAMIC_CLASS(SerializableObject, xsSerializable);
	//
	// The application's entry point
	int main(int argc, char ** argv)
	{
	//
	// The application's entry point
	int main(int argc, char ** argv)
	{	
	 // create instance of XML serializer
	 wxXmlSerializer xml_IO;
		
	 // first, create set of serializable
	 // class objects and add them to the
	 // serializer
	 for(int i = 0; i < 5; i++)
	 {
	 // Add all new class objects to the
	 // serializer's root so the instances
	 // will be arranged into a list. Note
	 // that each serializable object
	 // can be assigned as a child to another
	 // one so the objects could be arranged
	 // into a tree structure as well.
	 xml_IO << new SerializableObject();
	 }
		
	 // store the serializer's content to an
	 // XML file:
	 xml_IO.SerializeToXml(wxT("data.xml"));
		
	 // clear the serializer's content:
	 xml_IO.RemoveAll();
		
	 // now, re-create list of stored class
	 // instances from XML file (data.xml):
	 xml_IO.DeserializeFromXml(wxT("data.xml"));
		
	 // finally, print out content stored in
	 // loaded class instances:
	 SerializableList::Node *node = xml_IO.GetRootItem()->GetFirstChildNode();
	 while(node)
	 {
	 SerializableObject pObject = (SerializableObject*)node->GetData();
			
	 wxPrintf(pObject->m_sTextData << wxT("\n"));
			
	 node = node->GetNext();
	 }
		
	 return 0;
	}
	<?xml version="1.0" encoding="utf-8"?>
	<root owner="" version="">
	 <object type="SerializableObject">
	 <property name="id" type="long">1</property>
	 <property name="text" type="string">'SerializableObject' class instance No. 0</property>
	 </object>
	 <object type="SerializableObject">
	 <property name="id" type="long">2</property>
	 <property name="text" type="string">'SerializableObject' class instance No. 1</property>
	 </object>
	 <object type="SerializableObject">
	 <property name="id" type="long">3</property>
	 <property name="text" type="string">'SerializableObject' class instance No. 2</property>
	 </object>
	 <object type="SerializableObject">
	 <property name="id" type="long">4</property>
	 <property name="text" type="string">'SerializableObject' class instance No. 3</property>
	 </object>
	 <object type="SerializableObject">
	 <property name="id" type="long">5</property>
	 <property name="text" type="string">'SerializableObject' class instance No. 4</property>
	 </object>
	</root>
	xml_IO.AddItem((xsSerializable*)NULL, new SerializableObject());
	//
	// Auxilary functions
	xsSerializable* MakeTree(xsSerializable *parent, int levels)
	{
	 if(levels > 0)
	 {
	 levels--;
	 // add new instances of serializable
	 // object to given parent and pass these
	 // new instances as parents for
	 // recursive call of this function
	 // (operator << returns pointer to
	 // newly added object):
	 MakeTree(*parent << new SerializableObject(), levels);
	 MakeTree(*parent << new SerializableObject(), levels);
			
	 // also member function of
	 // xsSerializable class can be used for
	 // this task as follows:
	 //MakeTree(parent->AddChild(new SerializableObject()), levels);
	 }
		
	 return parent;
	}
	void PrintTree(xsSerializable *parent, int level)
	{
	 level++;
		
	 // iterate through children list of given
	 // parent:
	 SerializableList::Node *node = parent->GetFirstChildNode();
	 while(node)
	 {
	 SerializableObject *pObject = (SerializableObject*) node->GetData();
		
	 // print info about processed object:
	 for(int i = 1; i < level; i++)
	 {
	 wxPrintf(wxT(" "));
	 }
	 wxPrintf(pObject->m_sTextData << wxT("\n"));
			
	 // process the object's children:
	 if(pObject->HasChildren())
	 {
	 PrintTree(pObject, level);
	 }	
	 node = node->GetNext();
	 }
	}
	//
	// The application's entry point
	int main(int argc, char ** argv)
	{	
	 // create instance of XML serializer
	 wxXmlSerializer xml_IO;
		
	 // first, create set of serializable class
	 // objects and add them to the serializer
	 // (add a root item of a tree of
	 // serializable class objects to the
	 // serializer
	 xml_IO << MakeTree(new
	 SerializableObject(), 3);
		
	 // also member function of wxXmlSerializer
	 // class can be used for this task as
	 // follows:
	 // (first NULL argument means that the
	 // object is added directly to the
	 // serializer's root):
	 // xml_IO.AddItem((xsSerializable*)NULL, MakeTree(new SerializableObject(), 3));
		
	 // store the serializer's content to an
	 // XML file:
	 xml_IO.SerializeToXml(wxT("data.xml"));
		
	 // clear the serializer's content:
	 xml_IO.RemoveAll();
		
	 // now, re-create stored class instances
	 // from the XML file (data.xml)
	 xml_IO.DeserializeFromXml(wxT("data.xml"));
	 // finally, print out info about loaded
	 // clas instances:
	 PrintTree(Serializer.GetRootItem(), 0);
		
	 return 0;
	}
	//
	// Declaration of new I/O handler
	//
	//
	// Settings class declaration
	//
	class Settings : public xsSerializable
	{
	public:
	 // RTTI and xsSerializable::Clone()
	 // function must be provided
	 XS_DECLARE_CLONABLE_CLASS(Settings);
	 // constructor
	 Settings();
	 // copy onstructor needed by default
	 // implementation of
	 // xsSerializable::Clone() function
	 Settings(const Settings &obj);
	 // destructor
	 virtual ~Settings();
	 // public data members
	 wxColourData m_colourData;
	};
	//
	// Settings class implementation
	//
	XS_IMPLEMENT_CLONABLE_CLASS(Settings, xsSerializable);
	Settings::Settings()
	{
	 // set default values of data member
	 m_colourData.SetColour(*wxBLUE);
	 for(int i = 0; i < 16; i++)
	 {
	 m_colourData.SetCustomColour(i, wxColour(i*16, i*16, i*16));
	 }
	 // serialize colour data
	 XS_SERIALIZE_COLOURDATA(m_colourData, wxT("colordlg_content"));
	 // this version of mark macro causes the
	 // data will be serialized only if its
	 // current value differs from the default
	 // one (the last macro parameter):
	 //XS_SERIALIZE_COLOURDATA_EX(m_colourData, wxT("colordlg_content"), m_colourData);
	}
	Settings::Settings(const Settings &obj)
	{
	 // set default values of adata member
	 m_colourData = obj.m_colourData;
	 // serialize colour data everytime
	 XS_SERIALIZE_COLOURDATA(m_colourData, wxT("colordlg_content"));
	 // this version of mark macro causes the
	 // data will be serialized only if its
	 // current value differs from the default
	 // one (the last macro parameter):
	 //XS_SERIALIZE_COLOURDATA_EX(m_colourData, wxT("colordlg_content"), m_colourData);
	}
	Settings::~Settings()
	{
	}
	//
	// CustomDataSampleApp class
	//
	bool CustomDataSampleApp::OnInit()
	{
	 // load application settings if the
	 // configuration file exists, otherwise
	 // create new settings class object with
	 // default values
	 // initialize serializer (m_XmlIO class
	 // member)
		
	 m_XmlIO.SetSerializerOwner(wxT("CustomDataSampleApp"));
		
	 m_XmlIO.SetSerializerRootName(wxT("settings"));
		
	 m_XmlIO.SetSerializerVersion(wxT("1.0.0"));
	 // register new property I/O handler
	 // 'xsColourDataPropIO' for data type with
	 // name 'colourdata'
		
	 XS_REGISTER_IO_HANDLER(wxT("colourdata"), xsColourDataPropIO);
	 // create serialized settings class object
	 // manualy with default values
	 m_pSettings = new Settings();
	 // insert settings class object into
	 // serializer as its root node
	 m_XmlIO.SetRootItem(m_pSettings);
	 if(wxFileExists(wxT("settings.xml")))
	 {		
	 // load settings from configuration file
	 m_XmlIO.DeserializeFromXml(wxT("settings.xml"));
	 }
	 // do some other initialization step ...
	 return true;
	}
	int CustomDataSampleApp::OnExit()
	{
	 // serialize settings to XML file
	 m_XmlIO.SerializeToXml(wxT("settings.xml"), xsWITH_ROOT);
	 return 0;
	}

	29-230
	Appendix B: RDF properties

	29-234
	29-241
	29-242
	29-246
	[8]. Virgil Chichernea, Romanian, “THE USE OF THE ERP-CRM-CIM SYSTEMS WITHIN THE MASTER’S DEGREE PROGRAMMES” In Proceedings: A

	29-248
	29-253
	29-257
	Key-Words: - Slant feature, Online signature, Signature recognition, Signature analysis, Dynamic signature
	1 Introduction
	2 Signature Recognition

	3 Variables in Slant Algorithm
	4 Methodology
	S: Sample; L: Leftward; R:Rightward; U:Upright
	5.1 Tablet Sensitivity
	6 Conclusion
	References:-

	29-261
	29-277

