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Abstract: Based on the concept of alternating group and domain decomposition, we present a class of alternating
group explicit-implicit method and an alternating group Crank-Nicolson method for solving convection-diffusion
equation. Both of the two methods are effective in convection dominant cases. The concept of the construction of
the methods is also be applied to 2D convection-diffusion equations. Numerical results show the present methods

are superior to the known methods in [6,11,16] .
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1 Preface

Convection-diffusion equation is widely used in de-
scribing many physical phenomena such as fluid flow-
ing, river and atmosphere pollution and so on. Re-
searches on numerical finite difference methods for
it are popular [1-4]. Many finite difference meth-
ods have been presented so far, which are classified
into three categories: The explicit, implicit and semi-
implicit methods. Most of explicit methods are short
in stability and accuracy, while implicit methods are
unadaptable for parallel computing, and need to solve
large system of equations. D. J. Evans presented an al-
ternating group explicit method (AGE) by the specif-
ical combination of several asymmetric schemes in
[5,6]. Because of the parallelism and absolute stabil-
ity, the AGE method is widely cared and developed
by many authors such as Baolin Zhang, Zhiyue Zhang
etc in [7-13], while Rohallah Tavakoli derived a class
of domain-split method based on the AGE method for
1D and 2D diffusion equation in [14-15]. Most of the
developed methods have the same advantage of good
stability and parallelism, but have difficulty of com-
putation in the case of small €. Zhenfu Tian presented
a new group explicit method using an exponential-
type transformation in [16] , which has advantage of
solving the convection-diffusion equation with small
€, but the accurate needs to be increased. Further-
more we notice that AGE method for 2D convection-
diffusion equations have been scarcely presented.
Results about existence and uniqueness of theo-
retic solution for parabolic equations can be found in
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[17-20].

The construction of this paper is as follows: In
section 2 of this paper, an exponential-type transfor-
mation [16] is used to get the integral conservative
form of convection-diffusion equation, and a class of
new unconditionally alternating group explicit con-
servative finite difference method(AGE-I) is derived
using the saul’yev asymmetric schemes and the clas-
sical explicit-implicit schemes. An alternating group
Crank-Nicolson method(AGC-N) is derived in section
3. In section 4, we applied the concept of the construc-
tion of the alternating group method to 2D convection-
diffusion equations. Stability analysis is given in sec-
tion 5. In section 6, numerical experiments on stability
and accuracy are presented.

2 The Alternating Group Explicit-
Implicit(AGE-I) Method

In this section, We will consider the following
convection-diffusion equation:

ou ou _ _d%u
U(JI,O) :f(CC),

U(O,t) = gl(t)a u(lvt) = 92(t)'
(1)

The domain €2 : (0,1) x (0,7") will be divided into
Linz
m

Grid points are

(m x N) meshes with spatial step size h =

direction and the time step size T=%.

Issue 5, Volume 8, May 2009



WSEAS TRANSACTIONS on COMPUTERS

denoted by (z;,tn), x; = th(i =0, 1,---,m), t, =
nt(n =0, 1,---, =). The numerical solution of (1)
is denoted by u', while the exact solution u(z;, ) .
According to [12], the equation (1) is equivalent
=y _ 0 (e
ot ox
Tiyls then we have
Titl _ka _kz
(G e e P e (e (e G,
We can establish the following asymmetry finite
difference schemes :

to e ). Integral from x;
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k& en Tl — L gy g
Bl uy ) e (L I )
5
" (5)
Let p 257q:62€7’l”_h( ) then we
have :
rp rp
(=t = rquil (Sl + S uk
(6)
rq rq rq
D) ?+11+[1+7"(2+p)] n+1—7“p“?++11 = ?u?_l—i—(l—?)u
(7)
r r
—rqui (Bt = Rt = T +(1- P
2 2 2 2
(8)
ISSN: 1109-2750 855

Qinghua Feng, Bin Zheng

rq
5)

”+1,E n+1 o

rq q
(1+ i 5 Wil = U ui g +[1- 7’(2+p)]U?+TPU?+1

9)

We will also use the following classical explicit-
implicit schemes:
up ™t ¢ +rquiy  (10)

=rpujiy +[1—r(p+q)u

i (11)

Let m — 1 = (251 + 1)sg, here s; and sy are
integers. The purpose of the paper is to get the solu-
tion of the (n + 1)-th and the (n + 2)-th time level
with the solution of the n-th time level known. Using
the schemes mentioned above, we will have four basic
point groups:

”GL”group: 2so inner points are involved, and

(6)’ (11)’ B (11)7 (7)’ (8)7 (11)7 R (11)’ (9) are
used respectively.

—rpul L= r(p+@)ul T —rquit! =

"HR”group: sz inner points are involved, and
(6),(11),--- ,(11),(7) are used respectively.
“HL”group: s inner points are involved, and

(8)a (10)a T

”GR”group:

(G)a (1O)a e

,(10),(7), (8), (10), - --

, (10), (9) are used respectively.

2s9 inner points are involved, and
, (10), (9) are

used respectively.

Based on the basic point groups above, the alter-
nating group method will be presented as follows:

First at the (n + 1)-th time level, we will have
(s1 + 1) point groups. “GL” are used in the first
s1 point groups respectively, while "HR” are used
in the last point group. Second at the (n + 2)-th
time level, we will still have (s; + 1) point groups.
“"HL” are used in the First point group, while "GR”
are used in the right s; point groups. Let U" =
(uft, ud, ---, u_;)T, we can denote the alternating

group explicit-implicit method (AGE-I) as follows:

(12)

(I +rG)U! = (I —rGo)U™ + FP
(I +rG)U"2 = (I —rG)U™ ! + F}

here F*" and F3' are known vectors relevant to the
boundary.

Gy

G11

Gz (m—1)x (m—1)
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Ga1
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0 0 0 0 —gq
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0 0 0 0 0
S92 XS89
3te 3
-q p+gq —p
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—q p+q —p
9 g
2 2 S92 X 89
P _p
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—q p+q —Dp
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q q
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Ga22 = G112, G223 = G113

5ta 5
0 0 0

Goos =

ke O

S92 X S92

3 The Alternating Group Crank-
Nicolson(AGC-N) Method

First we will present the Crank-Nicolson scheme for
solving (1):

r r
[ r(G o+ ™ = Sl = Sl =

2 277 2 9 il
rq P q rp
?U?fl +[1— 7"(5 + 5)]“? + 3“&1 (13)

If we replace (10) and (11) with (13) in section 2, then
we can derive the alternating group Crank-Nicolson
method (AGC-N) as follows:

{ 6[+w(h)U”+1:(I—wfhﬂﬂl+}? (14)

I +7rGo)U™2 = (I —rG)U™ + F,

here I’} and F', are also known vectors relevant
to the boundary.

Gu
B G
G = B
Gu
Gz (m—1)x(m—1)
[ B
- Ga2
GQZ - ’
Ga2
Gz (m—1)x(m—1)
— G G
Gq= [ & &
1 (Gns Gi1a
P _p
¢ p g _p
_ T2 272 T2
Glll g .o N
4841 -3
_5 p+ 5 S92 X 89
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p _p
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Gy =
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2 2+q2 2,
_5 p+§ 52 X S82
p P
2—i—qq p 2q _p
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94 pPL9g _p
3 513 2
_q q
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G221: PN e
9 p,4g _p
2 2+q2 2,
_5 p+§ S92 X829
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p _p
2—i—qq p . 2q _p
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5 5t3 2
_q q
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4 The alternating group method for
2D convection-diffusion equation

We consider the initial boundary problem of the 2D
convection-diffusion equation as below:

?#—i—k‘gg kzgz 6%4—6%,
0<x<2,0<y<2,0Lt<LT,

u(,y,0) = f(2,). (15)
U(O,y, ) - gl( ) (2 Y, ) gZ(t)'
u(x,O,t) - h‘l( )7 (2,% ) = h2(t)'

The domain 2 : (0,2) x (0,2) x (0,7) will be di-
vided into (m x m x p) meshes with spatial step size

hz% in X and y direction and the time step size T=%
. Grid points are denoted by (z;,y;, t,) or by (i,j,n),
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x; = th,y; = jh(i,j =0, 1,---,m), t, = nr(n =
0, 1,- ). The numerical solutlon of (15) is de-
noted by ug;, while the exact solution u(z;,yj;,tn) -

r, p, q are defined the same as above.

xz k
From (15) we can see e_k?_?y%? =

kx kz _ky

sé%( i *gg) + z—:a%(e‘*‘*a“).

der to get the solution of (n+1)-th time level with

the solution of n-th time level known, we integral

(15) in the domain” z,;_1 to Tip1 Y, 10y b
2 2 2 2

\H'ﬂ

In or-

then we can establish the following asymmetry finite
difference schemes: (16)-(31).

+1 ™ nt1 ™ nt+1 _
[l—i-rp] n 9 ?—}—1,3 _EU?J—H Tquz 1,5

rp rp
o U =m0+ 20)ufly +rqui g+ S
(16)
q  3p rq rp
[1+T( +— 5 )]un;rl 5 u’?+11j_ rpu ?jll,j B “?;;11
rq 3qg p Tp
=3 ui g A+1-r(% 5 +2)]u”+rqu” 1+—= 5 ug g
(17)
Tp D
4+l —rqut; — ulh; - 5%111
= Pyn +[1—=r(p+q)ui;+rquy +2
=5 Uit1,5 r\pTq)U; ; qu; ;1 2 7]+1
(18)
q P rq Tp
147 (2+2)]un+1_? ?jf,j 5 u?jjl = Tpul
rq 3q 3p p
gy I (Gl raud; g
(19)
q 3p 1 D 1 Trq 1 1
[+ ) =iy = 5 i vl
., 3¢ p rq
(20)
rq rq
[Lr(g+2p)uiy = utsy = rpuitly = Srui
rq rq
—rpupfly = Suily - rui o (21)
3¢ 3D\ nt1 TP n1 ntl T4 niy1
[1+ ( 92 +—- 92 )]’U/J _?ul—i-l]_rquz 1,57 o 9 Uu,; 1,7—1
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1 rp q P rq
—rpup i = oouy =Gl ol
2 2 2 2
(22)
" n+1 T4 pia n+1

1_
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rp rp
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(24)
[1+ (3(]_'_3]7)] n+l__ "] n+1 —p n+1 TP n+1
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(25)
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1 rp rp
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3qg p 1.rq 1 TP 1 1
[r( )l = St =l i —rqu
e, q 3p D
= U U i1t r(GtS ﬂu?ﬁj“ﬁjﬂ
(27)
q P 1 Tp 1 rq 1
[1+T(2+2>]un+ Y ?jl,j_? i = rquiy
rp 3q 3p rq
T uq j+1-r(5 5 to g i+— 5 Ui +Tpu iy
(28)
rq rq
1+7r(p+q)lu nH*?U?Jrllg*Tp ?ﬂirllj 9 “?;ill
’r’q rq
= Sy =+l + S uf o +rpugg
(29)
3qg p 1™ 1 1 rq 1
[ (S+ Sl = Sty —rauityy =5 i
_rp q 3p rq
- 9 ?+1]+[1_7“(§+?)}U7]+5U?j 1+rpulj+1
(30)
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1_rq 1 rq 1
1+ rqlu; ’” 5 ?JFLJ — ?u”j | = TPUN
q n q n
+ 2“2 1j+[1_r(2p+q)]u +5u2‘j 1+rp,u’lj+1

(31)

The sixteen schemes (16)-(31) compose the ’16-
point” group, which will be applied to get the solution
on 16 grids points (7, j,n+ 1), (i+1,j,n+1), (i +
Lj+1n+1),(i+2,j+1,n+1), (i+3,j+1,n+
1), (4, j+2,n+1), (i+1,j+2,n+1), (i+2,j+
Lj+3,n+1), (i+2,j+3,n+1), (i+3,j+3,n+1).

Let
) T
u,] (u ]+17 j+27 ]+3) >
]Jrk 1,]+k’ 1+1,]+k’ z+2,]+k’ i+3,5+k/ >
0, 1
n n n n \T
F (F JH+1 L5420 j+3) ’

Fn = (rquz—l,j + QU1 TQUL o1 T 1
TQU?+3,3‘—1 + TPU?+4,J')T’

Ty = (rquily 541, 0,0,mpuly 54q)
Fly = (rquiy j19,0,0,7pul iy ;10)",

Jrs = (rquily g + DU 4 TPU s
TPULy g gy TPUS 3 g+ TPUR 4 3) . then the
schemes of the basic ”16-point” group can be pre-
sented as below:

(I+rAyay "t =T —rAuy; +Fi,.  (32)
Ann A Az Ay
A = A1 Azo Asz Aoy
A1 Aszy Aszz Az
Ay Ay Az Ay
p -5 0 0
3
po| EEE 0
’ PR +qq p 2
0 0 —3 97T3
2 0 0 0
0o -2 o0 0
_ 2
Adr=1g -2 0
0 0 0 -B
3 0 0 0
0o -3 0 0
_ 2
An=1 o -4 0
0 0 0 -4
3
R TN
-3 2p+q —p 0
Agy = .
0 —q %p + 32q -5
0 0 -2 pHq
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A1z =A1y = A =0

p 0 0 0
0O —p 0 0
Ads=1 ¢ —p 0
0 0 0 -p
Az1 = A=A =0
¢ 0 0 0
o —¢ 0 o0
=1 ¢ —q 0
0 0 0 —gq
p+q \ —%3 0 0
oo | o1 BE 0
0 -q¢ p+2¢ —§
0 0 % g+
2 0 0 0
0o -2 0 0
Ass = 2
00 -t o
0 0 0 -
-4 0 0 0
0 -3 O 0
Az = 2
00 4 0
0 0 0 -4
tig f 0 0
-3 p+tq¢ -—p O
Ay = . 3
0 —q £+3 0
0 0 -1 q
2
A A Az Ay
o Ag Az Asg Agy
Az Az Asz Asg
Ay A Asz Au
pt2 50 0
P T I
0 -q¢ ptq %
o0 gy
2 0 0 0
_ 0 -2 0 0
Ado=1 o -2 0
0 0 0 -B
=4 0 0 0
— 0 -5 0 0
Aoy = 2
0 0 -% 0
0 0 0 -%
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p q
2tz
Z22 = 2 1

0
0 0

o3
o O

K
ok
|

0
-p
5+
-5 ptaq

Agz = Ags, A13 = A1y = Ay =0

Asy = Aga, As1 = Ay = A =0
p+q -5 0 0
o SR Y R, 0
Agy = 02 2—q2 . !
00§ iy
2 0 0 0
_ 0 -2 0 0
Asy = 2
0 0 -Z 0
0 0 0 -
=4 0 0 0
— 0o -2 0 0
Ayz = 2
0 0 —% 0
0 0 0 —%
3p 3
Pe¥ o5 0 0
-3 ptq —p 0
Ay = 2 3
0 -q¢ Z+1 0
0 0 —% q+2p

our purpose is to get the solution of the
(n+ 1) — th and the (n + 2) — th time level with
the solution of the n — th time level known. Let
(m — 1) = 4s ,s is an integer. then the alternating
group method is described as following:

First at the (n + 1) — th time level, we will have

52 point groups. 16 point groups are applied to solve
—n+1,

Wij >
Second at the (n+2)—
(s + 1)? point groups:
(26), (27), (30), (31) are applied to solve

th time level, we will have

(ulJ{2, 31’2, ?'52, uQJQF ), which marks "H1” group.
24), (25), (28) (29) are applied to solve
(unm+22 U Zj 1,1 U T'nll 2,2 Um+21 2),  which  marks

”H2” group.
(18), (19), (22) (23) are applied to solve

(UlJrrr? Q,uST,f 27u1m 1,U§J{n2 1), which marks
7’H3’7 group

(16), (17), (20) (21) are applied to solve

n+2 n+2 n+

(um 2,m— 27um 1m 27um 2,m— 1> Upp— 1,m— 1)’

which marks "H4” group.
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(18),(19),(22),(23),(26),(27),(30),(31) are applied

to solve

n+2 _  n+2  n+2 n+2 n+2 n+2 n+2 n+2
(“1 J 7U23 y UYL 5+1> U 5415 Ug jy25 U J+2 Uy j+35 U ]+3)
j=3,7,---,m — 6, which marks "Lx”group.

(16),(17),(20),(21),(24),(25),(28),(29) are applied

to solve
n+2 n+2 n+2 n+2 n+2 n+2
(um—2,j7 Up—1,50 Um—2,54+10 Um—1,4+1 Um—2,j4+2> Um—1 j+2

7U/Zj—_22,j+37 u'rnrlzt21,j+3)7j = 3,7,---,m — 6, which
marks “Rx”group.
(24),(25),(26),(27),(28),(29),(30),(31) are applied

to solve

n+2 , n+2 n+2 n+2 n+2 . n+2 n+2 n+2
(“z 1 7Uz+1 1 U2 1> Uiy315 W0 > Ujyq 25 Wiy 05 Uigs 9);
i=3,7,---,m — 6, which marks "Ly’ group.

(16),(17),(18),(19),(20),(21),(22),(23) are applied
to solve

n+2 n+2 n+2 n+2 n+2 n+2

(uzm 27uz+1m 27uz+2m 27uz+3m 27uzm 17uz+1m 1
n+2 n+2 .
U5 1> Wiy 3 m— 1), 3,7, — 6, which
marks ”Ry”’group.

9’ : -—n+2 . - _

16 point” group are applied to w; ;% 4,j =
3,7,---,m—6.

Thus the alternating group method is established
by alternating use of the schemes in the two time
levels, and computation on each group can be done
independently, which shows the method is parallel.
Based on the above, the alternating group explicit
method can be presented as following:

—n .
LetU = (ﬂ?7 ﬂlgv U37 Ty um74)T7

7 — i T , _

u] - (ulj7 u5_77 u9]7 T um747j) ) = 175797

— 4. then we have

(I + T’él)Un—H = (I — TGQ)UTZ + ﬁln (33)
(I+rG)T" = (T —rG)T" + Fyp

here ﬁln and ﬁzn are vectors known related to bound-

ary. Leta = (m — 1)2, b = 4(m — 1), then
Gq G
G11 axXa
Ay
G = Ay
A bxb
Gy E
R F Gog FE
Gy =
F Gy FE
FGn bxb
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A, B
R C A, B
G21— 7
cC 4 B
CAlbxb
By
_ By
B = B,
By
0 000
0 000
Bi=1 9 000
—p 0 0 0
C
_ G
C = ¢,
Ch
000 —q
000 O
=100 0 o
000 O
O O
—p 0 0 0
0o —p 0 0
El_OO—pO
0 0 0 —p
(o0 R
—¢ 0 0 0
|l 0o —¢ 0 o
BE=1 09 0o —¢ o
0 0 0 —gq

5 Stability Analysis

Theorem 1 The AGE-I method (12) is uncondition-
ally stable.

Proof: Let n be an even number, then we have

%
_ G%UO + Z Fn—Zka—l

Un _ GUn—2 + Fn—?
k=1
here
G = (I+7rGo) NI —rG)(I+rG) (I —rGy).
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F=F is definite vector, F" % = (I + rGq)~ (I —
rG1) (I + rGy) YFPF 4 (I + rGo) ' F . (k =
2,4,---,n). Obviously G; and G are both diago-
nally dominant matrices, which shows GG1 and G and
are both nonnegative definite real matrices. From [21]
we have:

I(T+rG) ™2 < 1L, [T =G +7G) ™ 2 < 1

I(+7Ga) "2 S 1, (T=rGa) (I +7Go) 2 < 1.

Let G = (I 4+ rGo)G(I + rGo)™! = (I —
rG1)(I + rG1) (I — rGa)(I + rG)™!, then we
have p(G) = p(G) < ||G|| » < 1. Therefore
|G¥|| < M, here M is an positive number, which
shows the method presented by (12) is uncondition-
ally stable.

Similarly we have:

Theorem 2 The AGC-N method (14) is uncondi-
tionally stable.

Theorem 3 The alternating group explicit
method denoted by (33) is unconditionally stable.

6 Numerical Experiments

Example 1: We consider the following problem:

%M%:gﬁ, 0<z<1l, 0<t<T
u(z,0) =0,
u(0,t) = 0,u(1,t) = 1.

(34)

The exact solution of the problem above is de-
noted in [6] as below:

[eS) _1\n o
n=1 nm 2e

Let AE=[u! — u(zt,)| and PE.=100 X
W denote maximum absolute error and
relevant error respectively, while let s = 3, m = 16.
We compare the numerical results of (12) and (14)

with the results in [6,11,16] in Table 1,2:
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Table 1: Numerical results of comparison k£ = 1

7=0.01,f=120T,e =1
A.E.(AGE-D) 8.785 x10~7
A.E.(AGC-N) 6.335 x1077
AE.[16] 1.298 x10~6
AE.[11] 1.161 x10~6
A.E.(Evans) 3.799 x1075
PE.(AGE-I) 3.681 x10~*
P.E.(AGC-N) 2717 x10~*
PE.[16] 5.352 x1073
PE.[11] 4.183 x1073
P.E.(Evans) 1.739 x1072
Table 2: Numerical results of comparison k£ = 1
7 =0.0001,¢ = 1007, € = 0.01
A.E.(AGE-]) 6.850 x10%7
A.E.(AGC-N) 3.951 x10%7
AE.[16] 1.151 x1038
AE[11] 9.564 x1037
A .E.(Evans) 7.741 x1038
P.E.(AGE-I) 8.155x10~!
PE.(AGC-N) 5.836x10!
PE.[16] 5.243
PE.[11] 4.614
P.E.(Evans) 7.488

Example 2: Consider the equation

@ + k@
ot ox

&%
N 883627

with the boundary condition(L=2):
u(0,t) = 1.0,u(2,t) = 0.0,¢ > 0.

and the initial condition:

u(zx,0)

1.0,
={ 0.5,
0.0,

—2<x <0,
z =0,
0<x <2

L<z<L,it>0

(35)

(36)

The exact solution of the problem above is de-

noted as below:

exp(—e(2m — 1)?72t/L?) '

2m —1

We compare the present method with the methods

in [6,11,16].
Table 3: Numerical results of comparison at m =
154, 7 =104 k=1,e=1
t = 10007 t = 20007 t = 30007
PE.(AGE-) | 6.815 x10~* | 9.008x10~* | 8.507x10~3
PE.(AGC-N) | 3.144 x10~% | 4.381x10* | 4.187x1073
PE.[6](Evans) | 4.262 x1072 | 7.323 x1072 | 8.952 x10~!
PE.[16] 8.216 x1073 | 1.357 x10~! | 3.568 x10~!
PE.[11] 2,931 x1073 | 5.648 x1072 | 3.429 x10~2

Issue 5, Volume 8, May 2009




WSEAS TRANSACTIONS on COMPUTERS

Example 3: Consider the equation

ou ou o%u
— tkhk—=c—s, 2<zx<2t
En + 97 EaxQ, <x<2,t>0

with the boundary condition:

u(—=2,t) = u(2,t) = —Sin(ﬂkt)efmzt,t > 0.
(37)
and the initial condition:

(38)

u(z,0) = sin(mrz).

The exact solution of the problem above is de-
noted as below:
u(z,t) = sin[r(x — kt)]e_”2t
We also compare the numerical results of the
present method with the methods in [6,11,16].

Table 4: Numerical results of comparison at m =
154,7 =104k =1, = 0.01

t = 10007 t = 20007 t = 30007
PE.(AGE-I) | 5.586 x10~T | 9.384x10~" 1.017
PE.(AGC-N) | 1.151 x10~! | 4.612x10~! | 8.235x10~!
P.E.[6](Evans) Invalid Invalid Invalid
PE.[16] Invalid Invalid Invalid
PE.[11] Invalid Invalid Invalid

From the results in Table 1,2,3,4 we can see that
the AGE-I method and the AGC-N method are of
higher accurate than the methods in [2,7,9] especially
when ¢ is small, that is, convection dominant cases.

7 Conclusions

In this paper, we present two methods for 1D
convection-diffusion equations based on the concept
of domain decomposition and alternating group. Both
of the two methods are effective in convection dom-
inant cases. Numerical results show the two meth-
ods are superior to the known methods in [6,11,16].
Furthermore we apply the concept of the construction
of the methods to 2D convection-diffusion equations,
and derive a new alternating group explicit method.
All of the three methods have the property of intrinsic
parallelism, and suitable for parallel computation.
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