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Abstract: In this paper, we present a high order unconditionally stable implicit scheme for diffusion equations.
Based on the scheme a class of parallel alternating group explicit method is derived, and stability analysis is
given. Then we present another parallel alternating group explicit iterative method, and finish the convergence
analysis. Numerical experiments show that the two methods are of higher accuracy than the original alternating
group method.
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1 Introduction
In this paper, we will consider the following initial
boundary value problem:


∂u
∂t = ∂2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = f(x),
u(0, t) = g1(t), u(1, t) = g2(t).

(1)

In scientific and engineering computing, we need
to solve large system of equations by numerical meth-
ods. Finite difference method is one of the most fre-
quently used numerical methods in solving differen-
tial equations [1-4]. As we all know, Most of explicit
methods are short in stability and accuracy, while im-
plicit methods usually have good stability, but are
complex in computing, and need to solve large equa-
tion set in the cost of large memory spaces and CPU
cycles. Thus it is necessary to construct methods with
the advantages of explicit methods and implicit meth-
ods, that is, simple for computation and good stabil-
ity. Recently with the development of parallel com-
puter many scientists payed much attention to the fi-
nite difference methods with the property of paral-
lelism. D. J. Evans presented an AGE method in [5]
originally. The AGE method is used in computing by
applying the special combination of several asymme-
try schemes to a group of grid points, and then the nu-
merical solutions at the group of points can be worked
out in many groups independently. Furthermore, by
alternating use of asymmetry schemes at adherent grid
points and different time levels, the AGE method can
lead to the counteraction of truncation error partly.

We notice the original AGE method has only two or-
der accuracy for spatial step. The AGE method is
soon applied to convection-diffusion equations in [6]
and telegraph equation in [7]. Z. B. Lin presented a
class of alternating segment explicit-implicit scheme
in [8]. Based on the concept of AGE method, a class
of parallel second- order domain splitting method for
diffusion equations is presented in [9,10]. In [11-
13], the concept of the AGE method is applied to
solve semi-linear and nonlinear equations. T.Z.Fu
presented a second order exponential AGE method for
convection-diffusion equations in [14]. To our knowl-
edge, AGE methods of fourth order accuracy have
been scarcely presented.

Based on the situations mentioned above, we will
construct two parallel methods with four order accu-
racy in spatial step.

Results about existence and uniqueness of theo-
retic solution for parabolic equations can be found in
[15-18].

We organize the rest of this paper as follows:

In section 2, we present an O(τ2 + h4) order
unconditionally stable symmetry six-point implicit
scheme for solving (1) at first. Then we give a group
of asymmetry schemes, and an alternating group ex-
plicit (AGE) method will be constructed based on the
schemes. Stability analysis for the AGE method are
given in section 3. In section 4, we will construct
another alternating group explicit iterative (AGEI)
method. Convergence analysis is given for the AGEI
method in section 5. In section 6, Results of numerical
example are presented. Some conclusions are given at
the end of the paper.
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2 The Alternating Group Explicit
(AGE) Method

The domain Ω : (0, 1) × (0, T ) will be divided into
(m × N) meshes with spatial step size h= 1

m in x di-

rection and the time step size τ= T
N . Grid points are

denoted by (xi, tn) or (i, n), xi = ih(i = 0, 1, · ·
·,m), tn = nτ(n = 0, 1, · · · , T

τ ). The numerical so-
lution of (1) is denoted by un

i , while the exact solution
u(xi, tn). Let r = τ

2h2 .

We approach (1) at (i, n) with center-difference
scheme:

un+1
i − un−1

i

2τ
=

1
4h2

[(un+1
i+1 − 2un+1

i + un+1
i−1 )

+2(un
i+1−2un

i +un
i−1)+(un−1

i+1 −2un−1
i +un−1

i−1 )] (2)

Applying Taylor formula to the scheme at
(xi, tn), we have

(
∂u

∂t
)n
i +

τ2

6
(
∂3u

∂t3
)n
i = (

∂2u

∂x2
)n
i +

h2

12
(
∂4u

∂x4
)n
i +O(h4)

Considering ∂2u
∂t2

= ∂4u
∂x4 , we have (∂u

∂t )n
i +

τ2

6 (∂3u
∂t3

)n
i = (∂

2u
∂x2 )n

i + h2

12 (∂
2u

∂t2
)n
i . Then we approach

(∂
2u

∂t2
)n
i with un+1

i − 2un
i + un−1

i

τ2 . Combining with
(2) we have the following scheme:

un+1
i − un−1

i

2τ
=

1
4h2

[(un+1
i+1 − 2un+1

i + un+1
i−1 )

+2(un
i+1 − 2un

i + un
i−1) + (un−1

i+1 − 2un−1
i + un−1

i−1 )]

−h2

12
(
un+1

i − 2un
i + un−1

i

τ2
) (3)

The truncation error of (3) can easily be obtained
as O(τ2 + h4).

We use fourier method to analyze the stability of
(3).

Lemma 1[19] if b and c are real numbers, and
λ1, λ2 are the roots of λ2 − bλ− c = 0, then we have
|λi| < 1, i = 1, 2 if and only if |b| ≤ 1− c < 2.

Let wn
i = (un

i , un−1
i )T , p = 1+ 1

12r , q = 1− 1
12r ,

then from (3) we have(
−r 0
0 0

)
wn+1

i−1 +

(
p + 2r 0

0 1

)
wn+1

i

+

(
−r 0
0 0

)
wn+1

i+1 =

(
2r r
0 0

)
wn

i−1

+

(
p− q − 4r q − 2r

1 0

)
wn

i +

(
2r r
0 0

)
wn

i+1

Let wn
i = vneiαxi , then we have(

p + 2r − 2rcos(αh) 0
0 1

)
vn+1

=

(
p− q − 4r + 4rcos(αh) q − 2r + 2rcos(αh)

1 0

)
vn

Furthermore

vn+1 =


1
6r
−8rsin2(αh

2 )

p + 4rsin2(
αh

2
)

1− 1
12r

− 4rsin2(
αh

2
)

p + 4rsin2(
αh

2
)

1 0

 vn

= Tvn

Let λ be the eigenvalue of T , then we have

λ2−

1
6r

− 8rsin2(
αh

2
)

p + 4rsin2(
αh

2
)

λ−
1− 1

12r
− 4rsin2(

αh

2
)

p + 4rsin2(
αh

2
)

= 0

The stability of (3) can be obtained under the con-
dition

|

1
6r

− 8rsin2(
αh

2
)

p + 4rsin2(
αh

2
)
| ≤ 1−

1− 1
12r

− 4rsin2(
αh

2
)

p + 4rsin2(
αh

2
)

< 2,

that is,

| 1
6r

− 8rsin2(
αh

2
)| ≤ 1

6r
+ 8rsin2(

αh

2
)

< 2 +
1
6r

+ 8rsin2(
αh

2
),

which is obviously true. So we can get the following
theorem:

Theorem 1 The scheme (3) is unconditionally
stable.

Based on (3), we present four asymmetry
schemes as follows:

un+1
i − un−1

i

2τ
=

1
4h2

[(un+1
i+1 − un+1

i − un
i + un

i−1)

+2(un
i+1−2un

i +un
i−1)+(un−1

i+1 −un−1
i −un

i +un
i−1)]

− h2

12τ2
(un+1

i − 2un
i + un−1

i ) (4)
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un+1
i − un−1

i

2τ
=

1
4h2

[(un+1
i+1 − un+1

i − un
i + un

i−1)

+(un+1
i+1 − 2un+1

i − un+1
i−1 ) + (un−1

i+1 − 2un−1
i + un−1

i−1 )

+(un−1
i+1 −un−1

i −un
i +un

i−1)]−
h2

12τ2
(un+1

i −2un
i +un−1

i )

(5)

un+1
i − un−1

i

2τ
=

1
4h2

[(un
i+1 − un

i − un+1
i + un+1

i−1 )

+(un+1
i+1 − 2un+1

i − un+1
i−1 ) + (un−1

i+1 − 2un−1
i + un−1

i−1 )

+(un
i+1−un

i −un−1
i +un−1

i−1 )]− h2

12τ2
(un+1

i −2un
i +un−1

i )

(6)

un+1
i − un−1

i

2τ
=

1
4h2

[(un
i+1 − un

i − un+1
i + un+1

i−1 )

+2(un
i+1−2un

i +un
i−1)+(un

i+1−un
i −un−1

i +un−1
i−1 )]

− h2

12τ2
(un+1

i − 2un
i + un−1

i ) (7)

Let
δxun

i = un
i+1 − un

i ,

δxun
i = un

i − un
i−1,

δtu
n
i = un+1

i − un
i ,

δtu
n
i = un

i − un−1
i ,

δ
t̂
un

i = un+1
i − un−1

i ,

then we rewrite (4)-(7) as:

δ
t̂
un

i = r[δx(un+1
i + 2un

i + un−1
i )− 4δxun

i ]

− 1
12r

(δtu
n
i − δtu

n
i ) (8)

δ
t̂
un

i = r[δx(2un+1
i +2un−1

i )−δx(un+1
i +2un

i +un−1
i )]

− 1
12r

(δtu
n
i − δtu

n
i ) (9)

δ
t̂
un

i = r[δx(un+1
i +2un

i +un−1
i )−δx(2un+1

i +2un−1
i )]

− 1
12r

(δtu
n
i − δtu

n
i ) (10)

δ
t̂
un

i = r[4δxun
i − δx(un+1

i + 2un
i + un−1

i )]

− 1
12r

(δtu
n
i − δtu

n
i ) (11)

Based on (8)-(11), we will have three basic com-
puting point groups:

”κ1”group: four grid points are involved, and
(8), (9), (10), (11) are used respectively. Let Un

i =
(un

i , un
i+1, u

n
i+2, u

n
i+3)

T , then we have

A1U
n+1
i = B1U

n
i + C1U

n−1
i + Fn

i (12)

here Fn
i = (4run

i−1, 0, 0, 4run
i+1)

T ,

A1 =

(
A11 A12

A13 A14

)

A11 =

(
1 + r + 1

12r −r
−r 1 + 3r + 1

12r

)

A12 =

(
0 0

−2r 0

)

A13 =

(
0 −2r
0 0

)

A14 =

(
1 + 3r + 1

12r −r
−r 1 + r + 1

12r

)

B1 =

(
B11 B12

B13 B14

)

B11 =

(
1
6r − 6r 2r

2r 1
6r − 2r

)

B12 =

(
0 0
0 0

)

B13 =

(
0 0
0 0

)

B14 =

(
1
6r − 2r 2r

2r 1
6r − 6r

)

C1 =

(
C11 C12

C13 C14

)

C11 =

(
1− r − 1

12r r
r 1− 3r − 1

12r

)

C12 =

(
0 0
2r 0

)

C13 =

(
0 2r
0 0

)
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C14 =

(
1− 3r − 1

12r r
r 1− r − 1

12r

)
Then the numerical solution at grid nodes (i,n+1),

(i+1,n+1), (i+2,n+1), (i+3,n+1) can be obtained ex-
plicitly as below:

Un+1
i = A−1

1 (B1U
n
i + C1U

n−1
i + Fn

i )

”κ2”group: two inner points are involved, and
(8), (9) are used respectively. Let U

n
i = (un

i , un
i+1)

T ,
then we have

A2U
n+1
i = B2U

n
i + C2U

n−1
i + F

n
i (13)

here F
n
i = (4run

i−1, 2run+1
i+1 + 2run−1

i+1 )T ,

A2 =

(
1 + r + 1

12r −r
−r 1 + 3r + 1

12r

)

B2 =

(
1
6r − 6r 2r

2r 1
6r − 2r

)

C2 =

(
1− r − 1

12r r
r 1− 3r − 1

12r

)
The numerical solution at grid nodes (i,n+1),
(i+1,n+1), can be denoted as below:

U
n+1
i = A−1

2 (B2U
n
i + C2U

n−1
i + F

n
i )

”κ3”group: two inner points are involved,
and (10), (11) are used respectively. Let Ũn

i =
(un

i , un
i+1)

T , then we have

A3Ũ
n+1
i = B3Ũ

n
i + C3U

n−1
i + F̃n

i (14)

here F̃n
i = (2run+1

i−1 + 2run−1
i−1 , 4run

i+1)
T ,

A3 =

(
1 + 3r + 1

12r −r
−r 1 + r + 1

12r

)

B3 =

(
1
6r − 2r 2r

2r 1
6r − 6r

)

C3 =

(
1− 3r − 1

12r r
r 1− r − 1

12r

)
Thus we have:

Ũn+1
i = A−1

3 (B3Ũ
n
i + C3U

n−1
i + F̃n

i )

Applying the basic point groups above, we con-
struct the alternating group method in the case of two
conditions as follows:

In the first condition, we let m − 1 = 4s , here
s is an integer. First at the (n+1)-th time level, we
divide all of the m − 1 inner grid point into s ”κ1”
groups, and (12) are used in each group. Second at the
(n+2)-th time level, we will have (s+1) point groups.
”κ3” group are applied to get the solution of the left
two grid points (1,n+2) and (2,n+2). (12) are used in
the following s ”κ1” groups, while ”κ2” are used in
the right two grid points (m-2,n+2), (m-1,n+2). Let
Un = (un

1 , un
2 , · · · , un

m−1)
T , then we can denote the

alternating group method I as follows:{
AUn+1 = BUn + CUn−1 + Fn

1

ÂUn+2 = B̂Un+1 + ĈUn + Fn
2

(15)

here Cn
1 and Cn

2 are known vectors relevant to the
boundary, while A, B, Â, B̂ are all (m−1)×(m−1)
matrixes.

Fn
1 = (4run

0 , 0, · · · , 0, 4run
m)T

Fn
2 = (2run+2

0 + 2run
0 , 0, · · · , 0, 2run+2

m + 2run
m)T

A = diag(A1, A1, · · · , A1, A1)

B = diag(B3, B1, · · · , B1, B2)

C = diag(C1, C1, · · · , C1, C1)

Â = diag(A3, A1, · · · , A1, A2)

B̂ = diag(B1, B1, · · · , B1, B1)

Ĉ = diag(C3, C1, · · · , C1, C2)

Here

B1 =


1
6r − 2r 2r 0 0

2r 1
6r − 6r 4r 0

0 4r 1
6r − 6r 2r

0 0 2r 1
6r − 2r


The alternating use of the asymmetry schemes

(8)-(11) can lead to partly counteracting of truncation
error, and then can increase the numerical accuracy.
On the other hand, grouping explicit computation can
be obviously obtained. Thus computing in the whole
domain can be divided into many sub-domains, and
can be worked out with several parallel computers. So
the method has the obvious property of parallelism.

In the following we will try to construct the alter-
nating method under the condition of m−1 = 4s+2.
First at the (n+1)-th time level, we will have s + 1
point groups. ”κ2” are used at the right two inner grid
points, while the left 4s inner grid points are divided
into s groups, and ”κ1” are used in each group. Sec-
ond at the (n+2)-th time level, we are still to have s+1
point groups. ”κ3” are used at the left two inner grid
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points, while the right 4s inner grid points are divided
into s groups, and ”κ1” are used in each group. Thus
the alternating group method II is established by al-
ternating use of the schemes (8)-(11) in the two time
levels:

{
ÃUn+1 = B̃Un + C̃Un−1 + F̃n

1˜̂
AUn+2 = ˜̂

BUn+1 + ˜̂
CUn + F̃n

2

(16)

here C̃n
1 and C̃n

2 are known vectors relevant to the

boundary, while Ã, B̃,
˜̂
A,

˜̂
B are all (m−1)×(m−1)

matrixes.

F̃n
1 = (4run

0 , 0, · · · , 0, 2run+1
m + 2run−1

m )T

F̃n
2 = (2run+2

0 + 2run
0 , 0, · · · , 0, 4run+1

m )T ,

Ã = diag(A1, A1, · · · , A1, A2)

B̃ = diag(B3, B1, · · · , B1, B1)

C̃ = diag(C1, C1, · · · , C1, C2)˜̂
A = diag(A3, A1, · · · , A1, A1)˜̂
B = diag(B1, B1, · · · , B1, B2)˜̂
C = diag(C3, C1, · · · , C1, C1)

3 Stability Analysis Of The AGE
method

In order to verify the stability of (15) and (16), we
present the following lemmas:

Lemma 2[20] Let θ >0, and G + GT is non-
negative, then (θI + G)−1exists, and{

‖(θI + G)−1‖ 2 ≤ θ−1

‖(θI −G)(θI + G)−1‖2 ≤ 1
(17)

Lemma 3[20] Let A is a n × n matrix. λ is the
eigenvalue of A, then

|λ− ass| ≤
n∑

j=1,j 6=s

|asj | (18)

Theorem 2 if r < 1
3 , then the alternating group

method denoted by (15) is stable.
Proof: Let

G1 = diag(G11, G11, · · · , G11, G11)

G2 = diag(G13, G11, · · · , G11, G12)

G11 =


1 −1
−1 3 −2

−2 3 −1
−1 1


G12 =

(
3 −1
−1 1

)
, G13 =

(
1 −1
−1 3

)
G1 and G2 are obviously nonnegative matrixes. (15)
can be rewritten as

(pI + rG1)Un+1 = [(p− q)I − 2rG2]Un

+(qI − rG1)Un−1 + Fn
1

(pI + rG2)Un+2 = [(p− q)I − 2rG1]Un+1

+(qI − rG2)Un + Fn
2

(19)
Under the condition of exact boundary value, we

have Fn
1 = Fn

2 = 0. Let V n = (Un, Un−1)T , then it
follows(

pI + rG2 (q − p)I + 2rG1

O pI + rG1

)
V n+2

=

(
qI − rG2 O

(p− q)I − 2rG2 qI − rG1

)
V n

that is,

V n+2 =

(
pI + rG2 (q − p)I + 2rG1

O pI + rG1

)−1

(
qI − rG2 O

(p− q)I − 2rG2 qI − rG1

)
V n = GV n

here

G =

(
(pI + rG2)−1 Ĝ

O (pI + rG1)−1

)−1

(
qI − rG2 O

(p− q)I − 2rG2 qI − rG1

)
is the growth matrix.

Ĝ = −(pI + rG2)−1[(q− p)I + 2rG1](pI + rG1)−1

Considering

||(pI + rGi)−1||2 ≤ p−1 =
1

1 + 1
12r

, i = 1, 2

then from lemma 2 we have:

ρ(G) ≤ max(||(pI + rG1)−1||2, ||(pI + rG2)−1||2).
max(||(qI − rG1)||2, ||(qI − rG2)||2)
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≤ 1
1 + 1

12r

max(||qI − rG1||2, ||qI − rG2||2)

From the construction of the G1 and G2 we can
see they are both symmetric matrixes, which shows
||qI−rG1||2 = ρ(qI−rG1), ||qI−rG2||2 = ρ(qI−
rG2).

Let λ be the eigenvalue of Gi, i = 1, 2. Then
q + rλ is the eigenvalue of qI − rGi.

From lemma 3 we have:

{
|λ− 1| ≤ 1
|λ− 3| ≤ 3

, that is,

0 ≤ λ ≤ 6.
In order to arrive ρ(G) < 1, we can let |q−rλ| =

|1 − 1
12r − rλ| < 1 + 1

12r , which is solved with the
result r < 1

3 . Then we conclude (15) is stable under
the condition of r < 1

3 . So Theorem 1 is proved.
Analogously we have:

Theorem 3 The alternating group method de-
noted by (16) is stable under the condition of r < 1

3 .

4 The Construction Of AGEI
Method

Let p = 1+ 1
12r , q = 1− 1

12r , then from (3) we have
KUn+1 = En.

Here En = E1U
n +E2U

n−1 +[2run
0 +run−1

0 +
run+1

0 , 0, · · · , 0, 2run
m + run−1

m + run+1
m ]T .

K =


p + 2r −r
−r p + 2r −r

... ... ...
−r p + 2r −r

−r p + 2r



E1 =


1
6r − 4r 2r

2r 1
6r − 4r 2r

... ... ...
2r 1

6r − 4r 2r
2r 1

6r − 4r



E2 =


q − 2r r

r q − 2r r
... ... ...

r q − 2r r
r q − 2r


K, E1, E2 are all (m− 1)× (m− 1) matrixes.

In order to solve Un+1, we will try to construct
an alternating group explicit iterative method so as to
avoid solving an implicit equation set.

The alternating group iterative method will be
constructed in two cases as follows:

In the first condition, we let m = 4a + 1, a is an
integer. Let K = 1

2(H1 + H2), here

H1 = diag(H11, · · · ,H11)(m−1)×(m−1)

H2 = diag(H21,H11, · · · ,H11,H21)(m−1)×(m−1)

H11 =


p + 2r −r 0 0
−r p + 2r −2r 0
0 −2r p + 2r −r
0 0 −r p + 2r


H21 =

(
p + 2r −r
−r p + 2r

)
Then the alternating group explicit iterative

method (AGEI1) can be constructed as below:

 (ρI + H1)Un+1
k+ 1

2

= (ρI −H2)Un+1
k + Ẽn

(ρI + H2)Un+1
k+1 = (ρI −H1)Un+1

k+ 1
2

+ Ẽn k = 0, 1, · · ·

(20)
Here Ẽn = 2En, k is the iterative parameter.

In the case of m = 4a+3, a is an integer. We let
H = 1

2(H1 + H2), here

H1 = diag(H11, · · · ,H11,H21)(m−1)×(m−1)

H2 = diag(H21,H11, · · · ,H11)(m−1)×(m−1)

Then the AGEI2 method can be constructed as be-
low:

 (ρI + H1)Un+1
k+ 1

2

= (ρI −H2)Un+1
k + Ẽn

(ρI + H2)Un+1
k+1 = (ρI −H1)Un+1

k+ 1
2

+ Ẽn k = 0, 1, · · ·

(21)
From the construction of matrices H1, H2,

H1, H2 in (20) and (21) we can see that computation
can be divided into several groups, which is the same
as the AGE method in section 2. Then the parallelism
can be obtained obviously.

5 Convergence Analysis of The
AGEI Method

Theorem 4 The alternating group explicit iterative
method (20) is convergent.

Proof: From the construction of the matrixes we
can see that H1, H2, (H1 +HT

1 ), (H2 +HT
2 ) are all

nonnegative matrixes. Then from lemma 1 we have

‖(ρI −H1)(ρI + H1)−1‖2 ≤ 1
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‖(ρI −H2)(ρI + H2)−1‖2 ≤ 1

From (20), we obtain

Un+1
k+1 = HUn+1

k + (ρI + H2)−1

[(ρI −H1)(ρI + H1)−1Ẽn + Ẽn].

Here

H = (ρI + H2)−1(ρI −H1)(ρI + H1)−1(ρI −H2)

is growth matrix.
Let

H̃ = (ρI + H2)H(ρI + H2)−1

= (ρI −H1)(ρI + H1)−1(ρI −H2)(ρI + H2)−1

then
ρ(H) = ρ(H̃) ≤ ‖H̃‖2 ≤ 1

which shows the AGEI1 method given by (20) is con-
vergent.

Similarly we have:

Theorem 5 The alternating group explicit itera-
tive method (21) is also convergent.

6 Numerical Experiments
Example 1: We consider the following problem:

∂u
∂t = ∂2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = sin(πx),
u(0, t) = 0, u(1, t) = 0.

(22)

The exact solution of (22) is denoted as below:

u(x, t) = e−π2tsin(πx)

Let A.E. = |un
i − u(xi, tn)|, P.E. =

|un
i − u(xi, tn)|
u(xi, tn) denote maximum absolute error and

relevant error respectively. We compare the numeri-
cal results of the AGE method in this paper with the
results from [5] in Table 1-6.

Table 1: comparison of AGE method
and the method in [5] at m = 41

τ = 10−5, t = 10000τ

A.E. 3.672 ×10−5

A.E.[5] 1.793 ×10−4

P.E. 9.860 ×10−3

P.E.[5] 4.829 ×10−2

Table 2: comparison of AGE method

and the method in [5] at m = 41

τ = 10−4, t = 10000τ

A.E. 5.094 ×10−8

A.E.[5] 1.693 ×10−7

P.E. 9.856 ×10−2

P.E.[5] 3.438×10−1

Table 3: comparison of AGE method
and the method in [5] at m = 41

τ = 10−6, t = 10000τ
A.E. 8.927 ×10−6

A.E.[5] 4.371 ×10−5

P.E. 9.860 ×10−4

P.E.[5] 4.839 ×10−3

Table 4: comparison of AGE method
and the method in [5] at m = 53

τ = 10−5, t = 10000τ

A.E. 3.672 ×10−5

A.E.[5] 1.793 ×10−4

P.E. 9.860 ×10−3

P.E.[5] 4.829 ×10−2

Table 5: comparison of AGE method
and the method in [5] at m = 53

τ = 10−5, t = 100000τ

A.E. 5.068 ×10−9

A.E.[5] 1.482 ×10−7

P.E. 9.804 ×10−3

P.E.[5] 2.870×10−1

Table 6: comparison of AGE method
and the method in [5] at m = 53

τ = 10−6, t = 100000τ

A.E. 3.655 ×10−6

A.E.[5] 1.076 ×10−4

P.E. 9.825 ×10−4

P.E.[5] 2.890 ×10−2

Let ||E1||∞ = max|un
i − u(xi, tn)|, ||E2||∞ =

max|(un
i −u(xi, tn))/u(xi, tn)|, i = 1, 2, · · · ,m−1.

We use the iterative error 1 × 10−10 to control the
process of iterativeness, and the results of AGEI
method are listed in table 7-14.

Table 7: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−4, ρ = 1

t = 100τ

||E1||∞ 8.906 ×10−4

||E1||∞[5] 3.093 ×10−2

||E2||∞ 9.872 ×10−2

||E2||∞[5] 4.969
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Table 8: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−4, ρ = 1

t = 200τ

||E1||∞ 8.066 ×10−4

||E1||∞[5] 4.022 ×10−2

||E2||∞ 9.869 ×10−2

||E2||∞[5] 8.858

Table 9: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−4, ρ = 1

t = 500τ

||E1||∞ 5.994 ×10−4

||E1||∞[5] 5.757 ×10−2

||E2||∞ 9.860 ×10−2

||E2||∞[5] 41.443

Table 10: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−4, ρ = 1

t = 1000τ

||E1||∞ 3.654 ×10−4

||E1||∞[5] 3.271 ×10−2

||E2||∞ 9.847 ×10−2

||E2||∞[5] 169.521

Table 11: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−5, ρ = 1

t = 1000τ

||E1||∞ 1.260 ×10−4

||E1||∞[5] 1.439 ×10−2

||E2||∞ 1.396 ×10−2

||E2||∞[5] 2.136

Table 12: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−5, ρ = 1

t = 2000τ

||E1||∞ 1.522 ×10−4

||E1||∞[5] 4.025 ×10−2

||E2||∞ 1.863 ×10−2

||E2||∞[5] 8.864

Table 13: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−5, ρ = 1

t = 5000τ

||E1||∞ 2.173 ×10−4

||E1||∞[5] 5.759 ×10−2

||E2||∞ 3.576 ×10−2

||E2||∞[5] 41.459

Table 14: comparison of AGEI method and the
method in [5] at m = 17, τ = 10−5, ρ = 1

t = 10000τ

||E1||∞ 2.911 ×10−4

||E1||∞[5] 3.272 ×10−2

||E2||∞ 7.844 ×10−2

||E2||∞[5] 169.563

Let t1/t2 denotes the ratio of running time be-
tween the AGE method in this paper and center-
difference implicit scheme (2). We finished the nu-
merical experiment in the same conditions.

Table 15: results of comparison at m = 25

τ = 10−3, t = 100τ τ = 10−3, t = 500τ
A.E. 5.258 ×10−4 4.758 ×10−5

A.E.[5] 1.653 ×10−3 1.548 ×10−4

P.E. 1.587 ×10−2 6.852 ×10−2

P.E.[5] 4.664 ×10−1 2.179
t1/t2 0.251 0.255

Table 16: results of comparison at m = 25

τ = 10−4, t = 100τ τ = 10−4, t = 500τ
A.E. 4.770 ×10−5 9.610 ×10−6

A.E.[5] 1.117 ×10−4 5.193 ×10−5

P.E. 6.833 ×10−3 3.267 ×10−3

P.E.[5] 1.785 ×10−2 6.787 ×10−2

t1/t2 0.245 0.262

Table 17: results of comparison at m = 35

τ = 10−3, t = 100τ τ = 10−3, t = 500τ
A.E. 9.576 ×10−4 2.881 ×10−5

A.E.[5] 3.513 ×10−3 3.302 ×10−4

P.E. 3.284 ×10−2 1.313 ×10−1

P.E.[5] 9.737 ×10−1 4.626
t1/t2 0.158 0.164

Table 18: results of comparison at m = 35

τ = 10−4, t = 100τ τ = 10−4, t = 500τ
A.E. 6.112 ×10−6 2.472 ×10−5

A.E.[5] 5.802 ×10−5 1.958 ×10−4

P.E. 3.565 ×10−3 6.549 ×10−3

P.E.[5] 4.249 ×10−2

t1/t2 0.154 0.173

Example 2: We consider the following nonhomoge-
neous boundary value problem:

∂u
∂t = 0.01∂2u

∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T

u(x, 0) = cos(πx),
u(0, t) = e−0.01π2t, u(1, t) = −e−0.01π2t.

(23)
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The exact solution of (23) is denoted by

u(x, t) = e−0.01π2tcos(πx)

Let ||E1||∞ = max|un
i − u(xi, tn)|, ||E2||∞ =

max|(un
i −u(xi, tn))/u(xi, tn)|, i = 1, 2, · · · ,m−1.

The numerical results is listed in table 3.
Table 19: results of comparison at m = 49

τ = 10−1, t = 10τ τ = 10−1, t = 20τ
||E1||∞ 4.698 ×10−4 6.315 ×10−4

||E1||∞[5] 6.837 ×10−3 2.361 ×10−2

||E2||∞ 3.395 ×10−2 3.167 ×10−2

||E2||∞[5] 7.412 ×10−1

t1/t2 0.114 0.119

Table 20: results of comparison at m = 49

τ = 10−1, t = 50τ τ = 10−1, t = 100τ
||E1||∞ 7.028 ×10−4 1.015 ×10−3

||E1||∞[5] 2.693 ×10−2 8.013 ×10−2

||E2||∞ 2.674 ×10−2 4.247 ×10−1

||E2||∞[5] 2.131 3.256
t1/t2 0.131 0.126

From the results of Table 1-20 we can see that the
numerical solution for the presented methods are of
higher accuracy than the original AGE method in [5],
which is obvious even in the case of large τ . Further-
more, for its intrinsic parallelism, the AGE method in
this paper can shorten the running computing time in
comparison with the fully implicit scheme, and the ef-
fect becomes obvious when the amount of grid points
increases.

7 Conclusions
In this paper, we present an alternating group explicit
(AGE) method and an alternating group explicit it-
erative(AGEI) method. Then the stability analysis
and convergence analysis are done respectively. The
AGEI method is suitable for parallel computation in
solving large system of equations, and is superior to
the original AGE method in [5]. Furthermore, the
construction of the two methods can also be applied
to other partial differential equations.
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