
A PERSISTENT CROSS-PLATFORM CLASS OBJECTS
CONTAINER FOR C++ AND WXWIDGETS

 MICHAL BLIŽŇÁK1, TOMÁŠ DULÍK2, VLADIMÍR VAŠEK3

Department of Applied Informatics1,2, Department of Automation and Control Engineering3

Faculty of Applied Informatics, Tomas Bata University
Nad Stráněmi 4511, 760 05, Zlín

CZECH REPUBLIC
bliznak@fai.utb.cz1, dulik@fai.utb.cz2, vasek@fai.utb.cz3

Abstract: This paper introduces a new open-source cross-platform software library written in C++
programming language which is able to serialize and deserialize hierarchically arranged class instances and
their data members via XML files. The library provides easy and efficient way for processing, storing and
managing complex object-oriented data with relationships between object instances. The library is based on
mature cross-platform toolkit called wxWidgets and thus can be successfully used on many target platforms
such as MS Windows, Linux or OS X. The library is published under open source licence and can be freely
utilised in both open source and commercial projects. In this article, we describe the inner structure of the
library, its key algorithms and principles and also demonstrate its usage on a set of simple examples.

Keywords: Data, class, persistence, container, serialization, XML, tree, list, C++, wxWidgets, wxXmlSerializer,
wxXS

1 Introduction
The ability to store complex data processed by
software applications is one of the most important
features provided by various programming
frameworks or software libraries. Most of them
already offer some suitable technology, such as
various types of configuration files, integrated XML
parsers/builders or database layers. Unfortunately,
majority of these technologies are designed to store
only raw data (e.g. via database layers) or they require
a lot of additional programming to process complex
data types. Typical and most difficult case is the
implementation of persistent storage for class
instances and their hierarchy. In high-level
programming languages like Java or Python, it is easy
to solve this by using serialization, however, there are
virtually no options for serialization in lower-level
programming languages like C++.

If the requirement is to implement a simple storage
for raw data, the best solution is probably to use a
suitable database system/layer. Nowadays database
servers and software libraries like JDO in Java [2] are
able to store even very complex data via methods for
mapping objects to database records. Moreover, some
of the current database systems, for example SQLite
database [3] or Firebird embedded [4], can be linked
to an application as libraries allowing storing data to
local filesystem or a database server.

Unfortunately, all of these database technologies lack
the ability to preserve the hierarchical relations

between object class instances. It means the user can
store data records but cannot define their hierarchy
(who is the parent and who is the child, etc).

The goal of this paper is to introduce a new simple
software library called wxXmlSerializer [8] (shortly
wxXS) which fills the gap in the nowadays offer of
available data persistence technologies. The wxXS is
designed for storing not only raw data, but also their
hierarchical relationship.

2 What the wxXmlSerializer is
Generally, the wxXS is a cross-platform software
library written in C++ programming language based
on wxWidgets [1] which offers a functionality needed
for creation of persistent hierarchical data
containers able to store various C++ class instances
(can be regarded as complex data records). wxXS
allows users to easily serialize hierarchically arranged
class instances and their data members to an XML
structure and deserialize them later. Currently
supported data types serializable by the wxXS are:

• Generic data types such as: bool, char,
int, long, float, double

• Most frequently used wxWidgets data types:
wxString, wxPoint, wxSize,
wxRealPoint, wxPen, wxBrush,
wxFont, wxColour,

• wxArrayString, array of wxRealPoint

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 778 Issue 5, Volume 8, May 2009

values, arrays of common generic data types
and list of wxRealPoint values

• Dynamic or static instances of the serializable
base class itself or its derivates.

Moreover, the library architecture allows user to
extend built-in list of supported data types by any
other data type. A new data type can be added by
implementing a new I/O handler, which is relatively
easy piece of code composed of code macros
provided by the library and small amount of manual
programming.

The wxXS library can be used for wide range of
application scenarios, e.g.:

• simple saving and loading of the program
settings/configurations,

• as a persistent dynamic linked list of class
instances encapsulating application data,

• as a persistent dynamic n-ary tree-based data
container with methods needed for
comfortable management of its items (useful
for the software applications managing their
data in tree controls, applications working
with diagrams, etc.).

3 Used technologies
wxXS library was created as an add-on to well known
cross-platform software library wxWidgets [1].
wxWidgets gives the programmers single, easy-to-use
API for writing their applications on multiple
platforms that still utilize the native platform controls
and utilities. By linking the application with the
appropriate library for the target platform (Windows/
Unix/Mac, others coming shortly) using almost any
popular C++ compiler, the application adopts the look
and feel appropriate for that platform. On top of great
GUI functionality, wxWidgets supports network
programming, streams, clipboard and drag and drop,
multithreading, image loading and saving in a variety
of popular formats, database support, HTML viewing
and printing, and much more [1].

wxXS library uses the streams, XML and RTTI
classes provided by the wxWidgets so it can be used
only together with this library. However, this
“disadvantage” is balanced by the fact, that these
crucial technologies are maintained and improved
continuously by the wide and reliable open-source
community. Moreover, the license policy [6] used by
the wxWidgets library does not restrict the
programmer in any way so the applications and
derivates based on the wxWidgets can be distributed

both as an open-source and/or commercial
applications. wxXS itself is created under the same
license so it can be used absolutely freely for any
purpose, even for commercial projects.

4 The Library Structure
wxXS consists of three main classes encapsulating its
basic functionality. It includes also several auxiliary
classes encapsulating the I/O functionality for various
data types and implements typed data containers used
by the library. Now let’s take a look to the purpose of
the three main library classes which are:

• wxXmlSerializer class

• xsSerializable class

• xsProperty class

Figure 1: The library structure

wxXmlSerializer class is the main data
manager class and implements the common data
container functionality. Its member functions allow
user to manage instances of serializable classes
(encapsulated by the xsSerializable) and
provide the I/O functionality like serialization and
deserialization of stored serializable class objects.
This class can be used as it is or as a base class for
various derivations enhancing its built-in
functionality.

xsSerializable class is the base class for so
called “serializable” classes (i.e. classes manageable
by the wxXmlSerializer class). It provides
functionality needed for hierarchical arrangement of
serialized class instances (every class instance
includes linked list of another xsSerializable
class instances, i.e. its children), I/O operations and it
also holds information about serialized data members
(instances of xsProperty class).

xsProperty class encapsulates a single data
members (properties) of a serialized class object,

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 779 Issue 5, Volume 8, May 2009

which is an instance of xsSerializable class. It
stores information about memory address of the data
member, its data type, default value, a name of the
data member in the XML structure and flag telling
whether the property should be serialized or not.

I/O and data conversion operations provided by the
xsSerializable class are performed via the
xsPropertyIO I/O handler class and its derivates,
which are responsible for conversion of serialized
property values to/from its string representation and
for reading and writing of this textual information
from/to the XML structure.

Except built-in support for common data types the
user can simply create new I/O handler class by using
set of code macros defined in the library headers. This
powerful feature will be discussed in more details
later.

Relationship between the main library's classes is
shown on figure 2.

Figure 2: Relationship of main library's classes

5 wxXS: User Guide
wxXS library can be used in many ways but the main
idea is following: the user can create classes derived
from xsSerializable base class and then define
which of the class members will be serialized and
which not. For serialization of these class instances, it
is necessary to add them to a data manager, which is
an instance of wxXmlSerializer class. There is
also one instance of xsSerializable class called
a root item included in the data manager class as its
member object. All the other serialized objects added
to the data manager are inserted into the linked list of

the root item. Serialized class data members called
properties are encapsulated by an xsProperty class

The xsProperty class instances can be created in
several ways:

• using universal macros
XS_SERIALIZE(member, field) or
XS_SERIALIZE_EX(member, field,
defval)

• using one of defined macros designed for
particular data type (e.g.
XS_SERIALIZE_LONG(member,
field) or
XS_SERIALIZE_LONG_EX(member,
field, defval)

• using the function
xsSerializable::AddProperty(xs
Property *property)

The argument member is the name of data member,
which should be serialized and the argument field is a
name used for its identification in the output XML
structure. The macros must be placed somewhere in a
class implementation code (typically in a constructor).

Macros with suffix “_EX” in their names allow user
to define default property value. In this case, the
property is serialized only if its current value differs
from the default one. This approach leads to smaller
size of the output XML structure because only
changed property values are serialized.

Now let’s illustrate these mechanisms on a simple
console application which serializes simple class
instance and its member data to an XML file.

The first needed step is declaration of a serializable
class encapsulating an application data. Of course,
also basic headers files provided by wxWidgets and
wxXmlSerializer libraries have to be inserted into
source code.

Example 1:

// wxWidgets main header file
#include <wx/wx.h>

// wxXmlSerializer main header file
#include
"wx/wxxmlserializer/XmlSerializer.h"
//
// SerializableObject class
//

class SerializableObject : public
xsSerializable
{
 // RTTI must be provided by the class
 DECLARE_DYNAMIC_CLASS(SerializableObject);
 // constructor

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 780 Issue 5, Volume 8, May 2009

 SerializableObject();
 // destructor
 virtual ~SerializableObject() {;}

 // protected data member
 wxString m_sTextData;

private:
 // private data member
 static int m_nCounter;
};

The implementation of the serializable class declared
above is straightforward as well:

// constructor
SerializableObject::SerializableObject()
{
 // initialize member data
 m_sTextData = wxString::Format(
wxT("'SerializableObject' class instance No.
%d"), m_nCounter++);

 // mark the data members which should
 // be serialized
 XS_SERIALIZE(m_sTextData, wxT("text"));
}

// static data members
int SerializableObject::m_nCounter = 0;

// implementation of RTTI for serializable
// class
IMPLEMENT_DYNAMIC_CLASS(SerializableObject,
xsSerializable);

Now the data manager (serializer) class must be
defined to handle instances of the
SerializableObject class. In this example, the
standard wxXmlSerializer class is used.
Generally, there are two ways how to handle the
serializable class objects by the serializer class:

• one serializable objects can be set as a root
node of the serializer,

• several serializable objects can be appended
to a default root node included in the
serializer or to another already managed
serializable objects..

These quite different approaches differ in the way the
stored serialized class instance can be handled and
accessed. For better understanding, both of these
ways are discussed bellow.

Let us use the first mentioned way to serialize the
Settings class object to a file called “data.xml” stored
on a harddrive:

//
// The application's entry point

int main(int argc, char ** argv)
{

 // Create a serializer object.
 wxXmlSerializer xml_IO;

 // Initialize the serializer.
 xml_IO.SetSerializerOwner(wxT("Sample"));
 xml_IO.SetSerializerRootName(wxT("data"));
 xml_IO.SetSerializerVersion(wxT("1.0.0"));

 // Create a serialized settings class
 // object with its default values.
 SerializableObject *m_pData = new
SerializableObject();
 if(m_pData)
 {
 // Insert the object into serializer as
 // its root node.
 xml_IO.SetRootItem(m_pData);

 xml_IO.SerializeToXml(wxT("data.xml"),
xsWITH_ROOT);
 }
}

A content of the output XML file is now:

<?xml version="1.0" encoding="utf-8"?>
<data owner="Sample" version="1.0.0">
 <data_properties>
 <object type="SerializableObject">
 <property name="text"
type="string">'SerializableObject' class
instance No. 0</property>
 </object>
 </_properties>
</settings>

The stored XML file can be loaded back in a simple
way:

if(wxFileExists(wxT("data.xml")))
{
 // Load settings from file
 m_XmlIO.DeserializeFromXml(wxT("data.xml
"));
}

After deserialization, loaded data can be accessed in a
very simple way using a function called
wxXmlSerializer::GetRootNode(), which
returns a pointer to the serializer's root node (in our
example to a class object encapsulating the stored
data).

The second possible way of managing the stored
serializable objects is illustrated in the next example.
In this case the serializable class instances are stored
in a list encapsulated by the root serializer's node.
Except this example, slightly modified source code
presented later shows how the serializable class
instances can be arranged into a tree structure as well.

So, let us create a few of these nodes, add them to the
serializer object and store the serializer content to a
disk file. Note, that the serializable class used in

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 781 Issue 5, Volume 8, May 2009

examples 2 and 3 is the same like introduced in
example 1.

Example 2:

//
// The application's entry point

int main(int argc, char ** argv)
{
 // create instance of XML serializer
 wxXmlSerializer xml_IO;

 // first, create set of serializable
 // class objects and add them to the
 // serializer
 for(int i = 0; i < 5; i++)
 {
 // Add all new class objects to the
 // serializer's root so the instances
 // will be arranged into a list. Note
 // that each serializable object
 // can be assigned as a child to another
 // one so the objects could be arranged
 // into a tree structure as well.
 xml_IO << new SerializableObject();
 }

 // store the serializer's content to an
 // XML file:
 xml_IO.SerializeToXml(wxT("data.xml"));

 // clear the serializer's content:
 xml_IO.RemoveAll();

 // now, re-create list of stored class
 // instances from XML file (data.xml):
 xml_IO.DeserializeFromXml(wxT("data.xml")
);

 // finally, print out content stored in
 // loaded class instances:
 SerializableList::Node *node =
xml_IO.GetRootItem()->GetFirstChildNode();

 while(node)
 {
 SerializableObject pObject =
(SerializableObject*)node->GetData();

 wxPrintf(pObject->m_sTextData << wxT("\
n"));

 node = node->GetNext();
 }

 return 0;
}

 A content of the output XML file created by previous
code is:

<?xml version="1.0" encoding="utf-8"?>
<root owner="" version="">
 <object type="SerializableObject">
 <property name="id"
type="long">1</property>
 <property name="text"
type="string">'SerializableObject' class
instance No. 0</property>

 </object>
 <object type="SerializableObject">
 <property name="id"
type="long">2</property>
 <property name="text"
type="string">'SerializableObject' class
instance No. 1</property>
 </object>
 <object type="SerializableObject">
 <property name="id"
type="long">3</property>
 <property name="text"
type="string">'SerializableObject' class
instance No. 2</property>
 </object>
 <object type="SerializableObject">
 <property name="id"
type="long">4</property>
 <property name="text"
type="string">'SerializableObject' class
instance No. 3</property>
 </object>
 <object type="SerializableObject">
 <property name="id"
type="long">5</property>
 <property name="text"
type="string">'SerializableObject' class
instance No. 4</property>
 </object>
</root>

Screenshot of the application from Example 2 is
shown on figure 3.

Figure 3: Application from Example 2.

As can be seen from the source code, an overloaded
operator '<<' was used for adding the serializable
class instances into the serializer's root node. For this
task also more universal function
wxXmlSerializer::AddChild() can be used
as follows:

xml_IO.AddItem((xsSerializable*)NULL, new
SerializableObject());

The first function argument determines which already
managed serializable class instance will be a parent of
new class object specified by the second parameter. If

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 782 Issue 5, Volume 8, May 2009

the parent is NULL, then the new appended object
will be assigned directly to the serializer's root node.
It is obvious that any n-ary tree structure can be
constructed in this way. Following modified source
code shows how a tree structure consisting of
serializable class instances can be created and
serialized by the library.

Example 3:

//
// Auxilary functions

xsSerializable* MakeTree(xsSerializable
*parent, int levels)
{
 if(levels > 0)
 {
 levels--;
 // add new instances of serializable
 // object to given parent and pass these
 // new instances as parents for
 // recursive call of this function
 // (operator << returns pointer to
 // newly added object):
 MakeTree(*parent << new
SerializableObject(), levels);
 MakeTree(*parent << new
SerializableObject(), levels);

 // also member function of
 // xsSerializable class can be used for
 // this task as follows:
 //MakeTree(parent->AddChild(new
SerializableObject()), levels);
 }

 return parent;
}

void PrintTree(xsSerializable *parent, int
level)
{
 level++;

 // iterate through children list of given
 // parent:
 SerializableList::Node *node = parent-
>GetFirstChildNode();

 while(node)
 {
 SerializableObject *pObject =
(SerializableObject*) node->GetData();

 // print info about processed object:
 for(int i = 1; i < level; i++)
 {
 wxPrintf(wxT(" "));
 }

 wxPrintf(pObject->m_sTextData << wxT("\
n"));

 // process the object's children:
 if(pObject->HasChildren())
 {
 PrintTree(pObject, level);
 }

 node = node->GetNext();
 }
}

//
// The application's entry point

int main(int argc, char ** argv)
{
 // create instance of XML serializer
 wxXmlSerializer xml_IO;

 // first, create set of serializable class
 // objects and add them to the serializer
 // (add a root item of a tree of
 // serializable class objects to the
 // serializer
 xml_IO << MakeTree(new
 SerializableObject(), 3);

 // also member function of wxXmlSerializer
 // class can be used for this task as
 // follows:
 // (first NULL argument means that the
 // object is added directly to the
 // serializer's root):
 // xml_IO.AddItem((xsSerializable*)NULL,
MakeTree(new SerializableObject(), 3));

 // store the serializer's content to an
 // XML file:
 xml_IO.SerializeToXml(wxT("data.xml"));

 // clear the serializer's content:
 xml_IO.RemoveAll();

 // now, re-create stored class instances
 // from the XML file (data.xml)
 xml_IO.DeserializeFromXml(wxT("data.xml")
);

 // finally, print out info about loaded
 // clas instances:
 PrintTree(Serializer.GetRootItem(), 0);

 return 0;
}

An possible output of the application discussed in
Example 3 could be seen figure on 4.

Figure 4: Application from Example 3.

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 783 Issue 5, Volume 8, May 2009

Note, that after successful deserialization the stored
class instances can be accessed by set of member
functions declared in sxsSerializable class like:

● xsSerializable::GetParent,

● xsSerializable::GetFirstChild,

● xsSerializable::GetLastChild,

● xsSerializable::GetSibbling,

etc. In addition, various member functions of
wxXmlSerializer class can be used. For more
information about all available data handling
functions supported by the wxXS library please see
the reference documentation available at [8].

6 Extending The wxXmlSerializer
There are many built-in data types supported directly
by the wxXS but aside of them, also custom data
types can be processed by the library. For this case,
the wxXS provides set of code macros and classes
suitable for a creation and registration of user-defined
I/O handlers.

In the following example a new I/O handler suitable
for serialization/deserialization of wxColourData
class is created and used. Note, that the example
application is one of sample projects distributed
together with the library source code. It is highly
recommended to study reference documentation as
well as the supplied sample projects for full
understanding of discussed topics.

So, first of all, the programmer must declare new I/O
handler class and define code macros used for
marking of a serialized data members. This should be
done in appropriate header file. The declaration code
can be as follows:

Example 4:

//
// Declaration of new I/O handler
//

// Declaration of a class
// 'xsColourDataPropIO' encapsulating the
// custom property I/O handler for
// 'wxColouData' data type.
XS_DECLARE_IO_HANDLER(wxColourData,
xsColourDataPropIO);

// Code macros which create new serialized
// wxColourData property
#define XS_SERIALIZE_COLOURDATA(x, name)
XS_SERIALIZE_PROPERTY(x, wxT("colourdata"),
name);

#define XS_SERIALIZE_COLOURDATA_EX(x, name,
def) XS_SERIALIZE_PROPERTY_EX(x,

wxT("colourdata"), name,
xsColourDataPropIO::ToString(def));

Let us discuss the code listed above in more details.
The macro XS_DECLARE_IO_HANDLERS declares
a new class called xsColourDataPropIO suitable
for processing of data members with data type
wxColourData which is a class provided by the
wxWidgets used for data transfer between an
application and the color picker dialog. User-defined
macros XS_SERIALIZE_COLOURDATA and
XS_SERIALIZE_COLOURDATA_EX can be later
used in the implementation code to mark
wxColourData class members in the similar way
as the XS_SERIALIZE macro was used in the
previous examples. Note that the text string
“colourdata” must be a unique identifier used for
identification of this data type in serialized XML
structure.

Now see the implementation code:

// Define custom data I/O handler
XS_DEFINE_IO_HANDLER(wxColourData,
xsColourDataPropIO);

// Two following static member functions of
// the data handler class MUST
// be defined manualy:

// wxString xsPropIO::ToString(T value) ->
// creates a string representation of the
// given value:

wxString
xsColourDataPropIO::ToString(wxColourData
value)
{
 wxString out;

 out << xsColourPropIO::ToString(
 value.GetColour());

 for(int i = 0; i < 16; i++)
 {
 out << wxT("|") <<

xsColourPropIO::ToString(value.
GetCustomColour(i));

 }
 return out;
}

// T xsPropIO::FromString(const wxString&
// value) -> converts data from
// given string representation to its
// relevant value:

wxColourData
xsColourDataPropIO::FromString(const
wxString& value)
{
 wxColourData data;

 if(!value.IsEmpty())
 {

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 784 Issue 5, Volume 8, May 2009

 int i = 0;
 wxStringTokenizer tokens(value,
wxT("|"), wxTOKEN_STRTOK);

 data.SetColour(xsColourPropIO::FromS
tring(tokens.GetNextToken()));

 while(tokens.HasMoreTokens())
 {
 data.SetCustomColour(i,

 xsColourPropIO::FromString(
 tokens.GetNextToken()));

 i++;
 }

 }
 return data;
}

The most of the implementation effort is hidden in the
XS_DEFINE_IO_HANDLER macro. Here, the
programmer must manually create only two static
functions responsible for conversion of processed data
value to its string representation and vice versa. These
static functions are then internally used be core library
classes for serialization and deserialization but they
can be used also for any other purposes. For example,
in the code above you can see similar static functions
called xsColourPropIO::FromString() and
xsColourPropIO::ToString() defined by
built-in I/O handler designed for processing of
wxColour data members.

Now, let's declare and define a class containing
member data of type wxColourData and mark it for
serialization via previously user-defined I/O handler:

//
// Settings class declaration
//

class Settings : public xsSerializable
{
public:
 // RTTI and xsSerializable::Clone()
 // function must be provided
 XS_DECLARE_CLONABLE_CLASS(Settings);
 // constructor
 Settings();
 // copy onstructor needed by default
 // implementation of
 // xsSerializable::Clone() function
 Settings(const Settings &obj);
 // destructor
 virtual ~Settings();

 // public data members
 wxColourData m_colourData;
};

//
// Settings class implementation
//

XS_IMPLEMENT_CLONABLE_CLASS(Settings,
xsSerializable);

Settings::Settings()
{
 // set default values of data member
 m_colourData.SetColour(*wxBLUE);

 for(int i = 0; i < 16; i++)
 {
 m_colourData.SetCustomColour(i,
wxColour(i*16, i*16, i*16));
 }

 // serialize colour data
 XS_SERIALIZE_COLOURDATA(m_colourData,
wxT("colordlg_content"));

 // this version of mark macro causes the
 // data will be serialized only if its
 // current value differs from the default
 // one (the last macro parameter):

 //XS_SERIALIZE_COLOURDATA_EX(m_colourData,
wxT("colordlg_content"), m_colourData);
}

Settings::Settings(const Settings &obj)
{
 // set default values of adata member
 m_colourData = obj.m_colourData;

 // serialize colour data everytime
 XS_SERIALIZE_COLOURDATA(m_colourData,
wxT("colordlg_content"));

 // this version of mark macro causes the
 // data will be serialized only if its
 // current value differs from the default
 // one (the last macro parameter):

 //XS_SERIALIZE_COLOURDATA_EX(m_colourData,
wxT("colordlg_content"), m_colourData);
}

Settings::~Settings()
{
}

Note that new macros XS_DECLARE_CLONABLE
_CLASS and XS_DECLARE_CLONABLE_CLASS
were used in the code. These macros differ from
DECLARE_DYNAMIC_CLASS and IMPLEMENT_
DYNAMIC_CLASS macros in such way that they
implement also Clone() function for the class,
which can be used for retrieving the exact copy of the
class instance. This function is further used by
wxXmlSerializer::CopyItems() member
function and its copy constructor so a whole
serializer's content can be copied in a single program
line.

The last step needed for proper initialization of the
new I/O handler class is its registration. It should be
done as soon as possible, typically in the application
initialization code. For registration of the I/O handler,
the XS_REGISTER_IO_HANDLER macro can be

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 785 Issue 5, Volume 8, May 2009

used as shown in the following code taken from
mentioned sample project:

//
// CustomDataSampleApp class
//

bool CustomDataSampleApp::OnInit()
{
 // load application settings if the
 // configuration file exists, otherwise
 // create new settings class object with
 // default values

 // initialize serializer (m_XmlIO class
 // member)

 m_XmlIO.SetSerializerOwner(wxT("CustomData
SampleApp"));

 m_XmlIO.SetSerializerRootName(wxT("setting
s"));

 m_XmlIO.SetSerializerVersion(wxT("1.0.0"))
;

 // register new property I/O handler
 // 'xsColourDataPropIO' for data type with
 // name 'colourdata'

 XS_REGISTER_IO_HANDLER(wxT("colourdata"),
xsColourDataPropIO);

 // create serialized settings class object
 // manualy with default values
 m_pSettings = new Settings();
 // insert settings class object into
 // serializer as its root node
 m_XmlIO.SetRootItem(m_pSettings);

 if(wxFileExists(wxT("settings.xml")))
 {
 // load settings from configuration file
 m_XmlIO.DeserializeFromXml(wxT("settings
.xml"));
 }
 // do some other initialization step ...

 return true;
}

The application settings could be saved to an XML
file later by code like this:

int CustomDataSampleApp::OnExit()
{
 // serialize settings to XML file
 m_XmlIO.SerializeToXml(wxT("settings.xml")
, xsWITH_ROOT);

 return 0;
}

Figure 5 shows a main application frame of sample
project mentioned above which demonstrates a
creation of user-defined data handlers.

Figure 5: Sample project demonstrating user-defined
data handlers

7 Conclusion
The aim of the paper was to introduce a new cross-
platform software library wxXmlSerializer
(wxXS) suitable for easy and elegant creation of
serializable hierarchical data containers using the
wxWidgets library and C++ programming language.
The library is available as an open-source project and
can be used for both commercial and open-source
software applications.

The wxXS was already successfully used as a
technological background for various projects such as
the wxShapeFramework [7] cross-platform graphics
library or the UML code generation tool called
CodeDesigner developed at the Tomas Bata
University.

The library features described in this document are
only a tiny fraction of comprehensive functionality
provided by the library. For more information about
its usage and abilities please see the library reference
or code examples available at the Source Forge web
site (http://www.sourceforge.net/wxxs).

8 Acknowledgements
This work was supported by the Ministry of
Education of the Czech Republic under grant No.
MSM7088352102.

9 References

[1] J. Smart, K. Hock, S. Csomor, Cross-Platform
GUI Programming with wxWidgets, Prentice Hall
PTR, 2006

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 786 Issue 5, Volume 8, May 2009

http://www.sourceforge.net/wxxs

[2] Java Data Objects (JDO) at Sun Developer
Network (SDN), 2008:
http://java.sun.com/jdo/http://java.sun.com/jdo/

[3] SQLite database home website, 2008:
http://www.sqlite.org/

[4] Firebird database home website, 2008:
http://www.firebirdsql.org/

[5] wxWidgets home website, 2008:

http://www.wxwidgets.org/

[6] wxWidgets license documents, 2008:
http://www.wxwidgets.org/about/newlicen.htm

[7] wxShapeFramework library website, 2008: http://
sourceforge.net/projects/wxsf

[8] wxXmlSerializer library website, 2008:
http://sourceforge.net/projects/wxxs

WSEAS TRANSACTIONS on COMPUTERS Michal Bliznak, Tomas Dulik, Vladimir Vasek

ISSN: 1109-2750 787 Issue 5, Volume 8, May 2009

http://sourceforge.net/projects/wxxs
http://sourceforge.net/projects/wxsf
http://sourceforge.net/projects/wxsf
http://www.wxwidgets.org/about/newlicen.htm
http://www.wxwidgets.org/
http://www.firebirdsql.org/
http://www.sqlite.org/
http://java.sun.com/jdo/http://java.sun.com/jdo/

