
Schedule Risk Management for
Business M-Applications Development Projects

PAUL POCATILU, MARIUS VETRICI

Economic Informatics Department
Academy of Economic Studies

6 Piata Romana, Sector 1, Bucharest
ROMANIA

ppaul@ase.ro, mariusvetrici@softmentor.ro

Abstract: The grand majority of software development projects are known to be late and over the budget.
Several surveys performed during the last 15 years expose a relatively poor performance in delivering
successful software projects. Most of the projects hit schedule and budget overruns of 25% to 100% and
sometimes even more. Even though m-applications development is a new software development field, still this
type of projects is not secured against the common flaws of software development projects. Therefore, the main
goal of this paper is to reduce the gap between the estimated duration of the m-application development project
and the actual elapsed time. We find that legacy and proven best practices project management techniques can
be successfully employed for schedule risk management. Furthermore, we present three proven software
project management techniques that were successfully adapted to the development of m-applications. The first
one is the estimation of m-application project duration using top-down and bottom-up approaches. The second
one is the use of a set of performance metrics for project quality assessment. And the last one is the Extended
Metrix model, a stochastic project duration estimation model with schedule risk analysis elements.

Key-Words: mobile applications, software development, project duration, schedule risk management, Monte
Carlo simulation.

1 Introduction
The grand majority of software development
projects are known to be late and over the budget. A
wide range of surveys performed during the last
15 years reveal the dramatic reality of the software
projects development. Most of the projects hit
schedule and budget overruns of 25% to 100% and
sometimes even more [1], [2], [3]. The adoption of
Agile and Iterative development methods provided
us with a raise in project success rate from one
project in three [2] to two successful projects from
three [4]. Still, there is place for improvement.

The total number of mobile phone subscribers in
the world was estimated at 2.14 billion in 2005 [5],
3.3 billion in 2007 [6] and the figure is expected to
increase to 90% by the year 2010. The numbers are
even more impressive if we look at the mobile
phone penetration rates, the highest from Asia being
in Hong Kong with 1.4 mobile phones per person
[7] and in Europe, Luxembourg, Lithuania and Italy
hitting as high as 150 mobile phone subscriptions
per 100 people [8]. Given the circumstances, m-
application software development is and will be an
emerging field of the software industry.

 An m-application is a special type of software
application particularly designed to be used on
mobile processing units with limited processing
power, storage memory and input capabilities such
as mobile phones, smartphones, PDAs, navigation
assistants, mobile guides, etc. Even though m-
application development is a relatively new domain,
legacy project management techniques can be
successfully applied for delivering high
performance in the new field.

This paper will be focusing on timely delivery of
the project as a measure of project success. The
prerequisite for defining an accurate project delivery
date is a precise estimation of the project duration.
Existing estimation models are rather imprecise
because the forecasted value is to a certain extent
distant from the real one. The large divergence
between the estimated duration and the actual
schedule of the ongoing projects prematurely ended
them in order to prevent further damages and losses.
Given this, it is imperative to look for new methods
that will aid software project managers in
forecasting and controlling project duration and,
hence, the project quality.

The aim of this research is to bridge the gap
between the forecasted m-application development

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 735 Issue 4, Volume 8, April 2009

project duration and the actual project duration.
Project duration estimation is of utmost importance
for all project stakeholders. More specifically, the
duration of the project is needed before the project
has started. This is because other important
estimations are grounded on the former metric. For
example, no investor will go with a given project
unless the delivery date is clearly agreed upon and a
commitment has been entered into. Further to this,
we go into great detail about the importance of
project duration estimation, the difficulties of
estimating duration and the existing duration
estimation techniques.

Therefore, this paper analyses the specifics of the
m-applications development projects and presents
three proven software project management
techniques that can be successfully adapted for
timely development of m-applications. The first
technique presents legacy top-down and bottom-up
techniques for project duration estimation. The
second project management technique relies on the
use of specific m-applications development
performance metrics. The performance metrics are
based on customer satisfaction, the degree of
objective completion and the cost of the resources
involved. The third technique employs the use of
Extended Metric Model, a Monte Carlo based
project network simulation specifically adapted to
the development of m-application. This approach
takes advantage of the specifics of the m-application
development environment and offers enhanced
project schedule risk estimation and control.

2 Business M-applications
Business m-application development is similar to
the development of personal computer applications,
but there are also differences that influence the way
the project is managed. Depending on the
application type, m-applications development
projects include not only the mobile device
software, but also the other components of the
system (application server, database, content
management etc.).

With respect to data processing, m-applications
can be divided into standalone applications and
distributed applications.

Standalone mobile applications are designed to
perform specific tasks without the need of a network
connection. Mostly mobile applications made for
PDAs are such examples of stand-alone
applications.

Every operating system (Windows Mobile,
Symbian) exposes specific APIs with varying
degrees of complexity and architectures which are
more or less well documented. In order to increase
the development productivity, higher level classes
libraries were developed on top of system’s APIs.
Usually, every library comes with a specific run-
time environment.

Distributed m-applications instead need a
network connection in order to operate. This type of
applications may rely upon a permanent or a
temporary connection. WAP (Wireless Access
Protocol) based applications for mobile phones that
connect to a server via Internet are an example of
distributed applications. The most used distributed
applications are Web-based. Figure 1 depicts the
architecture of such an application.

Mobile
phone

Gateway

Binary
WML

Application

server

Web server

Database

Wireless HTTP/TCP/IP

Mobile
phone

xHTML

Fig. 1. Mobile Web applications architecture

The request from the WAP enabled phone is sent

to the WAP gateway that makes the conversion
from the WAP stack (for WAP 1.0) or from the
optimized wireless or optimized HTTP/TCP/IP
(WAP 2.0) to the HTTP/TCP/IP stack and encodes
the network packets that will further be sent to the
Web server as an HTTP request [9]. The request is
processed by the Web server, and then a response is
send back to the mobile phone browser through the
WAP gateway that decodes the packets.

Table 1. M-application types comparison [10]
App. Type
/ Features

User
Interface

Memory Processing
power

Comp
lexity

Network
access

Limited High Medium
/ High

High

Stand-
alone

Limited Medium
/ High

Medium
/ High

Mediu
m
/ High

Web-based Web-
based

Medium Low
/Medium

Low

Database
access

Limited High Medium
/ High

High

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 736 Issue 4, Volume 8, April 2009

The type of application has an important
influence on the size and the complexity of the m-
application development project:

As it can be seen from the table 1, mobile
applications that require network access and those
that use databases usually have a higher complexity.
This is rather obvious because this type of m-
applications will have greater complexity, more
classes and chances are that the demand for specific
knowledge will be higher.

The size, complexity and productivity are
influenced by the application’s operating system.
Using Java ME technology there is a high degree of
portability between operating systems, but there are
device specific influences.

The use of native APIs to write applications
requires more effort, and the size of application
(expressed as KLOC) is higher than using classes
libraries.

Most of the development process is made using
device software emulators that run on personal
computers. Still there are differences between real-
life devices and emulators. That’s why there is an
additional effort in testing the application even after
it is considered done on the emulator.

3 Risk Factors in Business M-
applications Development Process

Numerous risk factors influence the
development process of business m-applications
in terms of duration, costs and quality. Among
them we count software development process
related risk factors and m-applications
development specific risk factors.

Usually, business applications allow the
following functions to be used on mobile
devices:

• Data input;
• Data updates;
• Data processing;
• Data verification;
• Data gathering using specific devices

(camera, RFID, IO cards etc.)
• Small reports and charts;
• Database synchronization.
Public institutions instead have more specific

requirements [11] which need a more thorough
approach and should be implemented on mobile
devices accordingly. The m-learning

applications have their own software
characteristics [12].

Business m-applications development
process, like all projects, needs to be on time,
on budget and on scope within a quality level.
Most of the projects unfortunately are only able
to satisfy two out of three constraints.

The risks identified from past projects were
centralized and several risk classes were
identified. The risk factors are related to:
people, process, infrastructure (hardware and
software) and to external environment, figure 2.

Infrastructure People

Fig. 2. Risk Factors

People related risk factors are:
• The lack of experience;
• People education;
• Knowledge in business field and m-

applications development;
• Team roles are not well defined;
• Team-members individual involvement.

Process related risk factors are:
• No information available from the

application field (especially for new,
innovative applications);

• Poor communication between the team
members and between the team and
stakeholders;

• Company certification level;
• Suppliers competences;
• Validation and verification process

implementation;
• Deliverables quality;
• Change management preparation.

Hardware and software related:
• Software incompatibilities;
• Mobile devices incompatibilities;
• Network bandwidth;
• Software and hardware failures;
• Existing bugs in software;

Project

Process
Environment

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 737 Issue 4, Volume 8, April 2009

• Different behavior on emulators and mobile
devices.

Environmental related risk factors:
• Users and customers skills and expectations;
• Competitors involvement;
• Stakeholders objectives.
The boundaries between the risk factors classes

are not so strictly defined. Some risk factors could
influence other factors.

4 Time/Duration Management
Models

4.1 Definitions
A project is “a temporary endeavor undertaken to
create a unique product, service, or result” [13]. By
adapting the definition from [14] we state that an m-
application software development project is a
temporary endeavour undertaken to create a unique
m-application. High quality m-application software
development projects deliver the required product
within scope, on time and within budget. It is the
project manager’s duty to skilfully balance the
competing demands for project quality, project
duration and cost of resources in order to be able to
deliver the software as planned.

Like any other type of project, software
development projects need:

• clearly defined requirements and scope
• established achievable objectives
• controlled resource allocation
• good effort and schedule management

 The expectations of stakeholders are focused on
the software to be delivered, on the budged
consumption and on the project duration.

The duration of a project is the time elapsed
between the project start and the project delivery
date, when the software is delivered to the customer.
The project duration is an essential indicator that
should be well estimated, agreed upon with the
stakeholders and thoroughly monitored, up to
project completion.

Project duration and size reflect the manager’s
own understanding of the requirements. It is not
possible to correctly size and estimate duration for a
project that is not completely understood. Further,
project duration provides an important check for
scope creep throughout the project. Failing to pay
attention to project duration one could agree to add

new functionality without appropriately updating
project size and effort needed.

4.2 The difficulties of estimating software
project duration

There are several reasons that make m-
application project duration estimation a difficult
problem. First of all, the very essence of software
building process makes it difficult to measure. It is a
tough endeavour to try to measure “how much”
software is there in a software project because the
software is invisible and unvisualizable [15]. This
especially difficult if we try to make such forecasts
before a detailed software design.

The software is pure thought-stuff, infinitely
malleable [15]. Unlike cars and buildings, the
software is constantly subject to pressures for
change because the costs of modifications are
difficult to understand.

Many of the classic problems of developing
software products derive from this essential
complexity and its nonlinear increases with size.
From the complexity comes the difficulty of
communication among team members, which leads
to product flaws, cost overruns and schedule delays.
From the complexity comes the difficulty of
enumerating, much less understanding, all the
possible states of the program, and from that comes
the unreliability [16].

4.3 Duration estimation techniques
The grand majority of techniques for m-application
project development duration estimation can be
found either in bottom-up or top-down category.

Fig. 3. Bottom-up vs. top-down techniques

The difference between the two comes from

the approach used to estimate project duration.
The techniques in the first category start at the
task-level view of the project and aggregate the
work to be performed on higher levels, up to the
project as a whole. The top-down way offers

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 738 Issue 4, Volume 8, April 2009

duration predictions based on properties of the
work-product, the project team, and the project
environment, figure 3.

4.3.1 Bottom-up techniques

This type of duration estimation techniques start
with developing a work breakdown structure of the
work and then continue with task identification and
task duration estimation. Every task should be
simple enough so as one could easily answer the
question regarding the task duration three parameter
estimates:

• best duration estimation
• most likely
• worst duration
Also for every task one should know:
• what is involved in getting started
• how will resources be allocated
• what exactly are the conditions to be met in

order the project to be considered done.
The next step is identifying the predecessor-

successor relationships and the critical path through
the activity graph.

In order to forecast the completion time, three
different approaches can be used:

a) The simple approach consists in adding-up the
most likely estimates for each task on the critical
path. It is not the best method, but it is the simplest
one.

b) The second approach means to calculate the
expected task duration ED as a weighted mean of
the three given estimations using PERT equation:

6
*4 WDMDBDED ++

=
 (1)

where:
BD – best duration estimation; this is the most

optimistic expectation, the best case scenario that
assumes no influence is going to negatively impact
the project duration;

MD – most likely; the duration of activity given
the resources, their productivity and realistic
expectations of availability;

WD – worst duration; the duration of activity
based on a worst case scenario of what is described
in most likely estimate.

c) The third approach relies on a Monte Carlo
simulation over the task estimation data. The result
will be a probabilistic distribution of the project
duration [16].

4.3.2 Top-down techniques

Top-down techniques use instead some high
level attributes of the project (related to its
complexity, functionality or size) and of the
organization capability to deliver the project.

Top-down estimation begins with an assessment
of the size of the work-product being planned. This
idea comes from construction projects, where the
project-manager would not imagine committing to a
deadline without establishing and tracking some
good size estimates, such as the number of square
feet, number of windows, doors, etc. to be designed
and built.

Up to date there are four software project sizing
legacy methods. See table 2 [18]:

Table 2. Project sizing techniques pros and cons
Sizing Method Pros Cons
Lines of Codes Easy to measure

in many
development
environments
(after there is
code).

Cannot be
done before
there are lines
of code.

Function Points Can be measured
during
requirements
stage.

Requires
some training,
calibration
and perhaps
tailoring to
specific
application
domains.

Use-Case
Counting

Can be measured
during
requirements
stage.

New method.
Small
experience
base at this
time.

Web
Application
Proxies

Easy to count
starting with early
web application
prototypes.

New method.
Requires
development
of counting
rules and
calibration for
specific
application
types.

The next step in top-down estimation is to use a

project duration estimation model.
Lawrence Putnam proposed a widely used model

for project duration estimation using data on size,
effort, and historic duration for thousands of other

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 739 Issue 4, Volume 8, April 2009

software projects. The model builds up the
organization's delivery capability index using PP -
Productivity Parameter and links it to size, effort
and duration dynamics.

3/43/1 *)(DE
PSPP

β

=

 (2)
where:

PP – Putnam’s productivity index. This item
shows the organization’s project delivery

capability;
PS – project size, counted using one of the
above sizing methods;
E – effort (in man-years). The work needed in
order to fulfill the project;
D – the project duration (years).

The following things are notable in regard to this

model:
a) an organization with higher PP can deliver more
size with less effort and in shorter duration than one
with a lower PP;
b) the 1/3 and 4/3 exponents in equation 2 express
the non-linearity in effort-duration relationship.

4.4 Choosing a project duration estimation
technique
Both top-down and bottom-up approaches proved to
be good at estimating project duration. A good
software project manager will probably use both
methods, plus his own estimation, based on priori
experience. Bottom-up estimates use work-
breakdown structure, critical path method and task
estimates; they provide crucial details regarding the
duration of smaller project parts and they roll up to a
global duration and effort estimation. Top-down
estimates rely on history of other real projects. One's
cumulative experience in similar projects can
provide estimates that deserve some consideration in
balance with the bottom-up and top-down views.

5 M-applications Development
Performance Metrics

Poor project management is the number one
factor leading to failure of IT projects, including m-
applications development. Upon completion, a
project can meet all the objectives and still be a
financially unprofitable project.

High quality project deliverables cannot be
obtained without high quality development
processes, but a quality process does not guarantee
quality products. The quality of the process is
certified through quality standards.

Also, well-trained personnel do not guarantee the
quality of deliverables. In order to obtain quality
results, the organization must have trained and
skilled personnel, and standardized project
management and technological processes.

A balance must be obtained between: resource
allocation for projects, risk and profit, long-term and
short-term projects, research and development
projects, internal or external projects. Figure 4
describes an organization having four projects with
varying degrees of risk, value and profit. In [19]
several indicators were proposed for IT project
performance measurement. These indicators can be
applied to measure the performance of m-
applications development projects.

Risk

Profit

P1

P4

P3 P2

High Low
Fig. 4. Projects chart by risk and profit

The degree of objective achievement is calculated

as:

TO
OAGA =

 (3)

where:
OA – the number of achieved objectives
TO – the total number of established objectives
If the indicator value is greater than one, is

considered that the project achieved more objectives
than were planed initially.

The ratio between the achieved deliverables and
the planned deliverables can be also calculated for
each project phase, where deliverables from one
phase are inputs for the next phase.

The degree of satisfaction can be computed as:

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 740 Issue 4, Volume 8, April 2009

TR

DSR
DS

p

i
i∑

== 1

 (4)

where:
DSR – the degree of satisfaction for the

requirement i
TR – total number of requirements
p – the number of requirements

The degree of satisfaction for a customer

requirements is a value from 0 (no satisfaction) to 1
(fully satisfied) or using a similar scale. The degree
of client satisfaction with an m-application can vary
with the mobile devices the application is run on.
Work productivity based on inputs is given by:

∑

∑

=

== m

j

n

i
i

Ij

O
W

1

1
1

 (5)

where:
Oi – the output i; (deliverables, results)
Ij – the input j (work, resources per time unit)
n – the number of outputs
m – the number of inputs

Work productivity based on time:

T

O
W

n

i
i∑

== 1
2

 (6)

where:
T – period of time
The cost of resources takes into account the

category of resources and the cost per unit for each
category:

∑
=

=
w

i
iii pdNRC

1 (7)

where:
 NRi – number of resource from the category i
 pi – price per unit for the resource category i
 di – units of usage for the resource category i

The total cost of a project can be defined as:

∑
=

=
k

i
iT cC

1 (8)

where
k – the number of project phases
ci, - the cost of all resources from the phase i
The number of reworks because of no

concordance between the specifications and the
results measure the team performance in doing their
work.

For the executives, it is important to know the
value of all running projects. A project portfolio
value at a given time is computed as:

)()(
1

tVPtPPV
sk

i

s
i

s ∑
=

=
 (9)

where:
PPVs(t) – project portfolio s value at the given

moment of time t
s

iVP – the value of project i from the portfolio s
ks – the number of projects in the portfolio s.
Other indicators are developed to measure the

performances of IT projects, having in mind the m-
applications characteristics. In order to use them,
data must be collected from various projects and
must be validated.

6 Extended Metrix Model

6.1 Forecasting project duration with Metrix
Model

The Metrix model is a hybrid type of model for
estimating the duration of software projects [20].
This is a stochastic model that addresses the project
duration uncertainty by running Monte Carlo
simulations over the activity graph. The advantage
of this approach is that the model automatically
calculates the simulation input parameters starting
from easily available data. Also, the model produces
an interval for the possible project durations and a
probability distribution and not single point
estimation. Thus, one is able to know the possible
project durations together with the probability that
certain duration will materialize.

The components of Metrix model are described
in figure 5:

a) an expertise-based component: task duration
estimation is performed by the software
developer himself who will be responsible
with the task completion;

b) a learning oriented component: individual
task duration estimations will be
automatically adjusted with historical

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 741 Issue 4, Volume 8, April 2009

individual estimation errors, this way
enhancing the accuracy of estimations;

c) a mathematical-statistical component: the
Monte Carlo simulation is used in order to
produce a distribution of probability for the
possible project durations;

d) an algorithmic component: the model has
input data, it iteratively executes several
steps and ramifications and in outputs
clearly defined results.

Fig. 5. The components of the Metrix Model for

software project duration estimation

From the approach used viewpoint, this is a

bottom-up model that takes task duration
estimations as input, it aggregates the task into
project stages and then it combines them into the
project as a whole (see figure 6):

Fig. 6. Hybrid model with bottom-up approach

As follows, the Metrix model structure and the

steps it encompasses are presented in greater detail.
Individual task duration estimations and task

interdependency represent the input data of the
model. The model will also get the history of the
duration estimations for the tasks that have already
been finished.

The result of running the model is a probabilistic
distribution of the project duration. The steps
performed are described here under:

Step 1. The historical task duration estimations

are collected for every developer. Will be
considered both current project finished tasks and
the tasks finished in other projects during the last 6
months.

Step 2. For every historical task duration

estimation from step 1 we calculate the Estimation
Accuracy Index (EAI) using the following formula:

ED
ADEAI =

(10) Learning Expertise
oriented based where:

 ED – estimated task duration (in hours);
 AD – actual, elapsed task duration;
 EAI – Estimation Accuracy Index. Mathematical
If EAI is greater than 1, then the task was

underestimated, meanwhile if EAI is less than 1,
then the task has been overestimated.

Statistical

Algorithmic
Using the results above we calculate the discreet

probability distribution for the EAI indexes for
every developer part of the team.

Step 3. We build the activity graph using the task

dependency and estimated task durations. See figure
7 for an activity graph example.

Fig. 7. Activity graph example

Step 4. We find the critical path through the

graph and we calculate the deterministic duration of
the software project.

Step 5. We run the Monte Carlo simulation. The

following operations are performed at each stage:
a) For every task we randomly choose (using

the probability distribution from step 2) an
estimation error from the same developer’s
estimation error history. Then we adjust the
actual estimated duration with this EAI.

b) We recalculate the critical path method and
the project duration.

We repeat the simulation 1000 to 10000 times.

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 742 Issue 4, Volume 8, April 2009

Fig. 8. Probability distribution for project duration

and project deadline

Step 6. We calculate the project duration

frequencies obtained as a result of Monte Carlo
simulation. We display the project duration
probability distribution. See figure 8.

6.2 Schedule risk management with
Extended Metrix Model

The basic Metrix Model described in the
previous section is augmented with risk analysis
elements. The resulting model is called the
Extended Metrix Model and offers the manager of
m-application development projects additional
information regarding the schedule risks. More
specifically, the new model introduces a new step at
which three risk related indexes are calculated for
every task: criticality, sensitivity and cruciality.

The criticality index of a task represents the
probability that this task will be on the critical path
[21], [22]:

N

TC
TC

N

i
i∑

== 1

 (11)

where:
TC – task criticality, a number between 0 and 1

inclusively.
TCi – equals 1 if task is on critical path at

iteration i and 0 otherwise.
N – the total number of Monte Carlo simulations.

The closer to 1 is TC for a given task, the higher

the probability that that task will be on the critical
path. The closer to 0 is a task’s TC, the higher the
probability that the task will not reside on the
critical path. The higher the TC of a task, the higher
is the importance to manage the duration of that task
in order to avoid project delays.

The sensitivity index of a task represents the
correlation between task duration and the overall
project duration. In practice, the sensitivity index SI

is calculated as the Spearman’s Rank Correlation
between task duration and project duration:

)1(
6

1 2

2

−
−= ∑

nn
d

SI i (12)

where:
 SI – sensitivity index of a task;
 di = xi – yi – the difference between the ranks of
the corresponding values xi (task duration) and yi
(project duration);
 n – the number of simulations performed.

The sensitivity index SI values lie between -1
and 1. In the field of project duration estimation, a
SI less than 0 has no sense because the project
duration cannot be shorter as long as the task
duration goes longer. So the only meaningful values
are between 0 and 1 inclusively. The greater the SI
of a task, the higher is the correlation between task
duration and the overall project duration.

The cruciality index CI represents the product of
the two indexes calculated above and shows the
importance to manage the duration-uncertainty of an
activity:

SICICRUI ×= (13)

where:
 CRUI – the cruciality index of a task;
 CI – criticality index of a task;
 SI – sensitivity index of a task.

The CRUI metric has no unit of measure but its
significance lies in its ability to rank project tasks
according to the descending order of the importance
to manage the uncertainty of an activity. The higher
the CRUI of a task, the more attention the task
needs from the manager of the project regarding
timely execution of the task.

In the example below, table 3 lists the top 5 tasks
of a project in descending order of their cruciality:

Table 3. Top 5 tasks of a software project in
descending order of their cruciality
Task code Task Cruciality Index

15 0,91
2 0,87
7 0,85

21 0,84
6 0,82

The set of the three calculated indexes, i.e. the

Criticality, Sensitivity and Cruciality indexes are

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 743 Issue 4, Volume 8, April 2009

greatly aiding the duration risk management during
project management process. The three indexes
provide the project manager with critical
information regarding the potential individual
impact of a task delay upon the entire project
duration.

7 Conclusions
M-application software development is an emerging
field of the software industry. Despite being a
relatively new field, best practices project
management techniques can be successfully used to
deliver high performance.

The development of mobile applications involves
some difficulties engendered by reduced capabilities
of mobile devices. Due to mobile devices
limitations, in particular limited internal memory
and reduced processing power, the source code of
mobile applications needs additional optimization
which will result in less testability.

M-application project development implies the
usage of specific development environments like
emulators that are not 100% compatible with the
hardware device. This difference requires a slightly
different approach both for development and testing.

M-application project duration can be
successfully estimated using top-down and bottom-
up approaches that have successfully been used over
the last decades.

In order for the m-application to be evaluated as
successful, a quantitative approach can be employed
by the use of a set of performance metrics.

In order to achieve the quality requirements, the
mobile applications have to be tested. A
comprehensive testing leads to high quality
software, but with higher costs [23] and duration
overdue.

The presented Extended Metrix Model relies
upon the specifics of the m-application development
environment. Specifically it uses the widely
available historical estimation data to compute task
duration probability distribution. The first benefit of
the Extended Metrix model is the project risk
information associated to every task. The
uniqueness of the proposed model is that it
determines both the estimated duration of the
project and the risks associated with delaying a task.
The second benefit of the Extended Metrix model is
that unlike classical deterministic models, which
offer a single value for the estimated project
duration, this model produces a probability

distribution of the software project duration. By
using this approach we reduce the project
uncertainty by allowing the manager to gain better
control over the project duration and the associated
probability of a certain duration outcome. The third
benefit of the Extended Metrix model is that it relies
on the historic duration estimation of the team
members. Similar models based on Monte Carlo
simulations require a duration probability
distribution function for every task. This
requirement unfortunately set Monte Carlo
simulations out of the practical domain into the
academic universe. The innovation brought by the
Extended Metrix model is the elimination of the
probability distribution functions requirement and
the use of discreet probability distribution of the
EAI (defined in this paper). The EAI probability
distribution can be easily determined using the
historical estimation errors which are available to
most software companies.

Further research will be focusing on the use of
prepackaged m-components as a means of speeding
up the development process. Also, m-application
project development success will be measured by
assessing the quality of the m-application user
interface.

References:
[1] Chow A. W., Goodman B. D., Rooney J. W.,

Wyble C. D., Engaging a corporate community
to manage technology and embrace innovation,
IBM Systems Journal, Vol. 46, No. 4, 2007.

[2] ***, The Chaos Report of IT Project Failure,
Standish Group, 2006

[3] McConnell S., Rapid Development, Microsoft
Press, Washington, 1996.

[4] Ambler S., Software Development Project
Success Survey 2008, Dr. Dobbs Journal,
February 2009

[5] ***, Total mobile subscribers top 1.8 billion,
Informa Telecoms & Media Research Report
http://www.mobiletracker.net/archives/2005/05
/18/mobile-subcribers-worldwide

[6] ***, Global cellphone penetration reaches 50
pct, Reuters,
http://www.reuters.com/article/marketsNews/id
INL2917209520071129?rpc=44m

[7] ***, Key Telecommunications Statistics, Office
of the Telecommunications Authority in Hong
Kong

[8] ***, Europeans hang up on fixed lines, BBC
News,

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 744 Issue 4, Volume 8, April 2009

http://news.bbc.co.uk/2/hi/technology/7116599.
stm

[9] Toma C., Popa M. and Boja C., Smart Card
based Solution for Non-Repudiation in GSM
WAP Applications, WSEAS TRANSACTIONS
on COMPUTERS, Issue 5, vol. 7, 2008, pp.
453-462

[10] Pocatilu P., Mobile Applications’ Quality
Metrics, Proceedings of International
Conference on Business Information Systems,
InfoBUSINESS, Alexandru Ioan Cuza
University, 26-27 October 2006, pp. 114-121

[11] Diaconita V., Botha I., Bara A., Lungu I.,.
Velicanu M., Two Integration Flavors in Public
Institutions, WSEAS TRANSACTIONS on
INFORMATION SCIENCE &
APPLICATIONS, Issue 5, Volume 5, 2008, pp.
806-815

[12] Boja C., Bătăgan L., Software Characteristics
of M-Learning Applications in Proc. of. 10th
WSEAS International Conference on
Mathematics and Computers in Business and
Economics (MCBE'09), Prague, Czech
Republic, March 23-25, 2009, ISSN: 1790-
5109, ISBN: 978-960-474-063-5, pp. 88-93;

[13] *** - A Guide to Project Management Body of
Knowledge Third Edition, Project Management
Institute, 2003

[14] Vetrici M., Reducing Software Projects
Duration using C#, Informatica Economica
Journal, Vol. VII, No. 1, 2007, pp. 91-95.

[15] Brooks Jr. F. P., Essence and Accidents of
Software Engineering, Computer Magazine,
Vol. 20, No. 4, 1987, pp. 10-19.

[16] McConnel S., Rapid Development, Microsoft
Press, 1996

[17] Vetrici M., Project schedule using Monte Carlo
simulation with discreet probability
distribution, Proceedings of the 4th
International Conference for Applied Statistics,
Bucharest, Romania, 2008

[18] Hallowell D. L., Software Project Management
Meets Six Sigma, http://software.isixsigma.com

[19] Pocatilu P., IT Projects Performance Indicators,
Economy Informatics, EISSN 1842-8088, vol.
VII, No 1-4, 2007, pp. 113-117

[20] Vetrici M., Software Project Duration
Estimation Using Metrix Model, Informatica
Economica Journal Vol. XII, no. 47/2008, pp.
87-91.

[21] Kwak Y.H., Ingall L., Exploring Monte Carlo
Simulation Applications for Project
Management, Risk Management Palgrave
Journals, Vol. 9, 2007, pp. 44–57.

[22] T. Williams, The contribution of mathematical
modelling to the practice of project
management, IMA Journal of Management
Mathematics Vol. 14(1), 2003, pp. 3-30.

[23] Lazic L., Mastorakis N., Cost Effective
Software Test Metrics, WSEAS
TRANSACTIONS on COMPUTERS, Issue 6,
Volume 7, June 2008, pp. 599-619

WSEAS TRANSACTIONS on COMPUTERS Paul Pocatilu, Marius Vetrici

ISSN: 1109-2750 745 Issue 4, Volume 8, April 2009

	29-107
	29-108
	29-109
	29-113
	Figure 8 Progressive construction of sub-lists for CFL L = { w = (a nbn, n>=1} with positive example aaabbb
	Figure 9 Fact base with counter example for CFL L = { w = (a nbn, n>=1}
	Figure 10 Progressive construction of sub-lists for CFL L = { w = (a nbn, n>=1} with counterexample aaabbb

	29-116
	1 Introduction
	2 Related work
	3 Concept model description
	References

	29-117
	29-120
	29-121
	29-134
	SELECT * FROM employee
	SELECT * FROM employee
	SELECT * FROM projects
	None
	SELECT DISTINCT employee.address FROM employee
	SELECT DISTINCT departments.location FROM departments
	SELECT DISTINCT employee.name FROM employee
	SELECT DISTINCT departments.location FROM departments
	None
	SELECT DISTINCT employee.name, employee .address
	FROM employee
	SELECT DISTINCT employee.address, employee .name
	FROM employee
	SELECT * FROM employee WHERE employee.name= 'ahmad'
	SELECT * FROM employee WHERE employee.name LIKE 'a%'
	SELECT * FROM employee WHERE employee.salary >= 100 AND employee.salary <= 200
	N/A
	SELECT * FROM employee WHERE employee.bdate < #1-1-1970#
	SELECT DISTINCT employee.address FROM employee
	WHERE employee.name = "ali"
	N/A
	SELECT DISTINCT employee.name , employee.salary FROM employee WHERE employee.sex = 1
	SELECT COUNT(*) AS result_count FROM project
	SELECT COUNT(*) AS result_count FROM department
	SELECT COUNT(*) AS result_count FROM employee
	WHERE employee.sex=1
	SELECT COUNT(*) AS result_count FROM employee
	WHERE employee.name = "ali"
	SELECT COUNT(*) AS result_count FROM employee
	WHERE employee.name LIKE = "a%"
	SELECT COUNT(*) AS result_count FROM project
	WHERE employee.dnum=5
	SELECT SUM(salary) AS result_total FROM employee
	SELECT SUM(hours) AS result_total FROM work
	WHERE work.PNO=3
	SELECT AVG(salary) AS result_ average FROM employee
	SELECT AVG(salary) AS result_ average FROM employee
	WHERE employee.DNO=5
	SELECT AVG(hours) AS result_ average FROM work
	WHERE employee.PNO=3

	29-142
	29-144
	29-149
	29-182
	29-185
	29-199

