
 Interactive Natural Language Interface

Abstract:- To override the complexity of SQL, and to facilitate the manipulation of data in

databases for common people (not SQL professionals), many researches have turned out to

use natural language instead of SQL. The idea of using natural language instead of SQL has

prompted the development of new type of processing method called Natural Language

Interface to Database systems (NLIDB). The NLIDB system is actually a branch of more

comprehensive method called Natural Language Processing (NLP). In general, the main

objective of NLP research is to create an easy and friendly environment to interact with

computers in the sense that computer usage does not require any programming language skills

to access the data; only natural language (i.e. English) is required.

 Many systems have been developed to use the concept of NLP in different varieties of
domains, for example the system LUNAR [19] and the system LADDER [8]. One drawback
of previous systems is that the grammar must be tailor-made for each given database. Another
drawback is that many NLP systems cover only a small domain of the English language
questions.

 In this paper we present the design and implementation of a natural language interface to a
database system. The system is called Generic Interactive Natural Language Interface to
Databases (GINLIDB). It is designed by the use of UML and developed using Visual
Basic.NET-2005. Our system is generic in nature given the appropriate database and
knowledge base. This feature makes our system distinguishable.

Keywords:- SQL, NLP, database, UML, NLIDB, DBMS, ATN.

1.0 Introduction

Faraj A. El-Mouadib1
Computer Science Department

Faculty of Information Technology
Garyounis University

Benghazi, Libya
<elmouadib@yahoo.com>

Zakaria Suliman Zubi2
Computer Science Department

Faculty of Science
Al-Tahadi University

Sirt, Libya
<zszubi@yahoo.com>

Ahmed A. Almagrous3
High Computer Technology Institute

Academy of Science
Benghazi, Libya

<almagroos@yahoo.com>

I. El-Feghi4
Electrical Engineering Department

Faculty of Engineering
Al-Fateh University

Tripoli, Libya.
<idrisel@gmail.com>

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 661 Issue 4, Volume 8, April 2009

mailto:elmouadib@yahoo.com
mailto:zszubi@yahoo.com
mailto:almagroos@yahoo.com
mailto:idrisel@gmail.com

 People via computers all around the
world, access, accumulate and manipulate
huge amount of data every second of the
day. These huge amounts of data are
located in private personal computers or
remote location (i.e. the internet). Mostly,
the data is stored in some kind of
repository system such as database1 and/or
data warehouses2. Data in database are
usually managed by DBMS. The access to
database is facilitated through a special
interaction language called SQL or some
version of it.
 To override the complexity of SQL for
non-professional, many researches have
turned out to use Natural Language (NL)
instead of SQL. The idea of using NL has
prompted the development of new type of
processing method called Natural
Language Interface to Database systems
(NLIDB). The NLIDB system is actually a
branch of more comprehensive method
called Natural Language Processing
(NLP). The main objective of NLP
research is to create an easy and friendly
environment to interact with computers in
natural language (i.e. English).

1 A database is a collection of data, typically
describing the activities of one or more related
organizations. A database is a collection of
related data. By data, we mean known facts
that can be recorded and that have implicit
meaning.

2 A data warehouse is a repository of
information collected from multiple sources,
stored under a unified schema, and which
usually resides at a single site. A data
warehouse is a repository of multiple
heterogeneous data sources, organized under a
unified schema at a single site in order to
facilitate management decision-making.

2.0 Early systems
The early efforts in the NL interfaces area
started back in fifties [10]. Prototype
systems had appeared in the late sixties
and early seventies. Many of these systems
relied on pattern matching to directly
mapping the user input to the database [1].
Formal LIst Processor (FLIP) is an early
language for pattern-matching based on
LISP structure [16] works on the bases
that if the input matches one of the
patterns then the system is able to build a
query for the database. In the pattern-
matching based systems, the database
details were inter-mixed into the code,
limited to specific databases and to the
number and complexity of the patterns. As
the usage of databases has spread during
the 1970’s, the concept of user interface
presented new challenges to the designers.
One approach was the use of natural
language processing, where the user
interactively is allowed to interrogate the
stored data.

2.1 LUNAR system
The system LUNAR [19] is a system that
answers questions about samples of rocks
brought back from the moon. The meaning
of systems’ name is that is in relation to
the moon. The system was informally
introduced in 1971. To accomplish its
function the LUNAR system uses two
databases; one for the chemical analysis
and the other for literature references. The
LUNAR system uses an Augmented
Transition Network (ATN) parser and
Woods' Procedural Semantics. According
to [18], the LUNAR system performance

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 662 Issue 4, Volume 8, April 2009

was quite impressive; it managed to
handle 78% of requests without any errors
and this ratio rose to 90% when dictionary
errors were corrected. But these figures
may be misleading because the system
was not subject to intensive use due to the
limitation of its linguistic capabilities.

2.2 LADDER
The LADDER system was designed as a
natural language interface to a database of
information about US Navy ships.
According to [8], the LADDER system
uses semantic grammar to parse questions
to query a distributed database. The
system uses semantic grammars technique
that inter-leaves syntactic and semantic
processing. The question answering is
done via parsing the input and mapping
the parse tree to a database query. The
system LADDER is based on a three-
layered architecture. The first component
of the system is for Informal Natural
Language Access to Navy Data
(INLAND), which accepts questions in a
natural language and produces a query to
the database. The queries from the
INLAND are directed to the Intelligent
Data Access (IDA), which is the second
component of LADDER. According to [7],
the INLAND component builds a fragment
of a query to IDA for each lower level
syntactic unit in the English language
input query and these fragments are then

combined to higher level syntactic units to
be recognized. At the sentence level, the
combined fragments are sent as a
command to IDA. IDA would compose an
answer that is relevant to the user’s
original query in addition to planning the
correct sequence of file queries.
The third component of the LADDER
system is for File Access Manager (FAM).
The task of FAM is to find the location of
the generic files and manage the access to
them in the distributed database. The
system LADDER was implemented in
LISP. At the time of the creation of the
LADDER system was able to process a
database that is equivalent to a relational
database with 14 tables and 100 attributes.

2.3 CHAT-80
The system CHAT-80 [17] is one of the
most referenced NLP systems in the
eighties. The system was implemented in
Prolog. According to [2], the CHAT-80
was an impressive, efficient and
sophisticated system. The database of
CHAT-80 consists of facts (i. e. oceans,
major seas, major rivers and major cities)
about 150 of the countries world and a
small set of English language vocabulary
that are enough for querying the database.
The CHAT-80 system processes an
English language question in three stages
as depicted in Figure-1.

Figure-1: CHAT-80 processing scheme.

Translation Planning Execution
English Logic Prolog Answer

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 663 Issue 4, Volume 8, April 2009

The system translates the English language
question by the creation of a logical form
as processes of three serial and
complementary functions where:

1. Words are represented by logical
constants.

2. Verbs, nouns, and adjectives with
their associated prepositions are
represented by predicates. The
predicates can have one or more
arguments.

3. Complex phrases or sentences are
represented by conjunctions of
predicates.

These functions are being; parsing,
interpretation and scoping. The parsing
module function determines the
grammatical structure of a sentence and
the interpretation and scoping consist of
various translation rules, expressed
directly as Prolog clauses. The basic
strategy followed by Chat-80 is to append
some extra control information to the
logical form of a query in order to make it
an efficient piece of Prolog program that
can be executed directly to produce the
answer. According to [17], the generated
control information comes into two forms:

1. Orders the predications for a query
that will determine the order in
which Prolog will attempt to
satisfy them.

2. Separates the over all program
into a number of independent sub
problems to limit the amount of
backtracking performed by
Prolog.

In this way, Prolog is led to answer the
queries in an obviously sensible way and
the Prolog compiler can compile the
transformed query into code that is as
efficient as iterative loops in a
conventional language.

3.0 The GINLIDB system
architecture
Here, we present the architecture, design
and implementation steps of the
Interactive Generic Natural Language
Interface to Database (GINLIDB) system.
The architecture of the GINLIDB system
consists of two major components:

3. Linguistic handling component
and

4. SQL constructing component.
The first component controls the natural
language query correctness as far as the
grammatical structure and the possibility
of successful transformation to SQL
statement. The second component
generates the appropriate SQL statement,
opens a connection to the database in use,
executes the generated SQL statement and
returns the query's result to the user.
Figure-2 depicts the over all architecture
of the GINLIDB system.

3.1 Graphical User Interface
(GUI)
The user interact with it GINLIDB system
in a user-friendly environment where no
knowledge of computers and database
terms are required. The interaction with
our system is via suitable visual forms,
buttons, and menus.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 664 Issue 4, Volume 8, April 2009

3.2 Linguistic handling component The Linguistic handling component
consists of three parts: Lexical analysis,
Parser, and Semantic representation.

User

Lexical Analysis

Parser

Semantic
representation

ENL Grammar

Lexicon

Knowledge

Database Adaptor

SQL Executor

Used
DB

GUI

Semantic
Grammar

DB Schema

Knowledge

Semantic Knowledge
DB

Retrieved
Result

Syntactical
Knowledge DB

Knowledge
Extending

SQL Generator

SQL constructing
component

Linguistic handling
component

Query data

Corrections

Natural
Query

Use

Figure-2: The architecture of the GINLIDB system.

3.2.1 Lexical analysis
This step to divide the sentence it into
simpler elements that called tokens (i.e. in
natural language query the elements are
words and/or punctuations). This process
is performed by the following functions:
• Token analyzing function is used to

split the input string into a sequence of

primitive units called tokens that is

treated as a single logical unit.

• Spelling checker function makes sure

that each token is in the systems’

dictionary (lexicon) and if this is not the

case then the spelling correction is

performed or new words are added to

the systems’ vocabulary.

• Ambiguity reduction function reduces

the ambiguity in a sentence and simplify

the task of the parser, the system

substitutes multiple words or symbols

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 665 Issue 4, Volume 8, April 2009

with a canonical internal phrases or

words, such as the ones in table-1.

Table-1: An example of canonical words

substitution.

Normal words Canonical words
First name First_Name
, (comma) AND
/ (slash in a none
date token)

Or

• Excessive tokens removal function

removes the additional tokens that will

not affect the meaning of the query.

3.2.2 GINLIDB Parser
The Natural language queries are not

easily parsed by programs, as there is

substantial ambiguity in the structure of

natural language queries. The GINLIDB

parser is designed with two stages of

grammars: lexical and syntactic. The first

stage is the token generation (lexical

analysis) where the input tokens' stream is

split into meaningful symbols. The second

stage is a syntactic analysis based on

Augmented Transition Network (ATN),

which checks if the tokens' structure is in

allowable grammatical structure. This is

processed via the parser according to a

Context-Free Grammar (CFG), which is

used by our system.

SENTENCE= VERB_PHRASE + OBJECTS
SENTENCE=QUESTION + AUX_VERB + OBJECTS
SENTENCE=PRON + AUX_VERB +PREP+ VERB_PHRASE + OBJECTS
SENTENCE= VERB_PHRASE + OBJECTS +CONJ + OBJECTS
SENTENCE= SENTENCE + (CONDITION) + (ORDER)
CONDITION= COND + OP + (AND CONDITION)
COND = WHERE | WHOSE | WHOM | HAVING
OP=NOUN_PHRASE + SYMBOL + VALUE+ (NOUN_PHRASE)
SYMBOL= IS | = | > | >= | < | <= | <>
VALUE = NUMERIC | STRING | DATE
ORDER = ORD + NOUN + (AND ORDER)
ORD= ORDER BY | SORTED BY | ACCORDING TO | …
VERB_PHRASE=VERB+ (PRON)
OBJECTS= OBJECT + (AND OBJECTS)
OBJECT= (QUANT) + (PRON) + NOUN_PHRASE
NOUN_PHRASE= (DET) + ADJ_EXPR
NOUN _PHRASE= (DET) + NOUN + PREP + NOUN _PHRASE
NOUN _PHRASE= NOUN + CONDITION
PREP= OF | IN | AT | TO |…
ADJ_EXPR= (ADJ) + NOUN | (ADJ) + NOUN + NOUN_PHRASE
NOUN= STUDENT | PATIENT | EMPLOYEE | DEPARTMENTS
QUANT = ALL | ANY | EVERY
PRON= ME | OUR | US | I |
AUX_VERB = IS | ARE |WANT
QUESTION = WHO | WHAT | WHERE | WHICH
ADJ = COLOR | STATUS |
STATUS = MARRIED | DIVORCED | SINGLE | GRADUATED | FAIL …
COLOR = RED | BLUE | GREEN | ….
CONJ= AND | OR

 Figure-4.2: Sample of ATN.

The ATN technique is a network-like

structure consists of labeled of nodes and

arcs. Every node represents different state

of a process, and an arc represents the

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 666 Issue 4, Volume 8, April 2009

transition from a state to another, with a

label referring to word category in NLP.

ATN is built on the idea of using finite

state. Sentences are parsed by reaching a

final state in any state graph. A sentence is

determined to be grammatically correct if

a final state is reached by the last word in

the sentence.

• Parse Tree is a tree that represents the

syntactic structure of a sentence

according to some formal grammar

approved by the ATN. A parse tree is

composed of nodes and branches; each

node is either a root node, a branch

node, or a leaf node. Figure-4 depicts a

sample of a parse tree. In a parse tree, an

interior node is a phrase and is called a

non-terminal of the grammar, while a

leaf node is a word and is called a

terminal of the grammar. Figure-5

depicts linguistic parse tree representing

the natural language query "List me all

employees having salary greater than or

equal to 300 dinars".

3.2.3 Semantic representation

There is a big difference between the

natural language (i.e. English)

grammar and the semantic grammar of

the NLI processes is in the meaning of

the words. For example in the English

grammar the word “employee” is a

noun, but in semantic grammar it can

be classified as a database table name,

an attribute name, or a reference to a

database tuple. Sometimes, a natural

language phrase can be represented in

our semantic grammar only by an

attribute name or by a relational

 Figure-5: Linguistic parse tree
operator. Tables-2, table-3 and table-4

depicts some examples of semantic

grammar representation.

The semantic grammars parser used in

our GINLIDB system is designed to

support a broad range of natural

language statements. We used the

EMPLOYEE3 database to create the

semantic grammar English language

queries. In GINLIDB system, there are

3 Almasri book Elmasri, R. and Navathe, S.,
(2007). Fundamentals of Database System. 5th
ed. Addison Wesley, USA.

Figure-4: Sample of a parse tree.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 667 Issue 4, Volume 8, April 2009

two types of semantic grammar, the

first is a single lexicon semantic

grammar, and the second is a

composite lexicon semantic grammar.

The single lexicon semantic grammar

consists of individual words and some

of their synonyms that are used in the

English language grammar. The

composite lexicon semantic grammar

is a combination of terminal words

(terminals that exist only in the

lexicon) that form phrases or sentences

in a specific structure.

Table-2: Examples of semantic representation Table-3: Semantic representation of
 of terminal words. terminal symbols.

Terminal words Semantic Terminal Semantic
Employee | worker Employee greater | larger | bigger Greater
Employees | workers Employees Than Than
Salary | income | money Salary Or Or
Customer | patron | member Customer Equal | like | equivalent | = equal
Customers| patrons | members Customers To | near | close To

Table-4: Semantic representation of non-terminal examples.

Non-terminal Semantic
representation

greater than or equal to >=
at least >=
not less than >=
at or above >=
older than >
less than or equal <=
less than <
Younger than <

3.3 SQL constructing
component
The SQL constructing component consists

of three parts; SQL Generator, database

adaptor, and SQL executor.

3.3.1 SQL generator
The task of the SQL generator is to map

the elements of the natural query to the

actual elements of the SQL the used

databases. The SQL generator uses four

routine, each of which manipulates only

one specific part of the query. The overall

SQL statement is constructed from the

concatenation of the output of the four

routines. The first routine selects the part

of the natural language query that

corresponds to the appropriate DML

command with the attributes' names (i.e.

SELECT * clause). The second routine

selects the part of the query that would

mapped to a table's name or a group of

tables' names to construct the FROM

clause. The third routine selects the part of

the query that would be mapped to the

WHERE clause (condition). The fourth

routine selects the part of the natural

language query that corresponds to the

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 668 Issue 4, Volume 8, April 2009

order of displaying the result (ORDER BY

clause with the name the).

3.3.2 Database adaptor
As there are many DBMS in existence that

can be used. Each of them has its own

techniques and interfaces that are different

from each other. Our system can handle

these varieties through database adaptor.

Database connection, constraint, data type,

and SQL format are examples of such

varieties.

3.3.3 SQL executor
The purpose of SQL executor is to get the

required results from the used database. In

order to achieve this, the generated SQL

statement would be tested to verify

correctness before applied to the used

database and then represent the result to

the user. The testing phase involves the

verification of the given valid name(s) of

either table(s) or attribute(s) and also

checks for meaningless queries.

3.4 Syntactical knowledge base
The syntactical knowledge base of the

GINLIDB system is used by the linguistic

component to determine the accepted

words, provide word alternatives (in

spelling correction process), and to verify

the natural language query grammar.

3.5 Semantic knowledge base
This knowledge base consists of the

English semantic grammar (grammar

rules) and the schema of the database in

use. The semantic knowledge base is used

to replace words and/or phrases

semantically by equivalent words and/or

phrases that are recognized by our system

(according to the system capabilities).

3.6 Knowledge extension
This component extends the syntactical

knowledge base by the adding new words

and the semantic knowledge base by

adding new rules. The importance of this

component is to enlarge the system to

accommodate variant domains and to

strengthen the terminology and rules of

existing domains.

4.0 Design of the GINLIDB system
The system is designed and implemented

by the use of Object Oriented (OO)

techniques. The Unified Modeling

Language (UML) is an evolutionary

general-purpose, broadly applicable, tool-

supported, and industry-standardized

modeling language [6], used to design our

system. We have used number of diagrams

from the UML and they are as follows:

• Use case diagrams are to conceptualize

the functionality of the system through

the systems' cases that represent

different overall system scenarios.

• Sequence diagrams are used to show

the interactions among different

elements of the system in the shape of

passing messages from and to each

object.

• Sequence diagrams depict the internal

behavior of the GINLIDB system.

• Class diagram is used to describe the

static view of the system by describing

the classes and relationships among

them.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 669 Issue 4, Volume 8, April 2009

From figure-6 to figure-10 depict samples

of diagrams used in the system.

• Activity diagrams are used to capture

the flow from one activity to the next.

Figure-6: Use case diagram of GINLIDB system.

Figure-7: Class diagram of GINLIDB system.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 670 Issue 4, Volume 8, April 2009

Figure-8a: Sequence of lexical analyzer.

Figure-8b: Sequence diagram of parser.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 671 Issue 4, Volume 8, April 2009

Figure-9: Class diagram of GINLIDB system.

Figure-10: Activity diagram of parser.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 672 Issue 4, Volume 8, April 2009

4.2 Implementation of
GINLIDB System
Here, we represent the different

functionalities of the system.

• Main window of GINLIDB system is

invoked through the GUI, where the user

provides the desired query. The system

will notify the user with the correctness

of the query in an interactive mode. The

main window is depicted in figure-11.

Figure-11: Main window of GINLIDB system.

• Spelling checker provides the user with

the facility to correct the query. The

main window with the popup menu is

depicted in figure-12.

Figure-12: Spelling checker window

• Extends knowledge extends the

knowledge base of the by adding New

Words to the existing knowledge base,

as depicted in figure-13.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 673 Issue 4, Volume 8, April 2009

Figure-13: Extend knowledge window.

• Database mapping is to associate

newly add words with synonyms words

to be used in future queries as depicted

in figure-14.

 Figure-14: Database mapping window.

• Database relationships handler is to

establish relationships between the

tables of the used database as depicted in

figure-15.

Figure-15: Database relationships handler window.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 674 Issue 4, Volume 8, April 2009

• Tables’ activation is to activate the database tables that can be used as depicted in figure-

16.

Figure-16: Tables activations window.

• English grammar handler

In the case of new queries that are

unavailable in our ATN grammar then

they can be added to our knowledge base.

This facility can be accessed through the

Augmented Transition Network handler

procedure as depicted in figure-17.

Figure-17: English grammar handling window.

5.0 Experiments and results
Here, we demonstrate the capabilities of

our system via two experiments. The first

experiment focuses on the natural

language query syntactic correctness and

the second deals with the SQL generation.

5.1 experiments
The first experiment had been conducted

with the use of five different query verbs

in a sentence such as; Show, Tell,

Display, List and Give. Each of the

sentences has eight different variations to

produce an ATN rules. So, the total of

trials is 40. For example the eight

variations that can accompany the verb

Show are as follows:

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 675 Issue 4, Volume 8, April 2009

Show employees Show me employees
Show all employees Show our employees
Show me all employees Show me our employees
Show all our employees Show me all our employees

All of the above variations give the same

answer. In this manner, the user is not

confined to a limited set of words that can

be handled. The limitation depends on the

size and content of the systems' knowledge

base. When the query’s’ ATN rule is not

available in our systems' knowledge base

then it will be rejected and the user has to

rephrase it or the user can force the system

to generate the ATN for the query and add

it to the knowledge base.

The second experiment is related to the

generation of the SQL statement from the

English natural query. In what follows, we

demonstrate our system capabilities in

generating the different form of the SQL

statements depending on the structure of

the English natural queries.

A general query simple is a query where

there are no specifics for the attributes

list, conditions, relationship, etc…

Table-5 depicts some examples.

User query Generated SQL

show me all employees SELECT * FROM employee

tell me all our employees SELECT * FROM employee

display all projects SELECT * FROM projects

list all our departments SELECT * FROM departments

who are our employee? SELECT * FROM employee

what is our projects ? SELECT * FROM projects

Table-5: Simple queries.

A specific query is a query with some

certain attributes. So, the selection of the

attributes is distinct to certain tables.

Table-6 depicts some examples of SQL

with the DISTINCT clause.

User query Generated SQL

tell me our employee location None

display employee address SELECT DISTINCT employee.address FROM employee

list all our departments locations SELECT DISTINCT departments.location FROM departments

what are our employee name? SELECT DISTINCT employee.name FROM employee

what are the locations of our departments ? SELECT DISTINCT departments.location FROM departments

what are the departments ? None

tell me our employees names and addresses
SELECT DISTINCT employee.name, employee .address

FROM employee

display employees addresses and names
SELECT DISTINCT employee.address, employee .name

FROM employee

Table-6: Examples of distinct attributes.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 676 Issue 4, Volume 8, April 2009

A conditioned query is a query that will

select some certain tuples of the database

giving some specific criteria. Table-7

depicts some examples of SQL statement

with WHERE clause.

User query Generated SQL

show me all employees whose names are
"ahmad" SELECT * FROM employee WHERE employee.name= 'ahmad'

tell me our employees whose names starts
with a SELECT * FROM employee WHERE employee.name LIKE 'a%'

display all employees whom salary
between 100 and 200

SELECT * FROM employee WHERE employee.salary >= 100
AND employee.salary <= 200

 list me all employees whom are younger
than 38 years? N/A

List me all employees whom birthday less
than "1-1-1970"

SELECT * FROM employee WHERE employee.bdate < #1-1-
1970#

Table-7: Examples with WHERE clause.

Some times the user would like to inquire

about some certain attributes that satisfy

some given condition(s). Table-8 depicts

some examples of SQL statements with

specific attributes and conditions.

User query Generated SQL

show me names of our employees
whose names are "ahmad"

SELECT DISTINCT name FROM employee WHERE
employee.name = "ahmad"

what are our employee address whose
name is "ali"

SELECT DISTINCT employee.address FROM employee
WHERE employee.name = "ali"

list names and salaries of all female
employees N/A

List me names and salaries of all
employees whom sex are female

SELECT DISTINCT employee.name , employee.salary FROM
employee WHERE employee.sex = 1

Table-8: Examples with WHERE and DISTINCT clauses.

In some case, the user is interested in the

summarization of the data of numerical

data. So, functions such as Count,

Average, Sum, etc… are used for that

purpose. Table-9 depicts some examples

of SQL statements on the form of:

TableFROMmemAS
AVG
SUM
COUNT

SELECT var_

...
)(attribute
)(attribute

(*)

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Our system can also deal with queries that

need data from more than one relational

database. In such case the system has the

capabilities to perform the appropriate

joins to retrieve the required data. The

system can retrieve the required data and

display it in desired order such ascending

or descending.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 677 Issue 4, Volume 8, April 2009

User query Generated SQL
How many employees are there? SELECT COUNT(*) AS result_count FROM employee
Show me the projects count SELECT COUNT(*) AS result_count FROM project
How many departments do we have? SELECT COUNT(*) AS result_count FROM department

How many male employees are there? SELECT COUNT(*) AS result_count FROM employee
WHERE employee.sex=1

Tell me how many employees have the
name of "ali"

SELECT COUNT(*) AS result_count FROM employee
WHERE employee.name = "ali"

how many employees names starts with a SELECT COUNT(*) AS result_count FROM employee
WHERE employee.name LIKE = "a%"

how many projects are in department
number 5

SELECT COUNT(*) AS result_count FROM project
WHERE employee.dnum=5

show me the total salary of our employees SELECT SUM(salary) AS result_total FROM employee
Show the total work hours in project
number 3

SELECT SUM(hours) AS result_total FROM work
WHERE work.PNO=3

show me the average salary of our
employees SELECT AVG(salary) AS result_ average FROM employee

what is the average salary of the
employees in department number 5

SELECT AVG(salary) AS result_ average FROM employee
WHERE employee.DNO=5

What is the average work hours in project
number 3

SELECT AVG(hours) AS result_ average FROM work
WHERE employee.PNO=3

Table-9: Examples with aggregate functions.

5.2 Results
Many experiment in a trial like had been

conducted on our system. The trials had

given accurate and satisfactory results

where the generated SQL statements had

been run against the used database. In all

of our trials, we have used the Employee

database.

6.0 Conclusion and further
research
Our system accepts an English language

requests that is interpreted and translated

into SQL command using semantic-

grammar technique. In addition, our

system requires a knowledge base that

consists of a database and its schema. The

design and implementation of the system

had carried out with three major concepts

in mind that vital to any NLP system. The

three major concepts are:

1. The users' submitted query in

natural English language is

analyzed from the syntactic as

well as semantic merits so the

query will be correct and can be

answered efficiently with respect

to systems' knowledge base.

2. The construction of a valid SQL

statement that represent the users'

query.

3. The retrieval of the result that is

required by the users' query.

The result of the number of experiments in

the form of trials in a user friendly

environment had been very successful and

satisfactory.

We would like conclude this work by the

demonstration of the capabilities and

advantages of the system in the following

points:

1. Our system is capable to answer

common queries give the

appropriate database and

knowledge base.

2. Our system as any other NLP

system needs knowledge base that

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 678 Issue 4, Volume 8, April 2009

is tailor made for a given

particular database.

3. The limitation of most of

previously known NLP systems is

to deal only with a limited domain

and only small set of queries can

be answered.

4. Our system is capable to extend

its' knowledge base to cover more

queries for the same database.

The researcher would like to make the

following points for future work and

research:

1. To put our system to vigorous test

by running the system against

different database to evaluate its'

performance.

2. Automatic generation of the

systems' knowledge base.

3. To build Arabic language front-

end preprocess so the system will

work in Arabic.

6.0 References

1 Abrahams P. W. et al. (1966). The

LISP 2 Programming Language and
System. Proceedings of FJCC, No.
29. USA, Pages 661– 676.

2 Amble, T. (2000). BusTUC - A
Natural Language Bus Route Oracle.
6th Applied Natural Language
Processing Conference, Seattle,
Washington, USA.

3 Arun, A., Keller, F. (2005).
Lexicalization in Cross linguistic
Probabilistic Parsing. Proceedings of
the 43rd Annual Meeting of the ACL,
pages 306 – 313.

4 Elmasri, R. and Navathe, S., (2007).
Fundamentals of Database System. 5th
ed. Addison Wesley, USA.

5 Grosz, B., Joshi, A., Weinstein, S.
(1983). Providing a unified account of
definite noun phrases in discourse. In
Proceedings of the 21st Annual
Meeting of the Association for
Computational Linguistics,
Cambridge, MA USA, Pages 44 – 50.

6 Hamilton, K., Miles, R. (2006).
Learning UML 2.0. O'Reilly, ISBN-
10: 0-596-00982-8

7 Hendrix, G. (1977). The LIFER
manual A guide to building practical
natural language interfaces. SRI
Artificial Intelligence Center, Menlo
Park, Calif. Tech. Note 138.

8 Hendrix, G., Sacrdoti, E., Sagalowicz,
D. and Slocum, J. (1978). Developing
a natural language interface to
complex data. ACM Transactions on
Database Systems, Volume 3, No. 2,
USA, Pages 105 – 147.

9 Luger, G., Stubblefield, W. (1999).
Artificial Intelligence Structures and
Strategies for Complex Problem
Solving. 3rd ed. Addison-Wesley,
USA.

10 McCarthy, J. (1959). LISP
Programmers Manual, Handwritten
Draft. MIT AI Lab., Vambridge, USA.

11 Nogami, H., Yoshimura, Y. and
Amano, S. (1989). Parsing with look-
ahead in real-time on-line translation
system. Research and Development
Center Toshiba Corporation
Kawasaki-City, Japan Volume 1,
pages 488 – 493.

12 Palmer, M., Finin, T. (1990).
Workshop on the Evaluation of
Natural Language Processing Systems.
Computational Linguistics, MIT Press,
Volume 16, pages 175 – 181.

13 Sinan S. (2002). Guide To applying
The UML. Springer-Verlag New
York, Inc, ISBN 0-387-95209-8.

14 Stratica, N., Kosseim, L. and Desai, B.
(2002). A natural language processor
for querying CINDI. Volume

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 679 Issue 4, Volume 8, April 2009

Milutinovic ed., Proceedings of
SSGRR 2002, International
Conference on Advances in
Infrastructure for e-Business,
L'Aquila, Italy.

15 Tang, L. R., & Mooney, R. J. (2000).
Automated construction of database
interfaces: Integrating statistical and
relational learning for semantic
parsing. In Proceedings of the Joint
SIGDAT Conference on Empirical
Methods in Natural Language
Processing and Very Large Corpora
(EMNLP/VLC-2000), pages 133 –
141, Hong Kong.

16 Warren Teitelman, PILOT, (1966). A
Step toward Man-Computer
Symbiosis. Ph.D. Thesis,
Massachusetts Institut of Technologie.
Project on Mathematics and
Computation (MAC). Technical
Report MAC-TR-32, Cambridge, MA,
September 1966.

17 Warren, D., Pereira, F. (1982). An
efficient and easily adaptable system
for interpreting natural language
queries in Computational Linguistics.
Volume 8 pages 3 – 4.

18 Woods, W. (1973). An experimental
parsing system for transition network
grammars. In Natural Language
Processing, R. Rustin, Ed.,
Algorithmic Press, New York.

19 Woods, W., Kaplan, R. and Webber,
B. (1972). The Lunar Sciences Natural
Language Information System. Bolt
Beranek and Newman Inc.,
Cambridge, Massachusetts Final
Report. B. B. N. Report No 2378.

WSEAS TRANSACTIONS on COMPUTERS
Faraj A. El-Mouadib, Zakaria Suliman Zubi,
Ahmed A. Almagrous, I. El-Feghi

ISSN: 1109-2750 680 Issue 4, Volume 8, April 2009

