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Abstract: - Because the target domain of data mining using decision trees usually contains a lot of data, sampling is 
needed. But selecting proper samples for a given decision tree algorithm is not easy, because each decision tree 
algorithm has its own property in generating trees and selecting appropriate samples that represent given target 
data set well is difficult. As the size of samples grows, the size of generated decision trees grows with some 
improvement in error rates. But we cannot use larger and larger samples, because it’s not easy to understand large 
decision trees and data overfitting problem can happen. This paper suggests a progressive approach in determining 
a proper sample size to generate good decision trees with respect to generated tree size and accuracy. Experiments 
with two representative decision tree algorithms, CART and C4.5 show very promising results. 
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1   Introduction 
For the tasks of data mining decision trees have been 
very widely used in a variety of fields, because their 
structures are easy to understand and they are good in 
prediction tasks [1, 2, 3, 4]. So finding decision trees 
with the smallest error rate as well as smaller size for a 
given data set has been a major concern for their 
success [5]. But even though decision trees are one of 
the most successful data mining methodologies, there 
are some weak points due to the fact that they are built 
based on greedy algorithms with limited target data 
sets.  Because decision tree generation algorithms 
divide training data in each root of subtrees in the 
decision tree, as a decision tree is being built, each 
branch becomes to have less training examples as the 
result of the branching. Therefore, the reliability of 
lower branches becomes worse than upper branches 
due to the smaller size of training examples than the 
upper branches.  

In addition, the greedy algorithms of decision 
trees assume that local optima are also global optima. 
In other words, when the algorithms determine root 
attribute for each subtree, the algorithms use some 
heuristic measures that calculate entropy or purity of 
each candidate root attribute decisively. In order to 
overcome the weak point of decision trees somewhat, 
pruning is performed based on some heuristic 
measure.  

Moreover, because most target databases for data 
mining are very large, we need sampling process from 
the target databases. But the task of determining 
proper sample sizes is arbitrary and the found 
knowledge based on the random samples is prone to 
sampling errors or sampling bias. According to 
statistics a proper sample size for a feature is 30 or so 
[6]. For example, to determine the average height of 
people, we need to do random sampling for 30 people. 
But, in general, the target databases of data mining 
contain a lot of features, so if we do sampling like this, 
the sample size can become enormous. Therefore, we 
need an alternative strategy for sampling.  

In the principle of Occam’s razor [7, 8] simpler 
and smaller knowledge models are preferred to larger 
and more complex ones, because simpler knowledge 
models can cover more cases so that the predictability 
in the future cases becomes better. In this paper we 
suggest some clever way to do sampling that allows us 
to consider simpler decision trees.  

In section 2, we provide the related work to our 
research, and in sections 3 we present our method. 
Experiments were run to see the effect of the method 
in section 4. Finally section 5 provides some 
conclusions. 
 
 

2   Related Work  
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Because the problem of generating optimum decision 
trees is a NP-complete problem, decision tree 
algorithms resort to some greedy search methods so 
that generated decision trees are not optimum and 
some improvement may be possible. There have been 
a lot of efforts to build better decision trees so that 
branching or splitting measure is a major concern. For 
example, one of standard decision tree algorithm C4.5 
[9] uses an entropy-based measure, and CART [10] 
uses a purity-based measure to split the branches. 
Because CART spends relatively large computing 
time for optimization, it is known that the algorithm 
generates smaller decision trees than other decision 
tree algorithms like C4.5. So many people prefer 
CART.  

There have been also scalability related efforts to 
generate decision trees for large databases such as 
SLIQ [11], SPRINT [12], PUBLIC [13], and 
RainForest [14]. SLIQ saves some computing time 
especially when the database contains many 
continuous attributes by using a pre-sorting technique 
in tree-growth phase, and SPRINT is an improved 
version of SLIQ to solve the scalability problem by 
building trees with parallel processing algorithm. 
PUBLIC tries to save some computing time by 
integrating the tasks of pruning and generating 
branches together. However, these methods may 
generate very large decision trees for very large data 
sets so that the problem of comprehensibility and 
overfitting data in the generated decision trees may 
occur.  

Generating right-sized decision trees requires a 
universal application of pruning [9, 10, 15, 16] so that 
overpruning was a natural consequence to generate 
comprehensively sized decision trees. In his Ph.D. 
dissertation, ‘mega induction’ for very large databases 
[15], J. Catlett relied on overpruning to obtain 
satisfactory decision trees. As a result of this 
overpruning, the generated tree may not have 
sufficient accuracy compared to near optimal, similar 
sized trees.  

Sampling has been studied to find more accurate 
decision models. Several progressive sampling 
methods have been studied. In [17] arithmetic 
progressive sampling was applied to relatively small 
sized data sets in UCI machine learning repository 
[18]. They duplicated many data to make them big, 
and tested their sampling method to find more 
accurate naive Bayesian classifier. Due to the 
limitation of arithmetic sampling that increases 
sample size arithmetically the number of trials was 
limited. In [19] three progressive sampling schedules, 

arithmetic sampling, geometric sampling, and 
dynamic prgramming sampling, were analyzed for 
induction algorithms with polynomial time 
complexity. The researchers expected that geometric 
progressive sampling which incrases sample size 
geometrically is asymptotically optimal with respect 
to computing time and error rate among the three 
sampling methods. Experiments were done for the 
three methods with C4.5 and three relatively middle 
sized data sets. In [20]  the researchers conducted 
experiments on the effect of sample size for six 
commercial data mining tools. But they did not reveal 
any information about the tools. They used two real 
world data sets. The first data set has 50,000 records 
and among them 40,000 records were used for trainng 
and 10,000 records were used for testing. The second 
data set has 1.5 million records, and 1.45 million 
records were used for training and 50,000 records 
were used for testing. The sample sizes were increased 
geometrically from the initial sample size of 500 to the 
final sample size of 32,000. So, total of six sample 
sizes were tested. They found similar results like [19]. 
But some tools showed nonmonotonic increases in 
accuracy as the sample size was increased.        
 
 

3 The Method 
 
 
3.1 Sampling methods 
 
3.1.1 Arithmetic sampling 
Arithmetic sampling is a progressive sampling method. 
Sample size is increased arithmetically so that sample 
sizes are in arithmetical progression. We can define 
sample size for sample i in arithmetic sampling with 
the following equation: 

Si = S0 + i × C            (1) 
Here, S0 is the initial sample size and C is a constant. 
So, we can have an arithmetical progression of 
samples in size, S0, S0 + C, S0 + 2C, S0 + 3C, and so on. 
For example, if S0 = 1,000 and C = 100, then S1 = 
1,100, S2 = 1,200, and so on.  

So, if we use arithmetic sampling with some 
proper C value, we can trace the bahavior of induction 
algorithms throughly. But this property may become a 
drawback of the method. We may have to do a lot of 
sampling so that we need a lot of computing time, 
because the increase rate in sample size is small. For 
example, let’s assume we have 1,000,000 records in a 
data set, and we start from 10,000 records as an initial 
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sample size and the constant C value is 500. We have 
to do sampling 9,800 times to reach to the half of the 
target data set. Because most target data sets for data 
mining contain lots of data, it is highly possible that 
arithmetic sampling alone cannot be used efficiently. 
 
3.1.2 Geometric sampling  
Geometric sampling is also a progressive sampling 
method. Sample size is increased geometrically so that 
sample sizes are in geometrical progression. We can 
define sample size for sample i in geometric sampling 
with the following equation: 

Si = S0 × Ci              (2) 
Here, S0 is the initial sample size and C is a constant. 
So, we can have a geometrical progression of samples 
in size, S0, S0⋅C, S0⋅C2, S0⋅C3, and so on. For example, 
if S0 = 1,000 and C = 2, then S1 = 2,000, S2 = 4,000, 
and so on. As we can see from the example, if we use 
geometric sampling, very soon we can see very big 
sample size. So, the target data set may be exhausted 
within a few rounds.  

As an example, let’s assume that we have 
1,000,000 records in a data set as before, and we start 
from 1,000 records as an initial sample size and the 
constant C value is 2. So, sample size goes like 1,000, 
2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000, 
256,000, 512,000. It takes only 10 rouns to reach to the 
half of the target data set.  

Another noticeable one in geometric sampling is 
that the sample size values are very sparse at the later 
stage of the sampling. So, geometric sampling can be a 
good sampling strategy, if used induction algorithms 
have the tendency of monotonic increase in 
classification accuracy as well as the complexity of 
knowledge model. Please look at Fig. 1 that depicts 
learning curve for some induction algorithm A. 
Because there is no sudden drop in prediction 
accuracy or complexity of knowledge model, 
sparseness in sample sizes will not cause any problem. 
An example of induction algorithm with this property 
is C4.5. 

But let’s assume that we have a learning curve 
that have some sudden drops with very small 
improvements in accuracy as the training size grows. 
Because geometric sampling method has very sparse 
sampling interval with respect to sample size at the 
later stage of  the sampling schedule, we might miss 
the points. 
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Fig. 1 Learning curve for some 
induction algorithm A  

Please look at Fig. 2 that depicts learning curve 
for some induction algorithm B. Because there is a 
sudden drop in complexity of knowledge model, 
sparseness in sample sizes may not detect the point. 
An example of induction algorithm having this 
property is CART. 
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Fig. 2 Learning curve in model 
complexity for some induction 
algorithm B 

3.1.3 Occam’s razor  
According to Domingos Occam’s original razor can be 
defined in two forms for data mining domain [21]. The 
first razor prefers a simpler knowledge model on the 
condition that the two knowledge models have the 
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same error rates for unseen cases. The second razor 
prefers a simpler knowledge model on the condition 
that the two knowledge models have the same error 
rates for training examples. 

Because training examples cover only some part 
of data space, it is highly possible that there are many 
unseen cases. So, preferring a simpler knowledge 
model that has the same error rate with a more 
complex knowledge model is not recommended. For 
example, if we use 10-fold cross validation method to 
train a knowledge model with relatively small sized 
target data set, choosing a simpler knowledge model 
among several candidates does not guarantee the 
smallest error rate in the future than choosing a more 
complex knowledge model, because 10-fold cross 
validation method has the tendency of Occam’s 
second razor.   So, in order to be close to Occam’s first 
razor we should ensure a large test set data as long as it 
is possible. 

 
3.1.4 Suggested method  
Because most target data data sets for data mining 
contain lots of data, it is highly possible that arithmetic 
sampling alone cannot be used efficiently.  
Because we know that overfitted decision trees do not 
perform well in prediction tasks, we should give 
appropriate parameter values for pruning [22] and 
avoid large decision trees if possible. And, moreover, 
because the size of decision trees has the tendency of 
dependency on the size of training data, it is important 
to do random sampling with appropriate sample size. 
But, because we have only limited number of data and 
the data should be divided into two parts, training and 
testing, it is not easy to determine an appropriate size 
of samples that is the best for the target data set. So, we 
resort to repeated sampling with various sizes to find 
the best one. We do the sampling until the sample size 
is less than the half of the target data set, because we 
assume that we have some large target data set and we 
want to have enough test data also. The following is a 
brief description of the procedure of the method. 
-----------------------------------------------------------------------  
INPUT : a data set for data mining,  

k: the number of random sampling for each sample 
size,  

s: initial sample size. 
OUTPUT: a proper sample size s.  
Do while s < | target data set | / 2 

Do for i = 1 to k /* generate k decision trees for 
each loop*/  

Do random sampling of size s;  
Generate a decision tree;  

End for;  
a := the average (1-error rate) of decision trees; 
A := A ∪ {a}; /* A: set of a values */  
i := (the average (1-error rate) of decision trees of 

previous step) – ( the average (1-error rate) of 
decision trees); /* average improvement rate */ 

I := I ∪ { i}; /* I: set of i values */   
d := (maximum of (1- error rate) among the 

generated decision trees) - (minimum of (1- 
error rate) among the generated decision trees); 

/* d stands for the fluctuation of (1-error rate) values 
in the generated decision trees */ 

D := D ∪ {d}; /* D: set of d values */ 
If  s >= mid_limit Then  

s := s + sample_size_increment; /* arithmetic 
sampling */ 

Else  
s := s × 2; continue;  /* while loop, geometric 

sampling */  
End if  

End while; 
--------------------------------------------------------------- 

In the algorithm we use both of arithmetic 
sampling and geometric sampling to detect some 
critical sample size that can produce smaller decision 
trees in reasonable error rates. At initial state we use 
geometric sampling, because sample size is relatively 
small, and we switch to geometric sampling when we 
reach some appropriate point. So, we double the 
sample size until the size reaches some point, 
mid_limit, then we increment the sample size with 
some fixed value, because doubling the sample size 
can exhaust the training data soon.  

Even though we do random sampling, because 
we may have some sampling bias and sampling errors, 
the generated tree may have a variety of tree sizes. So, 
in order to get rid of the effect of variety in tree size, 
we generate seven decision trees for each sample size. 
Then we average the sizes of the generated decision 
trees for each sample size, and this average decision 
tree size with improvement value and fluctuation 
value in accuracy is used to determine a proper sample 
size. By selecting a sample size that generates smaller 
decision trees in average with satisfactory error rates, 
we can have better decision tree in predictability in 
future cases.  
 
 

4   Experimentation 
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Experiments were run using two data sets in UCI 
machine learning repository [18],  'census-income' and 
‘adult’  to see the effect of the method.  

In ‘census-income’ the number of instances for 
training is 199,523 in size of 99MB data file. Class 
probabilities for label -50000 and 50000+ are 93.8% 
and 6.2% respectively. The data set was selected 
because it is relatively very large and contains lots of 
values. The total number of attributes is 42. Among 
them eight attributes are continuous attributes. The 
values in continuous attributes are converted to 
nominal values with entropy-based discretization 
method, because the method showed the best result 
according to the experiments in [23].  

In ‘adult’  data set the number of instances is 
48,842. Class probabilities for label  '>50K' is 24.78% 
and label '<=50K' is 75.22%. The total number of 
attributes is 15. Among them six attributes are 
continuous attributes. The data set was selected 
because it is relatively large and is a refined data set of 
‘census-income’ so that we can check the performance 
of our sampling method more realistically. 

We used CART and C4.5 to generate decision 
trees from various sample sizes, because the two 
decision tree algorithms are widely accepted to 
become de facto standards.  

 
 

4.1 Experimentation of ‘census-income’  data 
set  
The following table 1 shows average tree sizes and 
error rates depending on various sample sizes for 
CART. For each sample size seven random samples 
have been selected and seven decision trees have been 
generated for the experiment. The initial sample size 
for training is 2,000 and the size of samples is doubled 
as the while loop runs. The given mid_limit value for 
sample size is 16,000 and the sample size of 8,000 is 
increased after the mid_limit. The rest of data set after 
sampling is used for testing.  

In the table, the fifth column, improvement(%), 
means the percentage of improvement in accuracy 
compared to the trees of previous sample size, and the 
last column represents the difference of maximum and 
minimum values of accuracy among the decision trees 
in the given sample size. 

Table  1. Decision tree by CART with 
various sample sizes 

Samp. 
Size 

Tree 
size 

Average  
Accuracy  

Improve 
-ment(%) 

Diff. of  
max & 

(%)  min of 
accuracy 
(%) 

2,000 8 93.97 - 0.74 
4,000 10 94.29 0.32 0.81 
8,000 18 94.55 0.26 0.35 
16,000 24 94.94 0.39 0.29 
24,000 54 94.95 0.01 0.21 
32,000 22 95.01 0.06 0.30 
40,000 42 95.10 0.09 0.22 
48,000 59 95.13 0.03 0.20 
56,000 57 95.20 0.07 0.16 
64,000 48 95.22 0.02 0.18 

 
If we look at table 1, the last line has slightly 

better accuracy of 0.21% than that of the sixth line 
which has the sample size of 32,000. But we may 
perfer the sample size of 32,000 to the sample size of 
64,000, because the size of the decision tree is almost 
half so that the trees from sample size of 64,000 have 
higher possibility of overfitting. Fig. 3 shows the trend 
of average tree size as the sample size grows, and Fig. 
4 shows the trend of average accuracy as the sample 
size grows. 
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Fig. 3 The trend of average tree size as 
sample size grows (CART) 
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Fig. 4 The trend of average accuracy 
as sample size grows (CART) 

  
Note also in table 1 that the difference of 

maximum and minimum values of accuracy among 
the decision trees in the sample size of 40,000 is 
0.14% so that some good decision trees of the sample 
size are as good as the decision trees with the sample 
size of 64,000. Table 2 shows the details of each 
individual sample for the two sample sizes of 40,000 
and 64,000. Accuracies in bold characters show the 
best and worst ones. 

Table  2. Decision trees by CART with 
two different sample sizes 

Sample 
size 

 
40,000 

 
64,000 

Tree  
size 

Accuracy 
(%) 

Tree  
size 

Accuracy 
(%) 

31 95.0139 61 95.1219 
33 95.1493 51 95.2266 
39 95.2070 33 95.2584 
23 95.0603 49 95.1956 
27 94.9901 31 95.2399 
99 95.1054 41 95.2982 

 

43 95.1531 69 95.2163 
average 42 95.0970 48 95.2224 

 
Experiments with C4.5 and the same sample sets 

were also conducted and resulta are summarized in 
table 3.  

Table  3. Decision tree by C4.5 with 

various sample sizes 

Samp. 
size 

Tree 
size 

Average  
accuracy 
(%)  

Improve 
-ment(%) 

Diff. of  
max & 
min of 
accuracy 
(%) 

2,000 25 94.04 - 0.19 
4,000 55 94.58 0.54 0.32 
8,000 67 94.62 0.04 0.35 
16,000 123 94.78 0.16 0.16 
24,000 246 94.87 0.09 0.18 
32,000 326 94.95 0.08 0.28 
40,000 343 95.08 0.13 0.14 
48,000 432 95.04 -0.04 0.28 
56,000 467 95.08 0.04 0.17 
64,000 490 95.14 0.06 0.16 

 
If we look at table 3, the last line has slightly 

better accuracy of 0.06% than the seventh line which 
has the sample size of 40,000. But we may not choose 
the sample size of 64,000, because the size of the 
decision tree is almost 1.5 times larger so that the trees 
have higher possibility of overfitting. Fig. 5 shows the 
trend of average tree size as the sample size grows, and 
Fig. 6 shows the trend of average accuracy as the 
sample size grows.  

�
� � �
m � �
i � �
l � �
o � �
n � �

p q q q r q q q s q q q
t u q q q

p
r q q q

v p q q q r q q q q r s q q q
w u q q q

u
r q q q

x y z { | } x ~ � }

� ���
�� ��

 

Fig. 5 The trend of average tree size as 
sample size grows (C4.5) 

WSEAS TRANSACTIONS on COMPUTERS Hyontai Sug

ISSN: 1109-2750 636 Issue 4, Volume 8, April 2009



� � � �
� � � �
� � � �

� �
� � � �
� � � �
� � � �
� � � �

� �
� � � �
� � � �

� � � � � � � � � � � �
� � � � �

� � � � �
� � � � � � � � � � � � � � � � � � � �

�
� � � �

� � � �   ¡ � ¢ £ ¡

¤¥¥
¦§¤¥
¨

 

Fig. 6 The trend of average accuracy 
as sample size grows (C4.5) 

Note also in table 3 that the difference of 
maximum and minimum values of accuracy among 
the decision trees in the sample size of 40,000 is 
0.14% so that some good decision trees of the sample 
size are as good as the decision trees with the sample 
size of 64,000. Table 4 shows the details of each 
individual sample for the sample sizes of 40,000 and 
64,000. Accuracies in bold characters show the best 
and worst ones. 

Table  4. Decision trees by C4.5 with 
two different sample sizes 

Sample 
size 

 
40,000 

 
64,000 

Tree  
size 

Accuracy 
(%) 

Tree  
size 

Accuracy 
(%) 

208 95.0973 344 95.1049 
387 95.0653 277 95.0702 
432 95.1480 564 95.1573 
423 95.1129 568 95.1632 
272 95.0985 542 95.1285 
387 94.9713 502 95.2340 

 

289 95.0571 635 95.1484 
average 343 95.0786 490 95.1438 

 
 

4.2 Experimentation of ‘adult’  data set  
For ‘adult’  data set the initial sample size for training 
is 400 and the size of samples is doubled as the while 
loop runs. The given mid_limit value for sample size 

is 6,400 and the sample size of 3,200 is increased after 
the mid_limit. The rest of data set after sampling is 
used for testing. Table 5 summerizes the results of the 
experiment. 

Table  5. Decision tree by CART with 
various sample sizes 

Samp. 
Size 

Tree 
size 

Average  
Accuracy  
(%)  

Improve 
-ment(%) 

Diff. of  
max & 
min of 
accuracy 
(%) 

400 12.7 82.3144 - 4.7727 
800 13.6 83.1540 0.8396 3.0619 
1,600 19.6 84.2112 1.0572 0.9018 
3,200 35.3 84.7096 0.4984 1.5293 
6,400 56.1 85.3451 0.6355 1.0010 
9,600 55.9 85.8173 0.4722 0.4383 
12,800 63.3 85.9145 0.0972 0.3325 

 
If we look at table 5, the last line has slightly 

better accuracy of 0.1% than that of the sixth line 
which has the sample size of 9,600. But we may perfer 
the sample size of 9,600 to the sample size of 12,800, 
because the size of the decision tree is about 13% 
smaller so that the trees from sample size of 12,800 
have higher possibility of overfitting. Fig. 8 shows the 
trend of average tree size as the sample size grows, and 
Fig. 9 shows the trend of average accuracy as the 
sample size grows. 
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Fig. 7 The trend of tree size as sample 
size grows (CART) 
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Fig. 8 The trend of accuracy as sample 
size grows (CART) 

Note also in table 5 that the difference of 
maximum and minimum values of accuracy among 
the decision trees in the sample size of 9,600 is 
0.4383% so that some good decision trees of the 
sample size are as good as the decision trees with the 
sample size of 12,800. Table 6 shows the details of 
each individual sample for the last two sample sizes. 
Accuracies in bold characters show the best and worst 
ones. 

Table  6. Decision trees by CART with 
two different sample sizes 

Sample 
size 

 
9,600 

 
12,800 

Tree  
size 

Accuracy 
(%) 

Tree  
size 

Accuracy 
(%) 

35 85.5971 43 85.8403 
69 85.7398 59 86.0831 
49 86.0226 71 85.8169 
53 85.7194 129 86.0850 
37 85.8188 65 85.8581 
59 85.7882 35 85.9556 

 

89 86.0354 41 85.7625 
average 55.9 85.8173 63.3 85.9145 

 
Experiments with C4.5 and the same sample sets 

were also conducted and resulta are summarized in 
table 7.  

 

Table  7. Decision tree by C4.5 with 

various sample sizes 

Samp. 
size 

Tree 
size 

Average  
accuracy 
(%)  

Improve 
-ment(%) 

Diff. of  
max & 
min of 
accuracy 
(%) 

400 29.6 82.2810 - 4.1142 
800 51.7 83.5558 1.2748 3.8987 
1,600 83.1 83.8515 0.2957 2.2438 
3,200 129.1 84.6739 0.8224 0.8413 
6,400 187.6 85.1001 0.4262 0.6102 
9,600 325.3 85.5443 0.4442 0.4179 
12,800 424.3 85.5576 0.0133 0.5090 

 
If we look at table 7, the last line has slightly 

better accuracy of 0.0133% than the sixth line which 
has the sample size of 9,600. But we may not choose 
the sample size of 12,800, because the size of the 
decision tree is almost 1.3 times larger so that the trees 
have higher possibility of overfitting. Fig. 9 shows the 
trend of average tree size as the sample size grows, and 
Fig. 10 shows the trend of average accuracy as the 
sample size grows. 

Á
Æ Á

Â Á Á
Â Æ Á
Ã Á Á
Ã Æ Á
Ä Á Á
Ä Æ Á
Å Á Á
Å Æ Á

É Ê Ê Ë Ê Ê Ì Í Ê Ê Î Ï Ê Ê Í É Ê Ê Ð Í Ê Ê Ì Ï Ë Ê Ê
Ñ Ò Ó Ô Õ Ö Ñ × Ø Ö

Þ Üßß
àá âß

 

Fig. 9The trend of tree size as sample 
size grows (C4.5) 
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Fig. 10 The trend of accuracy as 
sample size grows (C4.5) 

Note also in table 7 that the difference of 
maximum and minimum values of accuracy among 
the decision trees in the sample size of 9,600 is 
0.4179% so that some good decision trees of the 
sample size are as good as the decision trees with the 
sample size of 12,800. Table 8 shows the details of 
each individual sample for the last two sample sizes. 
Accuracies in bold characters show the best and worst 
ones. 

Table  8. Decision trees by C4.5 with 
two different sample sizes 

Sample 
size 

 
9,600 

 
12,800 

Tree  
size 

Accuracy 
(%) 

Tree  
size 

Accuracy 
(%) 

290 85.3448 490 85.5582 
418 85.3601 353 85.7317 
264 85.7627 410 85.2314 
363 85.5232 400 85.6323 
480 85.6608 379 85.5013 
166 85.4646 400 85.5077 

 

296 85.6939 538 85.7404 
average 325.3 85.5443 63.3 85.5576 

 
 
5   Conclusions 
Decision trees are widely accepted for data mining and 
machine learning tasks so that it is known that decision 

trees are one of the most successful data mining tools. 
But, decision trees may not always be the best data 
mining method due to the fact that they are built based 
on some greedy algorithms for limited data set. As a 
tree is being built, each branch starts having less 
number of training examples, so that the reliability of 
each lower branch becomes worse than the upper 
branches, therefore overfitting problem can happen. 
An overfitted trees may lead to unnecessary tests of 
attributes and may not represent knowledge model that 
are best for the domain.  

Because the target data sets in data mining tasks 
contain a lot of data, random sampling has been 
considered a standard method to cope with large data 
sets that are common in data mining task. But, simple 
random sampling might not generate perfect samples 
that are good for the used data mining algorithms. 
Moreover, the task of determining a proper sample 
size is arbitrary so that the reliability of the generated 
data mining models may not be good enough to be 
trusted.  

We propose a repeated sampling method with 
various sample sizes to decide the best size of random 
samples for decision tree algorithms. We consider the 
principle of Occam’s razor that prefers simpler 
decision trees, if the candidate decision trees have 
similar performances. Experiments with a real world 
data sets and two representative decision tree 
algorithms, CART and C4.5 showed very promising 
results.  
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