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Abstract: - Machine Learning is a computational methodology that provides automatic means of improving 
programmed tasks from experience. As a subfield of Machine Learning, Grammatical Inference (GI) attempts 
to learn structural models, such as grammars, from diverse data patterns, such as speech, artificial and natural 
languages, sequences provided by bioinformatics databases, amongst others. Here we are interested in 
identifying artificial languages from sets of positive and eventually negative samples of sentences. The present 
research intends to evaluate the effectiveness and usefulness of grammatical inference (GI) in control systems. 
The ultimate far-reaching goal addresses the issue of robots for self-assembly purposes. At least two benefits 
are to be drawn. First, on the epistemological level, it unifies two apparently distinct scientific communities, 
namely formal languages theory and robot control communities. Second, on the technological level, blending 
research from both fields results in the appearance of a richer community, as has been proven by the emergence 
of many multidisciplinary fields. Can we integrate diversified works dealing with robotic self-assembly while 
concentrating on grammars as an alternative control methodology? Our aim is to answer positively this central 
question. As far as this paper is concerned, we set out the broad methodological lines of the research while 
stressing the integration of these different approaches into one single unifying entity.        
 
Key-Words: - Machine learning, robot control, grammatical inference, graph grammar, formal languages for 
control, self-assembly, intelligent control, emergent control technologies.   
 
 
1 Introduction 

For the purpose of the present work, Grammatical 
Inference (GI) is understood as the learning of the 
syntax of a given language. As a general 
computational method, GI is therefore the process 
whereby a language is automatically generated from 
positive and eventually negative examples of 
sentences [1]. On the hand, assembling geometrical 
shapes into whatever desired shape is a difficult 
control problem. More specifically, self-assembly is 
the process in which a disordered system of pre-
existing shapes or components forms an organized 
structure or pattern as a consequence of specific, 
local interactions among the components 
themselves, without external direction. It is 
therefore a phenomenon in which a collection of 
particles spontaneously arrange themselves into a 
coherent structure. In nature, self-assembly is 
ubiquitous. For example, cell membranes, and 

tissues are self-assembled from smaller components 
in a decentralized fashion. It is common to 
encounter, in the natural world members of 
decentralized systems that self-organize in response 
to environmental stimuli and to each other to 
produce complex global behaviors. This is referred 
to as flocking. Birds and bacteria group behavior are 
among the most common examples. Flocking has 
been used as a metaphor for the study and 
development of artificial swarm intelligence-based 
systems. Self-assembly, as a facet of flocking is 
beginning to find its way into science and 
engineering, through various disciplines ranging 
from molecular application encountered in 
bioinformatics [24], to robot reconfiguration [25], 
and stochastic self-assembly [15], among others.   

Assembling shapes into a given pattern can be 
seen as a “language” where the small shapes are the 
“words” and the obtained pattern correspond to a 
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“sentence” obeying some specific rules or 
“grammar” for generating grammatically correct 
sentences. The process of self-assembly can 
therefore be seen as the automatic generation of a 
language.    

One of the central questions for robotic self-
organized systems is to know whether it is possible 
to synthesize a set of local controllers that produce a 
prescribed global behavior that is sufficiently robust 
to uncertainties about the environmental conditions. 
Since assembling geometrical shapes into some 
desired shape can be viewed as a set of sentences of 
a language, it is therefore not surprising to address 
this issue from the standpoint of grammars. By 
grammar we mean the set of rules that are used to 
generate a given language. More precisely, we 
propose to make use of grammatical inference (GI). 
Ultimately graph grammars are used as an emerging 
field that we believe to be promising [17]. The paper 
is organized as follows. In Section 2, the issue of 
controlling robots is addressed with concentration 
on self-assembly using GI. Section 3 describes the 
methodological steps to follow in order to solve the 
self-assembly problem using grammars, as an 
ultimate result of the actual work. In Section 4, 
results and discussions are presented. Then we 
conclude.  

 
2 Problem Formulation 
2.1 Preliminaries 

Based on our experience, gained in developing 
computer-aided control systems environments [7], 
[8] and in integrating various computer-aided 
engineering methods [9], we take, as point of 
departure of this research, an updated version of the 
Inductive Learning System for Grammatical 
Inference, or the so-called ILSGInf; a system 
capable of heuristically inferring, from positive 
examples of sentences, any regular language and 
some context-free languages (CFLs) [11]. ILSGInf 
classifies the negative examples correctly but does 
not take them into account for improving the 
grammar it generates. In other words, the positive 
examples help ILSGINf in improving the generated 
grammar, but the negative ones do not contribute to 
this improvement.  

At the outset, we study grammatical inference 
(GI) as a special case of the larger problem of 
inductive machine learning. Then we describe graph 
grammars with a special emphasis on robotic self-
assembly applications. We further propose a three-
task methodology for robot control ending with 
graph grammatical inference. Concerning 
implementation, we discus the application of GI to a 

context-free language (CFL) as a prelude to a 
grammatical-based control.  
 
2.2 Modes of self-assembly  

Self-assembly, as defined above, comes in two 
modes, passive and active. In passive self-assembly, 
particles interact according to their geometry or 
surface chemistry and stay in a thermodynamic 
equilibrium, once this steady-state is reached. 
Particles behavior in chemical reactions can be 
classified in this mode. The geometrical patterns in 
the natural world give a clear indication that self-
organized systems are omnipresent, from leaves to 
snowflakes, all governed by emergence of global 
patterns based on smaller patterns or fractals.  

In active self-assembly, each particle may 
expend energy to accept some interactions with 
other particles while rejecting others, according to a 
controlling program. Typical examples are multi-
robot systems, where small groups of robots 
determine the outcome of encounters according to 
their internal programming [17]. In our work, we 
will concentrate on this latter mode of self-
assembly.    

 
2.2 Self-assembly central issue 

As stressed above, the main question in 
programmed self-organization concerns the ability 
to design rules that govern the global behaviour of a 
system by means of local rules. In a wide variety of 
settings, we can design local rules that yield a 
specified behaviour, with the ability to reason about 
the correctness of the result. In some circumstances, 
we can provide algorithms that automatically 
generate such a set of rules. Recent results are 
obtained in diverse areas ranging from algorithmic 
self-assembly of DNA [24], to the formation 
stabilization of multiple agents using decentralized 
navigation functions [12]. These results indicate that 
the emergent behaviour of a self-organizing system 
can be precisely predicted and controlled, although 
there is much work to be done to understand the 
physics, dynamics, and implementation of self-
organization.  

Progress in this area promises to open up new 
vistas for a completely new era of bottom-up 
engineering of systems, ranging from programmable 
nano-scale molecular machines to controlled 
swarms of interacting autonomous robots [16].  
 
2.3 Grammatical tools for self-assembly  

We consider the issue of programming active 
self-assembling systems at the level of interactions 
among particles in the system. To demonstrate the 
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approach, we propose to simulate the control of 
robots and consider illustrative examples from the 
literature. We follow two complementary directions: 

(i) Use of GI as a control methodology. 
(ii) Use of inference in graph grammars.  

As far as this paper is concerned, only GI as an 
alternative control methodology is investigated. 
Special reference is given to machine dives to 
establish a link between formal languages and 
control systems.  
 
2.4 Grammatical inference (GI) 
2.4.1 Formal grammar  

A formal string grammar or simply grammar G 
has four components [3]: 
   - A set of symbols VN called non-terminals.  
   - A set of symbols VT, called terminals with the 

restriction that VT and VN are disjoint. 
   - A special non-terminal symbol S, called a start 

symbol. 
   - A set of production rules P.  
In other words, a formal string grammar is a set of 
rules that says whether a string of characters (e.g. a 
sentence in a natural language), constructed from 
the starting symbol, can be expressed in the form of 
terminals (words) i.e. the general form of a 
sentence.   
 
2.4.2 Inference  

Inference is defined as the process of reasoning 
from premises or conditions to consequent or 
conclusion. Inductive inference is a generalization 
process which attempts to identify a hidden 
function, given a set of its values. As mentioned 
above, in formal languages settings, learning the 
syntax of a language is usually referred to as 
grammatical inference or grammar induction (GI); 
an important domain for both cognitive and 
psycholinguistic domain as well as science and 
engineering. We are concerned with the problem of 
constructing a grammar from some given data. 
These latter, whether sequential or structured, are 
composed from a finite alphabet, and may have 
unbounded string-lengths.  

In relatively simple situations, induction 
considers a deterministic finite-state automaton, or 
DFA, that takes strings of symbols as input, and 
produces a binary output, indicating whether that 
string, or sentence, is a part of the DFA’s encoded 
language. In this particular example, GI builds a 
model of the hidden DFA internal structure, based 
only on pairs of input sentences and classifications, 
or outputs. From a control theory point of view, this 
is a classical input-output identification problem. 
The most successful GI algorithms produced so far 

are heuristic in nature; and ILSGInf is one of these 
[11]. An overview of some of these algorithms can 
be found in [1].   
 
2.4.3 GI as a machine learning discipline 

 The objective of machine learning is to produce 
general hypotheses by induction, which will make 
predictions about future instances. The externally 
supplied instances are usually referred to as training 
set. Generally speaking, machine learning explores 
algorithms that reason from externally supplied 
instances, also called inputs, examples, data, 
observations, or patterns, according to the 
community where these appear.  Because GI is 
considered as a sub-field of machine learning, it 
therefore inherits this fundamental characteristic.   

To induce a hypothesis from a given training 
set, a learning system needs to make assumptions, or 
biases, about the hypothesis to be learned. A 
learning system without any assumption cannot 
generate a useful hypothesis since the number of 
hypotheses that are consistent with the training set is 
practically infinite and many of these are totally 
irrelevant [19]. One of the issues addressed in our 
work is to consider reasonable ways and means for 
reducing the computational obstacles as far as 
applied GI is concerned [10]. Others considered 
evolutionary methods to address the issue [21].  
 
3 Problem Solution 

We describe the main building blocks of the 
proposed solution in the form of a general scientific 
method. In the sequel, we make a top-down 
description of the proposed methodology, starting 
from graph grammars and ending with string 
grammars as applied to control drives.   We propose 
to theoretically address the three tasks described 
below, but we will specifically develop only limited 
ad hoc orientations among these. Our ultimate goal 
is the application of inference to graph grammars in 
the context of self-assembly.  

 
3.1 Graph grammars 
3.1.1 What are graph grammars? 

Graphical structures of various kinds, like 
graphs, diagrams, visual sentences are very useful to 
describe complex structures and systems in a direct 
and intuitive way. Graph grammars have been 
invented in the early seventies in order to generalize 
Chomsky’s string grammars. This generalization 
consists in gluing graphs instead of concatenating 
strings. Graph grammars are evolving graphs from 
some starting graph, and whose evolution follows 
specified production rules.  
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A graph grammar is a pair (G0, P) where: 

• G0 is called the starting graph  
• P is a set of production rules.  
 

A graph is a pair (V, E) where:  
• V is a finite set called vertices 
• E is a finite set with elements in V×V, called 

edges.  
 

Similarly to a language generated by string 
grammars, a language generated by a graph 
grammar is the set of graphs that can be derived 
from the starting graph and applying rules in P [23]. 
Mathematical accounts of graph grammars are based 
on algebraic representation [4]. 
 
3.1.2 Application of graph grammars in self-

assembly 
From the point of view of graphical 

programming languages, graph grammars are useful 
especially in the storage level. Thus, instead of 
storing all these graphical structures as individual 
objects, we store only their grammar for reasons of 
compact size and generative power. While earlier 
mathematical work focused on string grammars, 
more interest is recently based on tree and graph 
grammars [14].  

In self-assembly applications, graph grammars 
are used to model the physics of the particles by 
describing the outcomes of interactions among 
them. When used to program the desirable outcomes 
of interactions among particles, a graph grammar 
represents a description of a communication 
protocol and is thus intended to be coupled with a 
physical model of the environment that mediates the 
interactions. In particular, a suitably designed graph 
grammar can precisely describe and direct the 
changing network topology of a self-organizing 
system [20]. 
 
3.2 GI and control systems  
3.2.1 Motivation for using grammars to control 

of machine drives  
Before embarking on self-assembly, we 

describe the interaction between the control problem 
and GI. As a simpler control problem we consider 
control of machine drives. It is an area where GI has 
been applied with various degrees of success [18]. 
Control of machine drives is a specialized subject in 
its own right, usually studied within traditional 
disciplines such as electrical and / or mechanical / 
industrial engineering. Based on mathematical 
models, this subject encompasses a tremendous 
body of knowledge since the early days of Wiener’s 

cybernetics going back to the late 40’s. To 
dynamically control a machine drive is to let it 
follow an imposed behavior, automatically 
calculated in real-time. The main methodology of 
dynamic control is therefore to produce the so-
called prescribed feedback control law on the basis 
of output observations, as and when needed [13]. If 
the environment is unknown, we use adaptive 
control.   

For the purpose of this work, we are only 
concerned with control, using grammars as a 
methodology. So far, by GI, we intend only 
deterministic finite automata DFA, equivalent to 
regular grammars, on the one hand and some 
context-free grammars (CFGs), on the other hand. If 
we refer to Chomsky hierarchy, only type-3 and 
subclasses of type-2 grammars, respectively, are 
concerned [10]. Now, in order to control drives, 
these classes of grammars are not sufficient. We 
need to include larger classes of grammars such as 
context-sensitive grammars or type-1. This is a real 
challenge for GI community since there remain 
many obstacles in inferring DFAs, let alone context-
sensitive grammars. Supplementary human-supplied 
expert codification is needed in order to account for 
this kind of inference.  
 
3.1.2 Steps for using GI in control systems 

To develop a grammatical description and a GI 
algorithm for controlled dynamical systems three 
steps are required [18].  
 
3.1.2.1 Quantification of the variables 

Quantification refers to the creation of alphabets 
for the output (controlled) variable y and the control 
variable U. The objective is to generate the control 
U in order to maintain the output y within some 
prescribed values. A terminal alphabet VT is 
associated to the output variable y and the non-
terminal alphabet VN to the control variable U. The 
feedback control law generates the required value of 
the input U so as to keep the output y within a 
specified range. For so doing, a quantification of the 
variables is made, in a discrete way, dividing the 
variables range into equal intervals and associating 
each interval to a symbol in the alphabet.  
 
3.2.2.2 Production rules 

p-type productions are defined by the human 
expert to be some substitution rules of a given form. 
This human-supplied codification is necessary. A p-
type production codes the evolution of the output 
variable, depending on its p past values and on the 
value of the control variable U. There is, therefore, a 
functional relationship between the dynamics of the 
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system and the p-type productions. Note that p-type 
productions as described here have nothing to do 
with Proportional-control or P-control action.  
 
3.2.2.3 Learning 

A learning algorithm is necessary to extract the 
productions from the experimental data. To obtain a 
sample of the language, a sequence of control 
signals is applied to the system in such a way that 
the output variable y takes values in a sufficiently 
wide region. The signal evolution is then quantified 
as described above, and a learning procedure is 
followed.   
 
3.2.3 Comparing GI-controlled systems with 

other methods 
A useful methodological comparison can be 

made between grammatical methods and other 
methods such as:  

(i) Observer-based methods of control [13].  
(ii) Soft computing, e.g. fuzzy control [6].  

 
3.3 Three Levels for Solution  
3.3.1 Extending GI to graph grammars  
 

 
Level 1  

Methodology 13 
// Extend known techniques used in GI  to 

graph grammars // 
 
1 Make state of the art of GI in the following 

order:  
  

1.1 State of the art in regular GI. 
1.2. Study CFGs inference.  
1.3. Concentrate study on structural 

methods such as: 
- Tree grammars, 
- Graph grammars. 
 

2. Study graph grammars and their algebra.  
 
3. Investigate the use of inference in graph 

grammars. 
 

Figure 1 
Methodology for extending known techniques used 

in GI to graph grammars  
 

 
3.3.2 Formal languages for systems control   
The main issue here is to consider how formal 
languages can help in developing novel techniques 
in system control.  
 
 
 

Level 2 
Methodology 23 

// Formal languages for systems control // 
 
1. Study current methods for system control 

based on formal languages.  
 
2. Consider control methods based on 

(string) grammar inference.  
 
      2.1 Apply ILSGInf [11] in control drives. 
      2.2 Extend ILSGInf application to robot 

control.  
 

           
Figure 2 

Formal languages for systems control 
 

3.3.3 Study of graph grammars for self-assembly  
The main issue here is to address the issue of self-
organizing systems and robotics self-assembly using 
graph grammars which provide a compact 
representation of subgraph transitions arising from 
local interactions. Although graph grammars have 
been successfully used to control robot systems 
[16], they best describe changing networks, not, for 
example, low-level robot motion. That is why the 
methodology provides another level of design 
dealing with graph grammar inference.  
 
 

Level 3 
Methodology 33 

// Robotics self-assembly and graph 
grammars // 

 
1. Study available methods using graph 

grammars in self-assembly. 
 
2. Apply graph grammars inference [5] to 

robotics self-assembly.  
 
 

Figure 3 
Robotics self-assembly and graph grammars 

 
3.4 Summing Up  
Networked robot systems require methods that 
control both the network dynamics and each 
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individual robot behaviors. We need therefore to 
make an account of both aspects of the problem.  
 

 
Methodology 4 

// Report specific research issues // 
 

1. GI-based control vs. other control 
methods, namely: 

 
1.1 Observer-based methods [13].  
1.2 Soft computing-based control 

methods.  
 
2. Emphasise importance of inference in 

graph grammars. 
 

2.1 Consider individual behavior 
2.2 Consider networked behavior 

 
3. Make recommendations and a feasibility 

study of the proposed method. 
 
 

Figure 5 
Specific research issues 

 
4 Results  

Since we are at the beginning of the work, results 
mainly concern the applicability of GI to machine 
drives as a simpler application of the novel GI-based 
control methodology. 
 
4.1 Dynamical systems and GI  
GI is used as an algorithm by which a grammar is 
inferred from a set of sample words produced by the 
dynamical system considered as the linguistic 
source. Therefore in order to apply GI procedures, a 
dynamical system must be considered as linguistic 
source capable of generating a specific language. 
The set of productions encodes the dynamics of the 
system that generates the language. Any word that 
can be derived from the start symbol S by a 
sequence of productions of the grammar is said to 
be in the language generated by the dynamical 
system.  For example, a grammar of the form: 
 
G = (VN, VT, P, S,) 
VN  = {A, B, C, S} 
VT  = {a, b } 
P  = {  A → a, B → b, S → AB, C  AS, S → 

CB }  
 
generates the language of the form: 
 

L = { w = anbn, n>=1} 
 

with words consisting of any non-zero number of  a 
symbols followed by any non-zero number of b 
symbols. The GI procedure applied to this example 
is detailed in Section 4 below. We show how 
ILSGInf automatically generates the grammar from 
a few examples. 
 
4.2 Using ILSGInf  
4.2.1 Initial grammar generation 
ILSGInf starts by generating an initial grammar of 
the form :  
 
G0 = (VN0, VT0, P0, S) where: 
 
VN0= {A / A non-terminal of derivative tree}    
VT0 = {a / a is a symbol of input character string} 
P0 = { R / R rule of the form A → BC ;or  A →  a} 

with A, B, C non-terminals in derivation tree. 
S = initial symbol.    
 
Figure 6 below describes the algorithm for 
generating the initial grammar, from which the 
inference starts.  
 

 
Algorithm for initial grammar generation 

 
/* Algorithm for the construction of  initial  

grammar  
G0 = (VN0, VT0, P0, S) */  

 
 
Begin 
string[i]  /* table containing the string example */ 
 
n           /* length of initial global string */  
 
Initial_symbol:="S"     /*creation of initial symbol, 

by convention "S"*/ 
 
i:=1, k:=1                       /*indices*/       
  
/* Associate to each terminal one non-terminal */ 
   /* create the set of  initial rules as follows */ 
 
for i=1 to n do 
      if string[i] is not yet associated with a non-

terminal  
      then create_the_rule non-terminal(k) →  

string[i]  
 
      
 k:=k+1 
 
      endif 
 
endfor 
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if n<= 2                    /* Derivation from S* / 
   then  create_rule S → <non-terminal(1) <non-

terminal(2) 
 
         else  /*Construction of derivation tree from 

bottom to top */ 
 
         create_the_rule non-terminal(k)   →   <non-

terminal(1) <non-terminal(2) 
 
         i:=3; k:=k+1   
 
    while i<n do 
     create_the_rule non-terminal(k) → <non-

terminal(k-1) <non-terminal(i) 
      
k:=k+1; i:=i+2 
 
     endwhile 
 
  /* For string to be recognized, it must derive 

from root * / 
     create_rule S → <non-terminal(k-1) <non-

terminal(i)  
                                  
endif 
 
end 
 

  
Figure 6 

 Algorithm for initial grammar generation 
 
4.2.2 Generating lists and sub-lists for a Context-

Free Language (CFL) 
Using the same example as above, we give some 
results obtained by ILSGInf in the identification of a 
context-free language (CFL) of the form:  
 

L = { w = anbn, n>=1} 
 
A possible grammar for L is: 
 
G = (VN, VT, P, S,) 
VN  = {A, B, C, S} 
VT  = {a, b } 
P = { A → a, B → b, S →AB, C  AS, S →CB }  
 
 
 
 
 
 
 
 
 
 
 

(1) Filling the fact base  
 

This grammar is stored as facts as follows: 
 
 

/* Application 1 */ 
 

/*  Fact Base for CFL  
L = { w = anbn, n>=1}  */ 

 
/* Production rules stored as facts */ 

 
FACT  RULE A                   // Fact1 // 
FACT  RULE B  b               // Fact2 //  
FACT  RULE S   A  B         // Fact3 // 
FACT  RULE S   C   B       //  Fact4 // 
FACT  RULE C   A   S      // Fact5 // 
 
FACT  initial_symbol S  // Fact6 // 
 
 
/* Sentence to be parsed and its length */ 

 
FACT  string   aaabbb     // Fact7 //    
FACT  length  6      // Fact8 // 
 
 

Figure 7 Fact base for the CFL 
L = { w = (a nbn, n>=1} 

 
Each production rule in the grammar is stored as a 
fact (Fact1,2,3,4,5,6). The sentence to be parsed 
(Fact7) and its length (Fact8) are also introduced in 
the fact base.  
 
 
(2) Inference Cycles 
Like any inference process in knowledge-based 
systems, it is composed of three main steps, namely 
detection, conflict resolution and termination.  
 
 
(3) Parsing Final Result 
Figure 8 describes the final result using aaabbb as 
training example.  
 

sub-list 0 sub-list 1 
I0    

 

S →•CB, 0 

S →•AB, 0 

C →•AS, 0 

A → • a, 0 

I1   

 

A → a •, 0 

S →A•B, 0 

C →A•S, 0 

B → • b,1 

S → •AB,1 
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S → •CB,1 

A → •a,1 

C → •AS,1 

 
 

sub-list 2 sub-list 3 

I2   

 

A →  a•,1 

S → A•B,1 

C → A•S,1 

B → •b,2 

S → •AB,2 

S → •CB,2 

A → •a,2 

C → •AS,2 

 

I3   

 

A →  a •,2 

S →A •B,2 

C → A•S,2 

B → •b,3 

S → •AB,3 

S → •CB,3 

A → •a,3 

C → •AS,3 

sub-list 4 sub-list 5 

I4   

 

B →  b •,3 

S →AB •,2 

C → AS•,1 

S →C•B,1 

B → •b,4 

 

I5 

 

B → b •,4 

S→ CB •,1 

C → AS •,0 

S → C •B,0 

B → •b,5 

 

sub-list 6  

I6 

 

B →  b •,5 

S→ CB •,0 

 

 

 
Figure 8 Progressive construction of sub-lists for 

CFL  L = { w = (a nbn, n>=1} with positive 
example aaabbb 

 
Discussions and decisions  
Decision: The introduced sentence aaabbb is 
accepted because in sub-list 6, we find the item  
S →CB •, 0 
6.2.2 Counter example  
Let’s consider the same language L as above but 
with a counter example of the form aabbb.  

(1) Fact Base  
 
 

/* Application 2 */ 
 

/* Fact Base with Counter Example */ 
 

/* Production rules stored as facts */ 
 
FACT  RULE A  a           // Fact1 // 
FACT  RULE B  b                    // Fact2 //  
FACT  RULE S   A  B              // Fact3 // 
FACT  RULE S   C   B             // Fact4 // 
FACT  RULE C   A   S             // Fact5 // 
 
FACT  initial_symbol S           // Fact6 // 
 
 
/* Sentence to be parsed and its length */ 

 
FACT  string   aabbb           // Fact7 //    
FACT  length                     // Fact8 // 
 

 
Figure 9 Fact base with counter example for 

CFL  L = { w = (a nbn, n>=1} 
 
(2) Inference cycles  
As above 
 
(3) Parsing Final Result 
Figure 10 describes the final result using aabbb as 
counter example.  
 
 

sub-list 0 sub-list 1 
I0    

 

S →•CB, 0 

S →•AB, 0 

C →•AS, 0 

A → • a, 0 

I1   

 

A → a •, 0 

S →A•B, 0 

C →A•S, 0 

B → • b,1 

S → •AB,1 

S → •CB,1 

A → •a,1 

C → •AS,1 

 

sub-list 2 sub-list 3 

I2   

 

A →  a•,1 

I3   

 

B → b•,2 
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S → A•B,1 

C → A•S,1 

B → •b,2 

S → •AB,2 

S → •CB,2 

A → •a,2 

C → •AS,2 

 

S →AB •,1 

C → AS•,0 

S → C•B,0 

B → •b,3 

 

 

sub-list 4 sub-list 5 

I4   

 

B →  b •,3 

S →CB•,0 

 

I5 

 

empty 

 

 
Figure 10 Progressive construction of sub-lists for 

CFL  L = { w = (a nbn, n>=1} with 
counterexample aaabbb 

 
Discussions and decisions  
Decision: The introduced sentence aabbb is NOT 
accepted because sub-list 5 is empty. Note that 
although ILSGINf has successfully classified the 
example as negative, it does not use this information 
for improving the grammar. This latter is only 
improved by positive examples only.  
 

5 Conclusion 
The present research work paves the way towards an 
objective evaluation and a thorough study of the 
effectiveness and usefulness of grammatical 
inference in the control of robots for self-assembly 
purposes. It represents an early contribution as far as 
graph grammars inference integration is concerned. 
A unification of the diversified works dealing with 
robotic self-assembly while concentrating on graph 
grammars as an alternative control method is made 
possible. This is done using a three-level 
methodology for self-assembly robotic control 
starting with string grammatical inference and 
ultimately leading to inference in graph grammars. 
However, the results report only a tiny aspect of the 
overall issue, since these describe only the case of 
context-free language (CFL) inference as part of the 
control of machine drives. Much work is still 
required on both sides, i.e. robotics and formal 
languages, for the development of fully-integrated 
systems that scale up to real-life applications.   
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