
Grammatical Inference Methodology for Control Systems

ABOUBEKEUR HAMDI-CHERIF (1), CHAFIA KARA-MOHAMMED (alias HAMDI-CHERIF)(2)
Computer Science Department

Qassim University
PO Box 6688 – 51452 Buraydah

SAUDI ARABIA

(1),(2) Permanent Address : Université Ferhat Abbas Setif (UFAS)
Faculty of Engineering

Computer Science Department
19000 Setif
ALGERIA

(1),email: shrief@qu.edu.sa , elhamdi62@gmail.com
(2),email: smhmd@qu.edu.sa , chafikmo@yahoo.com

Abstract: - Machine Learning is a computational methodology that provides automatic means of improving
programmed tasks from experience. As a subfield of Machine Learning, Grammatical Inference (GI) attempts
to learn structural models, such as grammars, from diverse data patterns, such as speech, artificial and natural
languages, sequences provided by bioinformatics databases, amongst others. Here we are interested in
identifying artificial languages from sets of positive and eventually negative samples of sentences. The present
research intends to evaluate the effectiveness and usefulness of grammatical inference (GI) in control systems.
The ultimate far-reaching goal addresses the issue of robots for self-assembly purposes. At least two benefits
are to be drawn. First, on the epistemological level, it unifies two apparently distinct scientific communities,
namely formal languages theory and robot control communities. Second, on the technological level, blending
research from both fields results in the appearance of a richer community, as has been proven by the emergence
of many multidisciplinary fields. Can we integrate diversified works dealing with robotic self-assembly while
concentrating on grammars as an alternative control methodology? Our aim is to answer positively this central
question. As far as this paper is concerned, we set out the broad methodological lines of the research while
stressing the integration of these different approaches into one single unifying entity.

Key-Words: - Machine learning, robot control, grammatical inference, graph grammar, formal languages for
control, self-assembly, intelligent control, emergent control technologies.

1 Introduction

For the purpose of the present work, Grammatical
Inference (GI) is understood as the learning of the
syntax of a given language. As a general
computational method, GI is therefore the process
whereby a language is automatically generated from
positive and eventually negative examples of
sentences [1]. On the hand, assembling geometrical
shapes into whatever desired shape is a difficult
control problem. More specifically, self-assembly is
the process in which a disordered system of pre-
existing shapes or components forms an organized
structure or pattern as a consequence of specific,
local interactions among the components
themselves, without external direction. It is
therefore a phenomenon in which a collection of
particles spontaneously arrange themselves into a
coherent structure. In nature, self-assembly is
ubiquitous. For example, cell membranes, and

tissues are self-assembled from smaller components
in a decentralized fashion. It is common to
encounter, in the natural world members of
decentralized systems that self-organize in response
to environmental stimuli and to each other to
produce complex global behaviors. This is referred
to as flocking. Birds and bacteria group behavior are
among the most common examples. Flocking has
been used as a metaphor for the study and
development of artificial swarm intelligence-based
systems. Self-assembly, as a facet of flocking is
beginning to find its way into science and
engineering, through various disciplines ranging
from molecular application encountered in
bioinformatics [24], to robot reconfiguration [25],
and stochastic self-assembly [15], among others.

Assembling shapes into a given pattern can be
seen as a “language” where the small shapes are the
“words” and the obtained pattern correspond to a

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 610 Issue 4, Volume 8, April 2009

mailto:shrief@qu.edu.sa
mailto:elhamdi62@gmail.com
mailto:smhmd@qu.edu.sa
mailto:chafikmo@yahoo.com

“sentence” obeying some specific rules or
“grammar” for generating grammatically correct
sentences. The process of self-assembly can
therefore be seen as the automatic generation of a
language.

One of the central questions for robotic self-
organized systems is to know whether it is possible
to synthesize a set of local controllers that produce a
prescribed global behavior that is sufficiently robust
to uncertainties about the environmental conditions.
Since assembling geometrical shapes into some
desired shape can be viewed as a set of sentences of
a language, it is therefore not surprising to address
this issue from the standpoint of grammars. By
grammar we mean the set of rules that are used to
generate a given language. More precisely, we
propose to make use of grammatical inference (GI).
Ultimately graph grammars are used as an emerging
field that we believe to be promising [17]. The paper
is organized as follows. In Section 2, the issue of
controlling robots is addressed with concentration
on self-assembly using GI. Section 3 describes the
methodological steps to follow in order to solve the
self-assembly problem using grammars, as an
ultimate result of the actual work. In Section 4,
results and discussions are presented. Then we
conclude.

2 Problem Formulation
2.1 Preliminaries

Based on our experience, gained in developing
computer-aided control systems environments [7],
[8] and in integrating various computer-aided
engineering methods [9], we take, as point of
departure of this research, an updated version of the
Inductive Learning System for Grammatical
Inference, or the so-called ILSGInf; a system
capable of heuristically inferring, from positive
examples of sentences, any regular language and
some context-free languages (CFLs) [11]. ILSGInf
classifies the negative examples correctly but does
not take them into account for improving the
grammar it generates. In other words, the positive
examples help ILSGINf in improving the generated
grammar, but the negative ones do not contribute to
this improvement.

At the outset, we study grammatical inference
(GI) as a special case of the larger problem of
inductive machine learning. Then we describe graph
grammars with a special emphasis on robotic self-
assembly applications. We further propose a three-
task methodology for robot control ending with
graph grammatical inference. Concerning
implementation, we discus the application of GI to a

context-free language (CFL) as a prelude to a
grammatical-based control.

2.2 Modes of self-assembly

Self-assembly, as defined above, comes in two
modes, passive and active. In passive self-assembly,
particles interact according to their geometry or
surface chemistry and stay in a thermodynamic
equilibrium, once this steady-state is reached.
Particles behavior in chemical reactions can be
classified in this mode. The geometrical patterns in
the natural world give a clear indication that self-
organized systems are omnipresent, from leaves to
snowflakes, all governed by emergence of global
patterns based on smaller patterns or fractals.

In active self-assembly, each particle may
expend energy to accept some interactions with
other particles while rejecting others, according to a
controlling program. Typical examples are multi-
robot systems, where small groups of robots
determine the outcome of encounters according to
their internal programming [17]. In our work, we
will concentrate on this latter mode of self-
assembly.

2.2 Self-assembly central issue

As stressed above, the main question in
programmed self-organization concerns the ability
to design rules that govern the global behaviour of a
system by means of local rules. In a wide variety of
settings, we can design local rules that yield a
specified behaviour, with the ability to reason about
the correctness of the result. In some circumstances,
we can provide algorithms that automatically
generate such a set of rules. Recent results are
obtained in diverse areas ranging from algorithmic
self-assembly of DNA [24], to the formation
stabilization of multiple agents using decentralized
navigation functions [12]. These results indicate that
the emergent behaviour of a self-organizing system
can be precisely predicted and controlled, although
there is much work to be done to understand the
physics, dynamics, and implementation of self-
organization.

Progress in this area promises to open up new
vistas for a completely new era of bottom-up
engineering of systems, ranging from programmable
nano-scale molecular machines to controlled
swarms of interacting autonomous robots [16].

2.3 Grammatical tools for self-assembly

We consider the issue of programming active
self-assembling systems at the level of interactions
among particles in the system. To demonstrate the

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 611 Issue 4, Volume 8, April 2009

approach, we propose to simulate the control of
robots and consider illustrative examples from the
literature. We follow two complementary directions:

(i) Use of GI as a control methodology.
(ii) Use of inference in graph grammars.

As far as this paper is concerned, only GI as an
alternative control methodology is investigated.
Special reference is given to machine dives to
establish a link between formal languages and
control systems.

2.4 Grammatical inference (GI)
2.4.1 Formal grammar

A formal string grammar or simply grammar G
has four components [3]:
 - A set of symbols VN called non-terminals.
 - A set of symbols VT, called terminals with the

restriction that VT and VN are disjoint.
 - A special non-terminal symbol S, called a start

symbol.
 - A set of production rules P.
In other words, a formal string grammar is a set of
rules that says whether a string of characters (e.g. a
sentence in a natural language), constructed from
the starting symbol, can be expressed in the form of
terminals (words) i.e. the general form of a
sentence.

2.4.2 Inference

Inference is defined as the process of reasoning
from premises or conditions to consequent or
conclusion. Inductive inference is a generalization
process which attempts to identify a hidden
function, given a set of its values. As mentioned
above, in formal languages settings, learning the
syntax of a language is usually referred to as
grammatical inference or grammar induction (GI);
an important domain for both cognitive and
psycholinguistic domain as well as science and
engineering. We are concerned with the problem of
constructing a grammar from some given data.
These latter, whether sequential or structured, are
composed from a finite alphabet, and may have
unbounded string-lengths.

In relatively simple situations, induction
considers a deterministic finite-state automaton, or
DFA, that takes strings of symbols as input, and
produces a binary output, indicating whether that
string, or sentence, is a part of the DFA’s encoded
language. In this particular example, GI builds a
model of the hidden DFA internal structure, based
only on pairs of input sentences and classifications,
or outputs. From a control theory point of view, this
is a classical input-output identification problem.
The most successful GI algorithms produced so far

are heuristic in nature; and ILSGInf is one of these
[11]. An overview of some of these algorithms can
be found in [1].

2.4.3 GI as a machine learning discipline

 The objective of machine learning is to produce
general hypotheses by induction, which will make
predictions about future instances. The externally
supplied instances are usually referred to as training
set. Generally speaking, machine learning explores
algorithms that reason from externally supplied
instances, also called inputs, examples, data,
observations, or patterns, according to the
community where these appear. Because GI is
considered as a sub-field of machine learning, it
therefore inherits this fundamental characteristic.

To induce a hypothesis from a given training
set, a learning system needs to make assumptions, or
biases, about the hypothesis to be learned. A
learning system without any assumption cannot
generate a useful hypothesis since the number of
hypotheses that are consistent with the training set is
practically infinite and many of these are totally
irrelevant [19]. One of the issues addressed in our
work is to consider reasonable ways and means for
reducing the computational obstacles as far as
applied GI is concerned [10]. Others considered
evolutionary methods to address the issue [21].

3 Problem Solution

We describe the main building blocks of the
proposed solution in the form of a general scientific
method. In the sequel, we make a top-down
description of the proposed methodology, starting
from graph grammars and ending with string
grammars as applied to control drives. We propose
to theoretically address the three tasks described
below, but we will specifically develop only limited
ad hoc orientations among these. Our ultimate goal
is the application of inference to graph grammars in
the context of self-assembly.

3.1 Graph grammars
3.1.1 What are graph grammars?

Graphical structures of various kinds, like
graphs, diagrams, visual sentences are very useful to
describe complex structures and systems in a direct
and intuitive way. Graph grammars have been
invented in the early seventies in order to generalize
Chomsky’s string grammars. This generalization
consists in gluing graphs instead of concatenating
strings. Graph grammars are evolving graphs from
some starting graph, and whose evolution follows
specified production rules.

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 612 Issue 4, Volume 8, April 2009

A graph grammar is a pair (G0, P) where:

• G0 is called the starting graph
• P is a set of production rules.

A graph is a pair (V, E) where:
• V is a finite set called vertices
• E is a finite set with elements in V×V, called

edges.

Similarly to a language generated by string
grammars, a language generated by a graph
grammar is the set of graphs that can be derived
from the starting graph and applying rules in P [23].
Mathematical accounts of graph grammars are based
on algebraic representation [4].

3.1.2 Application of graph grammars in self-

assembly
From the point of view of graphical

programming languages, graph grammars are useful
especially in the storage level. Thus, instead of
storing all these graphical structures as individual
objects, we store only their grammar for reasons of
compact size and generative power. While earlier
mathematical work focused on string grammars,
more interest is recently based on tree and graph
grammars [14].

In self-assembly applications, graph grammars
are used to model the physics of the particles by
describing the outcomes of interactions among
them. When used to program the desirable outcomes
of interactions among particles, a graph grammar
represents a description of a communication
protocol and is thus intended to be coupled with a
physical model of the environment that mediates the
interactions. In particular, a suitably designed graph
grammar can precisely describe and direct the
changing network topology of a self-organizing
system [20].

3.2 GI and control systems
3.2.1 Motivation for using grammars to control

of machine drives
Before embarking on self-assembly, we

describe the interaction between the control problem
and GI. As a simpler control problem we consider
control of machine drives. It is an area where GI has
been applied with various degrees of success [18].
Control of machine drives is a specialized subject in
its own right, usually studied within traditional
disciplines such as electrical and / or mechanical /
industrial engineering. Based on mathematical
models, this subject encompasses a tremendous
body of knowledge since the early days of Wiener’s

cybernetics going back to the late 40’s. To
dynamically control a machine drive is to let it
follow an imposed behavior, automatically
calculated in real-time. The main methodology of
dynamic control is therefore to produce the so-
called prescribed feedback control law on the basis
of output observations, as and when needed [13]. If
the environment is unknown, we use adaptive
control.

For the purpose of this work, we are only
concerned with control, using grammars as a
methodology. So far, by GI, we intend only
deterministic finite automata DFA, equivalent to
regular grammars, on the one hand and some
context-free grammars (CFGs), on the other hand. If
we refer to Chomsky hierarchy, only type-3 and
subclasses of type-2 grammars, respectively, are
concerned [10]. Now, in order to control drives,
these classes of grammars are not sufficient. We
need to include larger classes of grammars such as
context-sensitive grammars or type-1. This is a real
challenge for GI community since there remain
many obstacles in inferring DFAs, let alone context-
sensitive grammars. Supplementary human-supplied
expert codification is needed in order to account for
this kind of inference.

3.1.2 Steps for using GI in control systems

To develop a grammatical description and a GI
algorithm for controlled dynamical systems three
steps are required [18].

3.1.2.1 Quantification of the variables

Quantification refers to the creation of alphabets
for the output (controlled) variable y and the control
variable U. The objective is to generate the control
U in order to maintain the output y within some
prescribed values. A terminal alphabet VT is
associated to the output variable y and the non-
terminal alphabet VN to the control variable U. The
feedback control law generates the required value of
the input U so as to keep the output y within a
specified range. For so doing, a quantification of the
variables is made, in a discrete way, dividing the
variables range into equal intervals and associating
each interval to a symbol in the alphabet.

3.2.2.2 Production rules

p-type productions are defined by the human
expert to be some substitution rules of a given form.
This human-supplied codification is necessary. A p-
type production codes the evolution of the output
variable, depending on its p past values and on the
value of the control variable U. There is, therefore, a
functional relationship between the dynamics of the

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 613 Issue 4, Volume 8, April 2009

system and the p-type productions. Note that p-type
productions as described here have nothing to do
with Proportional-control or P-control action.

3.2.2.3 Learning

A learning algorithm is necessary to extract the
productions from the experimental data. To obtain a
sample of the language, a sequence of control
signals is applied to the system in such a way that
the output variable y takes values in a sufficiently
wide region. The signal evolution is then quantified
as described above, and a learning procedure is
followed.

3.2.3 Comparing GI-controlled systems with

other methods
A useful methodological comparison can be

made between grammatical methods and other
methods such as:

(i) Observer-based methods of control [13].
(ii) Soft computing, e.g. fuzzy control [6].

3.3 Three Levels for Solution
3.3.1 Extending GI to graph grammars

Level 1

Methodology 13
// Extend known techniques used in GI to

graph grammars //

1 Make state of the art of GI in the following

order:

1.1 State of the art in regular GI.
1.2. Study CFGs inference.
1.3. Concentrate study on structural

methods such as:
- Tree grammars,
- Graph grammars.

2. Study graph grammars and their algebra.

3. Investigate the use of inference in graph

grammars.

Figure 1
Methodology for extending known techniques used

in GI to graph grammars

3.3.2 Formal languages for systems control
The main issue here is to consider how formal
languages can help in developing novel techniques
in system control.

Level 2
Methodology 23

// Formal languages for systems control //

1. Study current methods for system control

based on formal languages.

2. Consider control methods based on

(string) grammar inference.

 2.1 Apply ILSGInf [11] in control drives.
 2.2 Extend ILSGInf application to robot

control.

Figure 2

Formal languages for systems control

3.3.3 Study of graph grammars for self-assembly
The main issue here is to address the issue of self-
organizing systems and robotics self-assembly using
graph grammars which provide a compact
representation of subgraph transitions arising from
local interactions. Although graph grammars have
been successfully used to control robot systems
[16], they best describe changing networks, not, for
example, low-level robot motion. That is why the
methodology provides another level of design
dealing with graph grammar inference.

Level 3
Methodology 33

// Robotics self-assembly and graph
grammars //

1. Study available methods using graph

grammars in self-assembly.

2. Apply graph grammars inference [5] to

robotics self-assembly.

Figure 3
Robotics self-assembly and graph grammars

3.4 Summing Up
Networked robot systems require methods that
control both the network dynamics and each

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 614 Issue 4, Volume 8, April 2009

individual robot behaviors. We need therefore to
make an account of both aspects of the problem.

Methodology 4

// Report specific research issues //

1. GI-based control vs. other control
methods, namely:

1.1 Observer-based methods [13].
1.2 Soft computing-based control

methods.

2. Emphasise importance of inference in

graph grammars.

2.1 Consider individual behavior
2.2 Consider networked behavior

3. Make recommendations and a feasibility

study of the proposed method.

Figure 5
Specific research issues

4 Results

Since we are at the beginning of the work, results
mainly concern the applicability of GI to machine
drives as a simpler application of the novel GI-based
control methodology.

4.1 Dynamical systems and GI
GI is used as an algorithm by which a grammar is
inferred from a set of sample words produced by the
dynamical system considered as the linguistic
source. Therefore in order to apply GI procedures, a
dynamical system must be considered as linguistic
source capable of generating a specific language.
The set of productions encodes the dynamics of the
system that generates the language. Any word that
can be derived from the start symbol S by a
sequence of productions of the grammar is said to
be in the language generated by the dynamical
system. For example, a grammar of the form:

G = (VN, VT, P, S,)
VN = {A, B, C, S}
VT = {a, b }
P = { A → a, B → b, S → AB, C AS, S →

CB }

generates the language of the form:

L = { w = anbn, n>=1}

with words consisting of any non-zero number of a
symbols followed by any non-zero number of b
symbols. The GI procedure applied to this example
is detailed in Section 4 below. We show how
ILSGInf automatically generates the grammar from
a few examples.

4.2 Using ILSGInf
4.2.1 Initial grammar generation
ILSGInf starts by generating an initial grammar of
the form :

G0 = (VN0, VT0, P0, S) where:

VN0= {A / A non-terminal of derivative tree}
VT0 = {a / a is a symbol of input character string}
P0 = { R / R rule of the form A → BC ;or A → a}

with A, B, C non-terminals in derivation tree.
S = initial symbol.

Figure 6 below describes the algorithm for
generating the initial grammar, from which the
inference starts.

Algorithm for initial grammar generation

/* Algorithm for the construction of initial

grammar
G0 = (VN0, VT0, P0, S) */

Begin
string[i] /* table containing the string example */

n /* length of initial global string */

Initial_symbol:="S" /*creation of initial symbol,

by convention "S"*/

i:=1, k:=1 /*indices*/

/* Associate to each terminal one non-terminal */
 /* create the set of initial rules as follows */

for i=1 to n do
 if string[i] is not yet associated with a non-

terminal
 then create_the_rule non-terminal(k) →

string[i]

 k:=k+1

 endif

endfor

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 615 Issue 4, Volume 8, April 2009

if n<= 2 /* Derivation from S* /
 then create_rule S → <non-terminal(1) <non-

terminal(2)

 else /*Construction of derivation tree from

bottom to top */

 create_the_rule non-terminal(k) → <non-

terminal(1) <non-terminal(2)

 i:=3; k:=k+1

 while i<n do
 create_the_rule non-terminal(k) → <non-

terminal(k-1) <non-terminal(i)

k:=k+1; i:=i+2

 endwhile

 /* For string to be recognized, it must derive

from root * /
 create_rule S → <non-terminal(k-1) <non-

terminal(i)

endif

end

Figure 6

 Algorithm for initial grammar generation

4.2.2 Generating lists and sub-lists for a Context-

Free Language (CFL)
Using the same example as above, we give some
results obtained by ILSGInf in the identification of a
context-free language (CFL) of the form:

L = { w = anbn, n>=1}

A possible grammar for L is:

G = (VN, VT, P, S,)
VN = {A, B, C, S}
VT = {a, b }
P = { A → a, B → b, S →AB, C AS, S →CB }

(1) Filling the fact base

This grammar is stored as facts as follows:

/* Application 1 */

/* Fact Base for CFL
L = { w = anbn, n>=1} */

/* Production rules stored as facts */

FACT RULE A // Fact1 //
FACT RULE B b // Fact2 //
FACT RULE S A B // Fact3 //
FACT RULE S C B // Fact4 //
FACT RULE C A S // Fact5 //

FACT initial_symbol S // Fact6 //

/* Sentence to be parsed and its length */

FACT string aaabbb // Fact7 //
FACT length 6 // Fact8 //

Figure 7 Fact base for the CFL
L = { w = (a nbn, n>=1}

Each production rule in the grammar is stored as a
fact (Fact1,2,3,4,5,6). The sentence to be parsed
(Fact7) and its length (Fact8) are also introduced in
the fact base.

(2) Inference Cycles
Like any inference process in knowledge-based
systems, it is composed of three main steps, namely
detection, conflict resolution and termination.

(3) Parsing Final Result
Figure 8 describes the final result using aaabbb as
training example.

sub-list 0 sub-list 1
I0

S →•CB, 0

S →•AB, 0

C →•AS, 0

A → • a, 0

I1

A → a •, 0

S →A•B, 0

C →A•S, 0

B → • b,1

S → •AB,1

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 616 Issue 4, Volume 8, April 2009

S → •CB,1

A → •a,1

C → •AS,1

sub-list 2 sub-list 3

I2

A → a•,1

S → A•B,1

C → A•S,1

B → •b,2

S → •AB,2

S → •CB,2

A → •a,2

C → •AS,2

I3

A → a •,2

S →A •B,2

C → A•S,2

B → •b,3

S → •AB,3

S → •CB,3

A → •a,3

C → •AS,3

sub-list 4 sub-list 5

I4

B → b •,3

S →AB •,2

C → AS•,1

S →C•B,1

B → •b,4

I5

B → b •,4

S→ CB •,1

C → AS •,0

S → C •B,0

B → •b,5

sub-list 6

I6

B → b •,5

S→ CB •,0

Figure 8 Progressive construction of sub-lists for

CFL L = { w = (a nbn, n>=1} with positive
example aaabbb

Discussions and decisions
Decision: The introduced sentence aaabbb is
accepted because in sub-list 6, we find the item
S →CB •, 0
6.2.2 Counter example
Let’s consider the same language L as above but
with a counter example of the form aabbb.

(1) Fact Base

/* Application 2 */

/* Fact Base with Counter Example */

/* Production rules stored as facts */

FACT RULE A a // Fact1 //
FACT RULE B b // Fact2 //
FACT RULE S A B // Fact3 //
FACT RULE S C B // Fact4 //
FACT RULE C A S // Fact5 //

FACT initial_symbol S // Fact6 //

/* Sentence to be parsed and its length */

FACT string aabbb // Fact7 //
FACT length // Fact8 //

Figure 9 Fact base with counter example for

CFL L = { w = (a nbn, n>=1}

(2) Inference cycles
As above

(3) Parsing Final Result
Figure 10 describes the final result using aabbb as
counter example.

sub-list 0 sub-list 1
I0

S →•CB, 0

S →•AB, 0

C →•AS, 0

A → • a, 0

I1

A → a •, 0

S →A•B, 0

C →A•S, 0

B → • b,1

S → •AB,1

S → •CB,1

A → •a,1

C → •AS,1

sub-list 2 sub-list 3

I2

A → a•,1

I3

B → b•,2

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 617 Issue 4, Volume 8, April 2009

S → A•B,1

C → A•S,1

B → •b,2

S → •AB,2

S → •CB,2

A → •a,2

C → •AS,2

S →AB •,1

C → AS•,0

S → C•B,0

B → •b,3

sub-list 4 sub-list 5

I4

B → b •,3

S →CB•,0

I5

empty

Figure 10 Progressive construction of sub-lists for

CFL L = { w = (a nbn, n>=1} with
counterexample aaabbb

Discussions and decisions
Decision: The introduced sentence aabbb is NOT
accepted because sub-list 5 is empty. Note that
although ILSGINf has successfully classified the
example as negative, it does not use this information
for improving the grammar. This latter is only
improved by positive examples only.

5 Conclusion
The present research work paves the way towards an
objective evaluation and a thorough study of the
effectiveness and usefulness of grammatical
inference in the control of robots for self-assembly
purposes. It represents an early contribution as far as
graph grammars inference integration is concerned.
A unification of the diversified works dealing with
robotic self-assembly while concentrating on graph
grammars as an alternative control method is made
possible. This is done using a three-level
methodology for self-assembly robotic control
starting with string grammatical inference and
ultimately leading to inference in graph grammars.
However, the results report only a tiny aspect of the
overall issue, since these describe only the case of
context-free language (CFL) inference as part of the
control of machine drives. Much work is still
required on both sides, i.e. robotics and formal
languages, for the development of fully-integrated
systems that scale up to real-life applications.

References
[1] de La Higuera, C. “A bibliographical study of

grammatical inference”. Pattern Recognition,
38:1332-1348, 2005.

[2] Cicchello, O., S. C. Kremer, “Inducing
grammars from sparse data sets: A survey of
algorithms and results,” J. Mach. Learn. Res.,
4:603–632, 2003.

[3] Cohen, D. I. A. “Introduction to Computer
Theory”. John Wiley & Sons, Inc.1991.

[4] Ehrig, E., “Introduction to the algebraic theory
of graph grammars,” In Graph-Grammars and
Their Application to Computer Science and
Biology, by V. Claus, H. Ehrig, and G.
Rozenberg, (Eds.), Springer-Verlag, pp. 1–69,
1979.

[5] Flasinski, M. “Inference of parsable graph
grammars for syntactic pattern recognition”,
Fundamenta Informaticae, IOS Press, 80:379–
413, 2007.

[6] Hagras, H. “Type-2 FLCs: A New Generation of
Fuzzy Controllers”, Computational Intel. Mag.,
IEEE, 2(1):30-43, Feb. 2007.

[7] Hamdi-Cherif, A. “The CASCIDA project - A
computer-aided system control for interactive
design and analysis” Proc. of IEEE / IFAC Joint
Symp. on CACSD (CASCD’94). pp. 247-251,
Tucson, AZ, USA, 7-9 March 1994.

[8] Hamdi-Cherif, A. “The intellectual environment
for a CACSD project”. Proc. of the IEEE Conf.
on Control App. (CCA’94), pp.1365-1366,
Glasgow, Scotland, 24-27 Aug. 1994

[9] Hamdi-Cherif, A. (1994-4). A unifying
framework for computer-aided engineering
(CAE) with reference to computer-aided control
system design (CACSD). Proc. Of the First
Asian Control Conf. (ASCC’94), 1:45-48. Tokyo,
Japan, 24-27 July 1994.

 [10] Hamdi-Cherif, C., (alias C. Kara-Mohammed),
A. Hamdi-Cherif, “Apprentissage inductif de
grammaires: Le système GASRIA. [Inductive
learning for grammars: The GASRIA System]”.
Revue d’Intelligence Artificielle, Hermes-
Lavoisier Edition, Paris, France, 21(2):223-253,
May-June 2007.

[11] Hamdi-Cherif, C., A. Hamdi-Cherif, “ILSGInf :
Inductive learning system for grammatical
inference”. WSEAS Trans. on Computers,
6(7):991-996, 2007.

[12] Tanner, H.G., A. Kumar, “Formation
stabilization of multiple agents using
decentralized navigation functions,” In Robotics:
Science and Systems I, by S. Thrun, G.
Sukhatme, S. Schaal, and O. Brock, (Eds.), MIT
Press, pp. 49–56, 2005.

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 618 Issue 4, Volume 8, April 2009

[13] Harmas, M.N., A. Merzouki, A. Hamdi-Cherif,
“Observer based intelligent power system
stabilizer”. Asian J. of IT, 6 (10):1057-1063,
2007.

[14] Hoffmann B. “Hierarchical Graph
Transformation”. Int. J. of Comp. and Syst. Sci.,
2000. pp. 98-113.

[15] Klavins, E., S. Burden, N. Napp, “Optimal
rules for programmed stochastic self-assembly,”
In Robotics: Science and Systems I, by S. Thrun,
G. Sukhatme, S. Schaal, and O. Brock, (Eds.),
MIT Press, pp. 9–16, 2007.

[16] Klavins, E., R. Ghrist, D. Lipsky, “A
grammatical approach to self-organizing robotic
systems,” IEEE Trans. Automat. Contr.,
51(6):949–962, June 2006.

[17] Klavins, E., “Programmable self-assembly”,
IEEE Control Syst. Mag., 27(4):43-56, Aug.
2007.

[18] Martins, J. F., J.A. Dente, A.J. Pires, and R.
Vilela Mendes “Language Identification of
Controlled Systems: Modeling, Control, and
Anomaly Detection”, IEEE Trans. On Syst. Man
and Cyb. – Part C: Appl. And Rev. 31(2):234-
242, 2001.

[19] Mitchell, T.M., “Machine Learning”, McGraw-
Hill, New York, 1997.

[20] McNew, J. M., Klavins, E., M. Egerstedt
“Solving coverage problems with embedded
graph grammars”. In Hybrid systems:
computation and control, A. Bemporad, A.
Bicchi, and G. Buttazzo, (Eds.), Springer-
Verlag, pp. 413-427, 2007.

[21] Unold O.: Context-free grammar induction
using evolutionary methods, WSEAS Trans. on
Circuits and Systems, 3(2):632-637, 2003.

[22] Unold, O., Grammar-based classifier system: a
universal tool for grammatical inference WSEAS
Trans. on Computers 7(10):1584-1593, 2008.

 [23] Rozenberg, G., (Ed.), “Handbook of graph
grammars and computing by graph
transformation”. Volume 1-3: Foundations,
World Scientific, 1997.

[24] Winfree, E. “Algorithmic self-assembly of
DNA: Theoretical motivations and 2-D assembly
experiments,” J. Biomolecular Structure
Dynamics, 11(2):263–270, May 2000.

[25] White, P., V. Zykov, J. Bongard, H.
Lipson, “Three dimensional stochastic
reconfiguration of modular robots,” In S.
Thrun, G. Sukhatme, S. Schaal, O. Brock,
(Eds.), “Robotics: Science and Systems I”,
MIT Press, pp. 161–168, June 2005.

WSEAS TRANSACTIONS on COMPUTERS Aboubekeur Hamdi-Cherif, Chafia Kara-Mohammed

ISSN: 1109-2750 619 Issue 4, Volume 8, April 2009

