
Improving Performance in Integrated DSS
with Object Oriented Modeling

ADELA BÂRA
bara.adela@ie.ase.ro, ba_adic@yahoo.com

VLAD DIACONITA
diaconita.vlad@csie.ase.ro

ION LUNGU
ion.lungu@ie.ase.ro

MANOLE VELICANU
manole.velicanu@ie.ase.ro

Faculty of Economics Cybernetics
Statistics and Informatics, Academy of Economic Studies

Bucharest
ROMANIA

Abstract: - The development cycle of a decision support system involves many resources, time and high cost and above
all, the database schema used in the system is built only for some specific tasks. So, a relational database schema or a
data warehouse prototype cannot be easily mapped and reused in multiple DSS projects. In this paper we propose an
object-oriented (OO) approach and an OO database schema to accomplish the DSS implementation which require a
multidimensional modeling at the conceptual level using fundamental concepts of OO (class, attribute, method, object,
polymorphism, inheritance, hierarchy) to represent all multidimensional properties of a data warehouse, at both the
structural and dynamic levels.

Key-Words: - Decision support systems (DSS), SQL optimization, integration, object-oriented modeling, object-
oriented databases.

1 Introduction
In many cases the development of a decision support
system involves the design and the implementation of a
data warehouse. Different factors such as high costs and
resources or an improper system design may lead to a
failure in over 50% of these cases. One of the main
factors of failure is that the data warehouse is built only
for specific tasks or requirements and the expansion of
the system cannot be achieved or achieved at very high
costs.
In a research grant, we are developing a DSS system for
a public institution in Romania. We tried to meet the
requests from the managers of the institution, the main
request being that the system was scalable, easily
extendable. For the project lifecycle we applied the
framework described in the book [8] (Lungu I, Bara A,
2007). The system has to gather data from an ERP
system with modules like: financials, inventory,
purchase, order management and production. So the
need for a data warehouse is obvious and we had to
choose between the two data warehouses solutions:
stored data vs. virtual extraction. Because of time and

costs and in order to test the DSS functionality we
choose the second solution and we used virtual
extraction. We designed a prototype [3,4], but because
the ERP system was not yet fully implemented a major
problem occurred: there will be many more changes in
the structure of the organization and the impact of these
changes may affect the DSS system. So, we needed to
find a solution, and, based on our previous researches on
Object Oriented modeling, we have chosen this type of
modeling. We’ll show in the following sections aspects
regarding oriented implementation of a virtual data
warehouse and some of the performance results of this
implementation.

2 Decision support systems’ modeling
techniques
The main objective of DSS (Decision Support Systems)
is to provide in real time representative information to
every level of management and to gather, analyze, and
integrate internal and external data into dynamic profiles
and intuitive reports. In essence, the system must

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 599 Issue 4, Volume 8, April 2009

mailto:bara.adela@ie.ase.ro
mailto:ba_adic@yahoo.com
mailto:diaconita.vlad@csie.ase.ro
mailto:ba_adic@yahoo.com
mailto:manole.velicanu@ie.ase.ro

provide to each level a customized view that extracts
information from disparate sources and summarizes it
into meaningful indicators.
In order to provide aggregate information and indicators,
DSS systems collect, transform and integrate data from
various sources through Business Intelligence tools and
technologies like: data warehouses, OLAP, data mining,
analytic SQL reports.
But also, a major objective of DSS systems is to provide
a friendly graphical interface and when this is
customized for the individual manager, allows users to
access corporate data and complements the managers'
personal knowledge and provide quantitative diagnostics
to monitor the progress of decisions.
In order to gather data from various sources and ERP
systems implemented in an organization for different
functional areas or modules such as: financials,
inventory, purchase, order management, production we
need to analyze and design the business model and
strategic requests. This model have to be mapped on a
logical model and physical model in the data warehouse
and also used for extracting and presenting data through
OLAP technology. These models are known as
multidimensional models and basically they represent an
extension of the relational model, an ER schema or a
multidimensional view over facts.
Multidimensional models are classified in two major
types:

• models that are an extension of ER model
are based on a star schema and consist in the
relationship between some dimensions and
facts or measures;

• n-dimensional cube based models that use a
multidimensional view over an individual
situation or data.

Among ER extension models we can mention: Gray’s
model based on CUBE and ROLLUP operators with
GROUP BY clause in SQL language that aggregate data
over some attributes; Li and Wang’s model or Gyssens
and Lakshman’s model that are an extension of
relational schema [8]. But the most important model is
Ralph Kimball’s model in which he proposed the star
schema as a representation of a n-dimensional cube. This
schema contains a central fact table with many rows and
measures in relation with the smaller tables called
dimensions. Basically the joins between the fact table
and the dimensions are similar with the ER joins. From
this model later was developed the snow flake schema
with joins between dimensions not only between fact
and dimensions. Later it was developed a galaxy or a
fact constellation schema with many fact tables in
relation with many dimension tables.
In the cube based models’ area we can mention Agrawal,
Gupta and Sarawagi’s model with minimal set of
relational algebra’s operators, but in which data structure

is based on one or more n-dimensional cubes. In
Agraval’s vision these cubes are made of dimensions
defined by name and values and cube’s elements defined
through a function that associates values to a n-
dimensional row represented by the cells of the cube.
Also, in this category we can mention Cabibbo and
Torlone’s model or Blaschka’s model [8] that defines an
extension of ER technique called ME/R technique. In his
vision the model contains dimensional levels, a 1: n fact
relationship and a binary relationship called
classification relationship between two hierarchical
levels.
In Decision Support Systems the multidimensional
model that is used, has to be able to overhear the
business requests. All we need is a business vision over
data structure so the star schema or the n-cube based
models have to design and incorporate business aspects
or demands not only the facts or the relationship between
data.
Functional requirements tend to be a mixture of high-
and low-level requirements—virtually a stream of
consciousness from managers, customers, and the
marketing team captured in serial form and placed into a
document. This is just the first, early step along the path
of getting a finalized, clear, unambiguous set of
behavioral requirements that can realistically help to
create a design from.
The executives usually request a synthetic view over
facts and indicators and these key performance
indicators are built from the entire organizational data or
even from external data.
Another request is to provide a friendly graphical
interface with advanced capabilities of slicing and dicing
through data and easily get a new perspective over data
by rotating dimensions and drill down or roll up over
hierarchical levels. So we need a multidimensional
model in which these operations can be made easily, in
real time and that can it overhead the entire business
model with relationship between dimensions, facts and
hierarchies and it is based on the entire organizational
data at operational level, tactical level and strategically
level.
Based on these considerations we proposed in [8] an
extension of the star or the constellation schema but with
aggregate data and hierarchies in fact tables not only in
dimension tables. The model is structured over three
distinct levels and we can call it a pyramidal model with
the following structure:

• Organizational level (or the base of the
pyramid) – containing dimensions and facts
with an organizational scope, at a general
level, that shape and are common to the
entire activities. Such dimensions can be:
<time>, <zone>, <product>, <currency> and
facts: production, purchasing etc. Data are at

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 600 Issue 4, Volume 8, April 2009

a detailed level with multiple hierarchies
over each dimension table;

• Departmental level – containing dimensions
and facts for the departmental levels of the
organization and particular activities in
these departments or field of interests, group
by data marts or data centers. Such
dimensions can be: <account>, <client>,
<vendor> and facts: stocks, payments, sales
etc. Data are at a detailed and aggregate
level with specialized hierarchies over each
dimension table;

• Strategically level – containing dimensions
and facts derived from the base dimensions
and facts, with specific elements for the
strategic analysis, like <intercompany>,
<plan>, <budget> and facts: cash-flow, kpi.
Data are at an aggregate, synthetic level
with specialized hierarchies over each
dimension table.

The main characteristic of the model is that between the
dimension tables and the facts from different levels of
the architecture can be establish a relationship and also
the fact tables can have hierarchies and class attributes
that can be used for drill down or roll up.
Advantages of the model:

• Flexibility – new elements or objects like
new dimensions or facts can easily be
included in the model without affecting the
existing architecture or remodeling the
system and the loading process for a specific
level can be made without refreshing the
whole data;

• Real model of business requirements – the
three level architecture is based on the real
model of business requirements thus this
model can be mapped on the each level of
the pyramid;

• Performance in the drill-down or roll-up
operations – because the dimensions and
facts are separated at each level we can
easily navigate through hierarchies from a
level to another;

• Incremental development – the model can
be build in stages and each stage can be
validated and used before the next stage;

• EIS, MIS and DSS support – the bottom and
middle levels can be used for design and
realized a Management Information System
(MIS) or a Decision Support System (DSS)
because these systems can use the specific
dimension and fact tables from these levels
and the top level can be used for Executive
Information Systems (EIS).

Disadvantages of the model:
• High complexity – because it is containing

three different level the business model need
to be careful analyzed and designed in order
to identified the proper and suitable
dimensions and facts and also the
hierarchies at each level. An inadequate
choice can have a major effect on the
performance of the entire system;

• Moderate performance of the interrogation
process – in order to perform a complex
query the model need to establish many
relationships and joins between the fact and
dimension tables and this can reduce the
performance of interrogation;

• Top-down and bottom-up development – In
order to overhear the entire aspects of the
business process we need to build the
systems in two directions: first top-bottom
to model the strategic requirements and
second, bottom-up for validating and setting
up the hierarchical flux of data.

3 Object oriented approach and
extensions
We need a multidimensional model (MD) in which the
OLAP functionalities and characteristics can be made
easily, in real time and that can overhead the entire
business model with relationship between dimensions,
facts and hierarchies. This model has to be based on the
entire organizational data at operational level, tactical
level and also strategically level. Also, the DSS system
has to be able to extend and introduce new different
capabilities. A possible solution to these requests is the
object oriented approach of multidimensional modeling.
The particularities and the characteristics of MD cannot
be easily accomplished with the basic elements of OO
modeling. Some extensions of these basic elements have
to be made. Extending the research of (Luján-Mora S,
Trujillo J, 2002) [6] we defined a set of object-oriented
extensions that can be used for modeling the components
and requirements of a data warehouse. We proposed an
extension by means of stereotypes to the Unified
Modeling Language (UML) for MD modeling [6,7]. In
the following sections we’ll show a possible
implementation of these extensions in Oracle Database
10g using PL/SQL language.
The multidimensional modeling implies the definition of
the properties at two main levels: static (structural) and
dynamic (behavior) levels.

• Static (structural) level: we’ll consider the
components of a data warehouse as objects,
so we’ll have distinct classes and super-

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 601 Issue 4, Volume 8, April 2009

classes for dimensions and facts. It’s
generally good practice to organize your
classes around key abstractions in the
problem domain. The domain model is a
first-cut class diagram that becomes the
foundation of any software architecture.
This makes the model more resilient in the
face of change. Organizing the architecture
around real-world abstractions makes the
model more resilient in the face of changing
requirements, as the requirements will
usually change more frequently than the real
world does. As it was proposed and
described in [6] (Luján-Mora S, Trujillo J,
2002) and applied and developed in [8]
(Lungu I, Bara A, 2007), in order to model
the hierarchies of a dimension we need to
have two types of classes: base and level
classes to specify the order of a hierarchical
level. Between these levels of a dimension
there is a classification or an association
relationship. Each class must have three
types of attributes: OID (Identifying
attribute) used for unique identification of
an object, OD (Descriptive attribute) for
dimension’s values and PA (Parent
attribute) for establishing the hierarchies.
Facts are also considered as classes with the

following attributes: OID (Identifying
attribute), OD (Descriptive attribute) for
descriptive values, FA (Fact attribute) for
measures and CA (Formula attribute) for
derived measures. The relationship between
facts and dimensions is an aggregation
relationship.

• Dynamical (behavior) level: in the book [8]
(Lungu I, Bara A, 2007) we consider the
functionality of a data warehouse in the
terms of aggregation and drilling for OLAP
(online analytical processing) functions such
as drill-down/roll-up, slicing, dicing and
rotations. These functions were modeled
through sequence, interaction and activity
UML diagrams.

In theory, every single aspect of the UML is potentially
useful, but in practice, there never seems to be enough
time to do modeling, analysis, and design. There’s
always pressure from management to jump to code, to
start coding prematurely because progress on software
projects tends to get measured by how much code exists.
In our case with the following UML extensions we can
model the star schema of a data warehouse.
In the following table we’ll present the stereotype
defined in UML language [table 1:]:

Table 1. The UML stereotypes used for MD modeling
No Stereotype Description
1 <<Dimension>> Dimension class
2 <<Fact>> Fact class
3 <<Level>> Level class
4 <<Base>> Base class
5 <<OID>> Identifying attribute for dimensions and facts
6 <<OD>> Descriptive attribute for dimensions and facts
7 <<Parent ID>> Parent attribute (only for dimension classes)
8 <<Dimension Attribute>> Dimension attribute (only for dimension classes)
9 <<Fact Attribute>> Fact attribute (only for fact classes) for measures
10 <<Formula Attribute>> Formula attribute (only for fact classes) for derived measures
11 <<DAG>> Directed Acyclic Graph for hierarchical relationship
12 <<Completeness>> The completeness of a hierarchy

A Fragment of the implementation in a CASE tool of
these extensions are detailed below:
Class:Base
Class:Level
Class:Fact
Class:Dimension
Attribute: OID
Attribute: OD
Attribute: Parent ID
Attribute: Dimension Attribute

Attribute: Fact Attribute
Attribute: Formula Attribute
Association: DAG
Association: Completeness
Logical Package:Dimension Package
[Class:Base]
Item =Class
Stereotype =Base
Metafile=&\stereotypes\color\base.wmf
ToolTip=Creates a Base Class\nBase Class

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 602 Issue 4, Volume 8, April 2009

[Class:Level]
Item =Class
Stereotype = Level
Metafile=&\stereotypes\color\level.wmf
ToolTip=Creates a Level Class\nLevel Class
[Class:Fact]
Item =Class
Stereotype =Fact
Metafile=&\stereotypes\color\fact.wmf
ToolTip=Creates a Fact Class\nFact Class
[Class:Dimension]
Item =Class
Stereotype =Dimension
Metafile=&\stereotypes\color\dimension.wmf
ToolTip=Creates a Dimension Class\nDimension Class
[Attribute: OID]
Item=Attribute
Stereotype=OID
ToolTip=Creates a Dimension Attribute ID\nDimension
Attribute ID
[Attribute: OD]
Item=Attribute
Stereotype=OD
ToolTip=Creates a Dimension
DescriptionID\nDimension Description
[Attribute: Parent ID]
Item=Attribute
Stereotype=Parent ID
ToolTip=Creates a Parent Attribute ID\nParent
Attribute ID

[Attribute: Dimension Attribute]
Item=Attribute
Stereotype=Dimension Attribute
ToolTip=Creates a Dimension Attribute\nDimension
Attribute
[Attribute: Fact Attribute]
Item=Attribute
Stereotype=Fact Attribute
ToolTip=Creates a Fact Attribute\nFact Attribute
[Attribute: Formula Attribute]
Item=Attribute
Stereotype=Formula Attribute
ToolTip=Creates a Formula Attribute\nFormula
Attribute
[Association: DAG]
Item=Association
Stereotype=DAG
ToolTip=Creates a DAG Association\nDAG Association
[Association: Completeness]
Item=Association
Stereotype=Completeness
ToolTip=Creates a Completeness
Association\nCompleteness Association
[Logical Package:Dimension Package]
Item=Logical Package
Stereotype=Dimension Package
ToolTip=Creates a Dimension Package\nDimension
Package

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 603 Issue 4, Volume 8, April 2009

Fig 1: Class diagram for modeling the clients’ orders analyses – Star Schema.

In our project we have to model the dimensions and the
facts classes for the whole DSS system, but here we
present only one star schema that models the clients’
orders. Figure 1 presents this star schema.

4 Object oriented implementation
The multidimensional extensions can be implemented in
an object-oriented database environment such as Oracle
Database 10g which support the object type concepts
that can be used to specify the MD classes and MD
attributes from the structural model and MD functions
from the dynamical model. An object type differs from
native SQL data types in that it is user-defined, and it
specifies both the underlying persistent data (attributes)
and the related behaviours (methods) [10].
The object type is an object layer that can map the MD
model over the database level, but data is still stored in
columns and tables. Internally, statements about objects
are still basically statements about relational tables and
columns, and you can continue to work with relational
data types and store data in relational tables. But we
have the option to take advantage of object-oriented

features too. Data persistency is assured by the object
tables, where each row of the table corresponds to an
instance of a class and the table columns are the class’s
attributes. Every row object in an object table has an
associated logical object identifier. There can be use two
types of object identifiers: a unique system-generated
identifier of length 16 bytes for each row object assigned
by default by Oracle in a hidden column, and primary-
key based identifiers specified by the user and in which
we have the advantage of enabling a more efficient and
easier loading of the object table.
The structure of an object type consists of three
components that can be used to implement the MD
components, as it is shown below:

• The class’s name – to uniquely identify the
MD class within that schema;

• The class’s attributes – to model the
structure and state of the dimensions’ and
facts’ attributes;

• The class’s methods – to model the
dynamical level which is the MD functions.

The methods are functions or procedures written in
PL/SQL or Java and stored in the database, or written in

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 604 Issue 4, Volume 8, April 2009

a language such as C and stored externally. Oracle
Database 10g supports four types of methods [8,10]:

• The object type’s constructor method
represents an implicitly defined method that
is not tied to specific objects. Its name is the
name of the object type and its parameters
have the names and types of the object
type’s attributes. The constructor method is
a function that returns the new object as its
value.

• Member methods are functions or
procedures that always have an implicit
SELF parameter as its first parameter,
whose type is the containing object type.

• Static methods are functions or procedures
that do not have an implicit SELF parameter
and can be invoked by qualifying the
method with the type name
(type_name.method). These static methods
are useful for specifying user-defined
constructors or cast methods. We’ll use
these methods to implement the MD
functions.

• Comparison methods are used for
comparing instances of objects.

The relationship between MD classes is implemented
with a built-in data type called REF that encapsulates
references to row objects of a specified object type.
In Oracle Database 10g a single inheritance model is
supported: the subtype can be derived from only one
parent type and a type inherits all the attributes and
methods of its direct super type but it can add new
attributes and methods, and it can override any of the
inherited methods [10]. For inheritance there are to
options in the object type defining area: NOT FINAL if
you want it to have subtypes and FINAL (which is the
default option) if no subtypes can be created for the type.
This allows for backward compatibility. In the MD case
we’ll define the LEVEL classes with the NOT FINAL
option and the BASE classes with the FINAL option.

For the DIMENSION classes, which are the super
dimension classes, we’ll use NOT INSTANTIABLE
option that implies that there is no constructor (default or
user-defined) for the object type. Thus, it is not possible
to construct instances of this type. All the LEVEL and
BASE classes will be instantiable. So, we’ll define a
super class – DIMENSION, for each dimension class
from the MD model and which is NOT
INSTANTIABLE, and many derived classes, LEVEL
and BASE, which inherit the super class properties and
which are INSTANTIABLE.
The FACT classes will be define as INSTANTIABLE
and NOT FINAL because of the extended snowflake
schema in which we can have relations between two
facts, one as parent and one as derived from the parent.
In our case, as it is shown in the figure 1, we’ll use the
Oracle object type characteristics to implement the
clients’ orders star schema. The following sections
present these steps:

4.1. Star schema implementation
For exemplification we’ll present here only the classes
of management unit dimension. We’ll use a super type
class to define the management unit space dimension,
which has the DIMENSION stereotype and it is NOT
INSTANTIABLE. We’ll call it as UnitSpace_OT. For
hierarchical levels of the dimension, as you can observe,
there are two major hierarchies (fig. 2):

• geographical locations (H1): zone->region-
>country->location->management_unit

• organizational and management (H2):
division->sector->management_unit.

So, the final object in both hierarchies is
management_unit, which has the BASE
stereotype and it will inherit all the attributes
from the above objects, which have the LEVEL
stereotype and are NOT FINAL. This object
type will have two REFs, one for H1 and one for
H2 hierarchies.

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 605 Issue 4, Volume 8, April 2009

Fig 2: Class diagram for modeling the Management Unit dimension.

The script is shown below:
For the first hierarchy (H1):

create or replace type unitspace_ot as object
(unitspace_id number, unitspace_desc varchar2 (50),
unitspace_type varchar2 (50)) not instantiable not final;
create or replace type zone_o under unitspace_ot (/*also
add other attributes and methods*/) not final;
create or replace type region_o under unitspace_ot
(zone ref zone_o /*also add other attributes and
methods*/) not final;
create type country_o under unitspace_ot (region ref
region_o /*also add other attributes and methods*/) not
final;
create type location_o under unitspace_ot (country ref
country_o /*also add other attributes and methods*/) not
final;
The second hierarchy (H2):
create or replace type division_o under unitspace_ot
(/*also add other attributes and methods*/) not final;
create type sector_o under unitspace_ot (division ref
division_o /*also add other attributes and methods*/)
not final;
create or replace type unit_o under unitspace_ot (sector
ref sector_o, location ref location_o /*also add other
attributes and methods*/) final;

The orders’ fact is implemented also as an object type
INSTANTIABLE and NOT FINAL:

create or replace type orders_o as object
("type" varchar2(25) , “aproved" varchar2(25),
 "status" varchar2(25), "client_id" number,
 "loc_id" number, "id_order" number,
 "data" date, "id_order_line" number ,
 "id_shipping_loc" number, "id_shipping_unit" number,
 "id_product" number, "ordered_qty" number,
 "delivered_qty" number, "price" number,
 "unit_id" number);

The methods of each MD object type are implemented as
object type bodies in PL/SQL language that are similar
with package bodies. For example the unit_o object type
has the following body:

create or replace type body unit_o as
static function f_unit_stat(p_tab varchar2,p_gf
varchar2, p_col_gf varchar2, p_col varchar2, p_val
number) return number as
 /* the function return the aggregate statistics from
orders for a specific unit */
 v_tot number;

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 606 Issue 4, Volume 8, April 2009

 text varchar2(255);
 begin
 text:= 'select '|| p_gf || ' ('||p_col_gf||') from '||p_tab||'
cd where '||p_col||'= '||p_val;
 execute immediate text into v_tot;
 return v_tot;
 end f_unit_stat;
/*others functions or procedures*/
end;
/

We can use this function to get different aggregate
values for a specific unit, such as the total amount of
quantity per unit or the average value per unit. Data
persistency is assured with object tables that will store
the instances of that object type, for example:

CREATE TABLE unit_t OF unit_o;

Through an ETL (extract, transform and load) process
data is loaded into the object tables from the
transactional tables of the ERP organizational system.
This process can be implemented also through object
types’ methods or separately, as PL/SQL packages. Our
recommendation is that the ETL process should be
implemented separately from the object oriented
implementation in order to assure the independency of
the MD model.

4.2. Improving performance
Decision Support Systems usually work with large sets
of data and require a short response time. If you consider
not using analytical tools like OLAP and data
warehousing techniques then you have to build your
system through SQL queries and retrieve data directly
from OLTP systems. In this case, the large amount of
data in ERP systems may lead to an increase of
responding time for the DSS. That’s why you should
consider phrasing the queries using the best optimization
techniques.
When a SQL statement is executed on an Oracle
database, the Oracle query optimizer determines the

most efficient execution plan after considering many
factors related to the objects referenced and the
conditions specified in the query. The optimizer
estimates the cost of each potential execution plan based
on statistics in the data dictionary for the data
distribution and storage characteristics of the tables,
indexes, and partitions accessed by the statement and it
evaluates the execution cost. This is an estimated value
depending on resources used to execute the statement.
The optimizer calculates the cost of access paths and
joins orders based on the estimated computer resources,
which includes I/O, CPU, and memory [1,2]. This
evaluation is an important factor in the processing of any
SQL statement and can greatly affect execution time.
As we study in our previous research [1,7] the execution
cost of a query can be reduced by using techniques like
indexes, hints and partitions. The current approach, with
object oriented implementation can be used also to
reduce the execution cost by avoid the multiple joins
between the fact and the dimension tables. For example
the static function f_unit_stat from the unit_o class can
be use to retrieve the total order value for each unit:

(1) select unit_id, description,
unit_o.f_unit_stat(‘orders_t’, ‘SUM’,
‘delivered_qty*price’, ‘unit_id’, unit_id) total
from unit_t

instead of using the join between the unit_t and the
orders_t tables:

(2) select t.unit_id, t.description,
SUM(delivered_qty*price) total
from unit t, orders o
where t.unit_id=o.unit_id
We’ll use for testing two types of tables: object tables
(unit_t and orders_t) and relational tables (unit and
orders). The cardinality of these tables is about 1500
records in orders and about 100 in unit tables.
We analyze the impact of calling the function in the SQL
query in different situations, as we present in the
following table:

No Query Cost
1 select unit_id, description, unit_o.f_unit_stat(‘orders_t’, ‘SUM’,

‘delivered_qty*price’, ‘unit_id’, unit_id) total
from unit_t

3

2 select t.unit_id, t.description, SUM(delivered_qty*price) total
from unit t, orders o
where t.unit_id=o.unit_id

11

3 Example (1) with an index on unit_id on both object tables 2
4 Example (2) with an index on unit_id on both relational tables 11
5 Example (1) with an index on unit_id on both relational tables with use_nl

hint
8

Table 2. The execution costs of the queries

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 607 Issue 4, Volume 8, April 2009

We analyze the execution cost of the function’s query, it
has 6 units, but the SQL Tuning Advisor makes a
recommendation: “consider collecting statistics for this
table and indices”. We used DBMS_STATS package to
collect statistics from both object and relational tables:

begin
dbms_stats.gather_table_stats (user, 'orders_t');
dbms_stats.gather_table_stats (user, ' orders');
end;
/

Then we re-run the queries and observe the execution
plans; there is no change and the Advisor doesn’t make
any recommendation.
By introducing these types of functions we have the
following advantages:

• The function can be used in many reports
and queries with different types of
arguments, so the code is re-used and there
is no need to build another query for each
report;

• The amount of joins is reduced; the
functions avoid the joins by searching the
values in the fact table;

• Soft parsing is used for the function’s query
execution instead of hard parsing in the case
of another SQL query.

The main disadvantage of the model is that the function
needs to open a cursor to execute the query which can
lead to an increase of PGA resources if the fact table is
too large. But the execution cost is insignificant and
does not require a full table scan if an index is used on
the corresponding foreign key attribute.

5 Conclusion
Building scalable and flexible Decision Support Systems
involve important resources like: time, high-costs and
human resources, efforts and it require a flexible
modelling for business needs. One of these risks is the
system design that stem from poor conceptualization of
an enterprise’s true business needs before the systems is
deployed and for every change in these requirements the
prototype must be also revised. A solution for covering
this risk is object oriented modelling of a data
warehouse. This technique helps us to improve the
designing phase and the development cycle and also we
can re-use some parts of the prototype that it was
implemented in an organization in order to design and
implement another prototype in other organizational
environments. The data warehouse can be implemented
in an object oriented database environment, such as

Oracle Database 10g, with the help of the object types
and PL/SQL or Java languages. Object types offer a very
efficient mode to map the MD objects to the relational
database structure in which data is store. So, object types
can store structured business data in its natural form in
object tables and then allow applications, such as OLAP
applications, to work in a multidimensional way using
the object oriented properties and facilities.

References:

[1] Bâra A, Lungu I., Velicanu M, Diaconiţa V, Botha I

- Improving query performance in virtual data
warehouses, WSEAS TRANSACTIONS ON
INFORMATION SCIENCE AND APPLICATIONS,
May 2008, ISSN: 1790-0832;

[2] Bâra A, Lungu I., Velicanu M, Diaconiţa V, Botha I
– Extracting data from virtual data warehouses – a
practical approach of how to improve query
performance, Proceedings of the 7th WSEAS
International Conference on ARTIFICIAL
INTELLIGENCE, KNOWLEDGE ENGINEERING
and DATA BASES (AIKED '08), Cambridge UK,
20-22 feb. 2008, ISBN: 978-960-6766-41-1, ISSN,
1790-5109;

[3] Bologa A.R, Bologa R., Bâra A. - Technology Vs
Business Needs In Business Intelligence Projects,
Proceedings of the International Conference on e-
Business (ICE-B 2008), 26-29 July, Porto, Portugal,
2008, ISBN 978-989-8111-58-6;

[4] Diaconita V., Botha I., Bâra A., Lungu I., Velicanu
M. - Two Integration Flavors in Public Institutions,
WSEAS TRANSACTIONS ON INFORMATION
SCIENCE AND APPLICATIONS, May 2008, ISSN:
1790-0832;

[5] Diaconita V., Botha I., Bâra A., Lungu I., Velicanu
M. – Portal oriented integration in public institutions,
Proceedings of the 7th WSEAS International
Conference on ARTIFICIAL INTELLIGENCE,
KNOWLEDGE ENGINEERING and DATA BASES
(AIKED '08), Cambridge UK, 20-22 feb. 2008,
ISBN: 978-960-6766-41-1, ISSN, 1790-5109;

[6] Luján-Mora S., Trujillo J. - Extending UML for
Multidimensional Modelling - Proceedings of the 5th
International Conference on the Unified Modelling
Language, 2002;

[7] Lungu I., Velicanu M., Bâra A., Diaconita V., Botha
I. – Practices for designing and improving data
extraction in a virtual data warehouses project,
Proceedings of ICCCC 2008, International
conference on computers, communications and
control, Baile Felix, Oradea, Romania, 15-17 May
2008, pag 369-375, published in International Journal

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 608 Issue 4, Volume 8, April 2009

of Computers, Communications and Control, vol 3,
2008, ISSN 1841-9836;

[8] Lungu I., Bâra A. - Executive Information Systems,
Academy of Economic Studies Publisher, 2007,
ISBN: 978-973-594-690-6;

[9] Moss L., Atre S. - Business Intelligence Roadmap -
the complete project lifecycle for decision-support
applications, Addison-Wesley Publisher, 2004,
ISBN: 0-201-78420-3;

[10] ORACLE Corporation – Oracle Database Concepts
10g, www.oracle.com;

WSEAS TRANSACTIONS on COMPUTERS Adela Bara, Vlad Diaconita, Ion Lungu, Manole Velicanu

ISSN: 1109-2750 609 Issue 4, Volume 8, April 2009

http://www.oracle.com/

