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Abstract: In this paper the problem of dominant point detection on digital curves is addressed. Based on an initial
set of curvature points, our approach adds iteratively significant points by looking for the higher curvature contour
points. The process continues until all the sums of the distances of contour points in the arcs subtended to the
chord between two next dominant points is less then a predefined threshold. A final refinement process adjusts
the position of located dominant points by a minimum integral square error criterion. We test our method by
comparing its performance with other well known dominant point extraction techniques succesfully. In the last
section some examples of polygonal approximation are shown.
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1 Introduction

An important goal in image understanding is to detect,
track and label objects of interest present in observed
images [1, 2, 3]. Image objects can be characterized in
many ways according to their colors, textures, shapes,
movements and locations. In the field of machine vi-
sion applications, the aim of shape recognition is to
identify an object correctly. There are two typical ap-
proaches to the problem :global or internal methods,
which use all the points of the objects and contour or
externalmethods which are focused on the analysis
of contour points of the objects. Planar curves that
represent contours of objects have been studied inde-
pendently for a long time. An emerging opinion in
the vision community is that global features such as
shapes of contours should also be taken into account
for the successful detection and recognition of objects.
The termdominant pointis assigned to points having
a sufficiently high curvature on the boundary of a pla-
nar object: their detection is a very important aspect in
contour methods since information on the shape of a
curve is concentrated at dominant points. This repre-
sentation simplifies the analysis of the images by pro-
viding a set of feature points containing almost com-
plete information of a contour. One of the main advan-
tages of a good representation of 2D shapes through
dominant points is the high data reduction and its im-
mediately efficiency in feature extraction and shape
matching alghoritms. It is well known also that these

points play a dominant role in shape perception by hu-
mans.
The problem of detecting points of high curvature in
2D shapes has been researched since the early 1970’s
[4, 5]. Most of these algorithms require one or more
parameters that specify (directly or indirectly) the re-
gion of support in order to measure the local proper-
ties at each point of the curve.
Many methods have been developed to find dominant
points. Basically they fall in two categories. The first
one directly extracts dominant points from grey level
images [6, 7, 8]. The second needs a prior edge detec-
tion to extract the contour and works afterwards on the
chain code formed by the contour [1, 4, 9, 10, 11, 12].
This latest category corresponds to our field of inves-
tigation.
The purpose of this paper is to give a different ap-
proach to dominant points extraction. In this work
we will focus on an algorithm that attempts to repre-
sent shapes with a limited number of dominant points
located along their boundaries. We consider a set of
points as a dominant set if is possibile to reconstruct
the contour from these points using some method
or interpolation (polygon is the simplest case). The
method is based on a iterative approach. The first step
is to assign an initial set of points and after detect other
possible dominant points, i.e. relevant points, apply-
ing an iterative selection based on a particular distance
criterion. The results we obtain are then refined by
suppressing some overmuch points in critical regions
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of the shape contour and by positioning them in order
to minimize the approximation error. The detection
procedure is compared with methods proposed by [5],
[11], and by [13]. These methods relies on the curva-
ture estimation approach and on the determination of
the region of support. In section 2 a description about
curvature both in eculidean space and in discrete space
is given. The Freeman coding for a digital curve it is
also described. In section 3 we expose our method.
In section 3.1 the process to locate initial points set
for the iterative method is explained. Section 3.2 de-
scribes the algorithm with its main steps. In section
3.3 and 3.4 a refinement technique for a better local-
ization of dominant points is proposed. The experi-
mental results are shown in section 4 and finally the
main conclusions are summarized in section 5.

2 On dominant point detection

Since observing that information of a curve is concen-
trated on extreme curvature points, corner detection
is an important research area in contour methods of
shape analisys. For this reasons these points are often
calleddominant points. In the real Euclidean plane,
curvature is defined as the rate of change between the
tangent angle and the arc length:

k = dθ
ds

For a curvey = f(x) it can be also expressed in terms
of derivatives as:

d2y

dx2[
1+( dy

dx)
2
]3/2

A closed digital curve can be describe by a sequence
of n integer-coordinate points:

C ={pi = (xi, yi), i = 1, ..., n}

wherepi+1 is a neighbor ofpi (modulon). A digi-
tal curve can also be represented using the Freeman’s
chain codes [14]. The Freeman chain code ofC con-
sists of then vectors

−→c i = pi−1pi

each corresponding to an integer :

f = 0, ..., 7

as shown in fig. 2 where 1/4πf is the angle between
theX-axis and the vector. The chain ofC is defined
as{−→c i, i = 1, ..., n} and−→c i = −→c i±n. If ci−1 = ci,
Pi is a linear point, otherwise it is abreak pointand is
a candidate to dominant points.

Figure 1: Freeman’s chain code.

2.1 Previous related works

Although the notion of curvature for continuous
curves is an unambiguously defined concept from dif-
ferential calculus that admits precise analytical for-
mulations, its digital counterpart lacks a universally
accepted definition. As a result, research in this field
has followed different, but conceptually related, ap-
proaches in order to circumvent the problems asso-
ciated with digital curvature estimation. Many algo-
rithms to find extreme points on digital curves have
been suggested: one approach tried to define alterna-
tive curvature measures based on angles between vec-
tors that connect the curve points [4, 9, 10, 11, 15,
16, 17]. Other techniques used curvature morphol-
ogy [18, 19], local neighborhood of curve points in the
plane [20, 21], arc-chord distance [22, 23, 24], curve
fitting techniques [25, 26], local symmetry of shape
[27], adaptive Gaussian smoothing [28], curvature-
guided polygonal approximation [29], direct chain
code analysis [30, 31], neural networks [32, 33], de-
viation from smoothness [34], wavelets [35, 36], elec-
trostatics [37], fuzzy logic [38], B-splines and genet-
ica algorithms [39]. We focused our attention on three
region of support based algorithms.

2.1.1 Teh-Chin method

Teh and Chin [11] used the ratio of distancedik be-
tweenPi and the chordPi−k, Pi+k (denoted withlik)
to determine the region of support of a candidate dom-
inant point :

rik = lik
dik

To estimate the length of support region, the process
starts withk = 1, increasesk by one each until one
of the following conditions is satisfied, thenk deter-
mines the length of the support region at pointPi:
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⋆ lik ≥ lik+1

⋆

{
rik ≥ rik+1 for dik > 0
rik ≤ rik+1 for dik < 0

This ratio can be considered a measure equivalent to
curvature.
After calculating for each pointPi its support region,
a significance measure|S(Pi)| is given by one of the
following definitions:

• k-cosinemeasure by Rosenfeld-Johnston [4]

• CURik = 1
k

∑
−1
j=−k fi−j − 1

k

∑k−1
j=0 fi−j [40]

wheref is one of the possible directions of Free-
man coding

• 1-curvatureCURi1 = fi+1 − fi

At this point, a nonmaxima suppression of|S(Pi)| is
done by retaining only those points where|S(Pi)| ≥
|S(Pj)| for all j such that|i − j| ≤ ki/2.
A sort of ”fine tuning” adjustment in the position of
some dominant points is made by suppressing those
points havingCURi1 = 0. Then a further refinement
by suppressing those points with|S(Pi)| minimum is
done. In [12] it is pointed out that Teh and Chin’s
algorithm is not robust to noisy contours, due to the
fact that the local maximum curvature may be caused
by noisy variations on the curve.

2.1.2 Wu methods

Wu [13] proposed a simple measurement to detect cor-
ners. He used anadaptive bending valueto determine
the region of support of each point in the contour. For
all break points (described in sect. 2) the bending
value is defined as:

bik = max(|(xi−k − xi) + (xi+k − xi)|, |(yi−k −
yi) + (yi+k − yi)|)

A support region for theith break point can be esti-
mated by the following rule: start withk=1, compute
the bending valuebik, increasek by one each until one
the following conditions is satisfied:

• If bik ≤ bik+1 thenk is the length of region of
supports forPi

• Else if bik = bik+1 then the greatestk that sat-
isfies this condition is the length of regions of
support forPi

The estimated curvature in the pointPi can be ob-
tained by the following smoothing bending value:

bvi = 1
ki

∑ki
j=1 bij

To eliminate the break points from the candidates to
dominant points the following conditions are used:

• bvi < ǫ whereǫ is a preset threshold;

• bvi < bvj for j=i-1 or j=i+1;

• bvi = bvi−1 andki < ki−1;

• bvi = bvi+1 andki < ki−1;

• bvi = bvi+1 andki = ki−1.

The remaining break points with local maximum over
its support region are the dominant points.
With another approach [5] Wu proposed a different
method for dominant points detection. After a first
step, in which the support region identification for
each break pointPi is similar to the Teh and Chin ap-
proach, the curvatures of all of the break points have
been calculated by using thek-cosine measure. Then
the points that have local maximum curvature are lo-
cated. In addition, the points whose curvature is less
than a predefined threshold are removed from the set
of candidates for dominant points.

3 Proposed algorithm

3.1 Initial point setup

In order to reach a complete set of dominant points of
a given a contour, we need of a initial group of starting
points. The four vertex theorem [41] stats that a sim-
ple closed curve in the plane, other than a circle, must
have at least four “vertices” that is at least four points
where the curvature has a local maximum or a local
minimum. By the result of this theorem we choose to
locate four initial points by looking for local maxima
and minima in the signature of the shape.
At first we calculate the centroid of the countour de-
fined as:

xc = 1
n

∑n
i=1 xi , yc = 1

n

∑n
i=1 yi

where(xi, yi) are the coordinates of genericPi of the
n contour points. Then we calculate the signature of
the contour obtained as:

si =
√

(xc − xi)2 + (yc − yi)2, i = 1, 2, ..., n

Given the signature profile of the contour we then cal-
culate local maxima and local minima of this function.
The values are computed by the following criterion: a
point is considered a maximum peak if it has the max-
imal value, and was preceded (to the left) by a value
lower by ∆. In our case we use∆ = 0.5. In such
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Figure 2: Signature for punch shape. Circle denote lo-
cal maxima of curvature and square denote local min-
ima of curvature.

way, searching the minimal values, we find minimum
peaks. We use the first and second maximum and min-
imum peaks so we have four starting points for our
method.

3.2 Iterative dominant point addition

After the initial points setup the method builds a set
of dominant points in the following way:

1) Let D = {di, i = 1, ...,m} the intial dominant
points set. In the first iterationm = 4 according to
the starting points setup. For each pair of points
didi+1, i = 1, 2, ....m wheredi+1 is a neighbor of
di (modulom) it is possible to calculate the sum of
distance from each contour pointpj (j = 1, ..., n)
betweendi and di+1 and the line that connects the
two points:

distj =
|(xi+1 − xi)(yi − yj) − (xi − xj)(yi+1 − yi)|√

((xi+1 − xi))2 + ((yi+1 − yi))2
(1)

where(xi+1, yi+1), (xi, yi) and(xj , yj) are coordi-
nates ofdi+1, di andpj respectively. A global distance
is calculated as :

T =
∑

j distj , j = 1, ..., n

2) In order to find dominant points the valueT
of the previous step is compared to a tresholds

defined ass = p ∗ l, wherep is an input parameter
of the algorithm andl is the number of points of
the line that connectsdi and di+1. If T > s we
add an intermediate point betweendi and di+1

looking for the point with maximum distance to the
chord. The current set of points and the new dominant
points added are the set of points for the next iteration.

3) The algorithm stops when, after two follow-
ing iterations, the number of the current set of points
is equal to the number of the previous set, i.e. each
distance T is less or equal to the corresponding
thresholds.

3.3 Overmuch point suppression

Given a dominant points setD we adopt a refinement
technique to suppress dominant point which are near
enough between them. Letli,j the distance between
di anddj andτ a given threshold, ifli,j < τ then we
substitutedi ≡ (xi, yi) anddi+1 ≡ (xi+1, yi+1) with
their meidum point :

dk ≡ (xk, yk)

wherexk = xi+xi+1

2 and yk = yi+yi+1

2 . A reasonable
value ofτ = 0.007 is set as default.

3.4 Point localization arrangement

Once dominant points are detected we apply an en-
hancement process to refine results adjusting this
point configuration according to a minimal distance
criterion.
Let {d1, d2, ..., dM} the final ordered set of dominant
points. Considering the couplesdi and d(i+2)modM

(i = 1, ...,M ), the improvement method consists in
moving an intermediate point betweendi andd(i+2)

by choosing it in the arcĉkcw, wherecz, (z = k +
1, ..., w − 1) is a generic point of original contour be-
tweenck ≡ di andcw ≡ d(i+2), so that a local mini-
mization of distance is achieved.
The process acts as follows :

• for each pairdi andd(i+2)modM , i = 1, ...,M the
point cz is choosen along the arĉckcw described
above;

• each time the quantity

DIST[i,z,(i+2)] = DISTi,z + DISTz,(i+2)

where

DISTi,z =
∑

ck∈ĉicz
dist(ck, cicz)
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and

DISTz,(i+2) =
∑

ck∈ ̂czc(i+2)
dist(ck, czc(i+2))

as described in (1), is evaluated;

• the new index(i + 1)∗ that minimize this sum is
choosen :

(i + 1)∗ = minz DIST[i,z,(i+2)]

• the new dominant pointd(i+1)∗ betweendi and
d(i+2) and it is then used in the rest of the pro-
cess.

4 Experimental results

In order to test the effectiveness of our method we
perform some experiments, both on typical shapes
(introduced by [4] and [11] and commonly used in
many studies) and on biological and common tools
shapes. In particular we test four contour commonly
used curves : chromosome, infinity, leaf and semi-
circeles curves. Their contour and the set of dominant
points, obtained by each method and highlighted with
a small circle, are shown in figs. 3 - 6. Our method
is compared with others by showing results with the
same or nearest number of dominant points.

The proposed method is compared with the other
methods and results are shown in table 1. We report
some meaningful measures for each tested method:
the number of dominant pointsm, the compression
ratio (CR), theE2 error and theE2/CR ratio. CR is
defined as the ratio between the number of dominant
pointsm and the number of contour pointsn. TheE2

measure (also known asIntegral Square Error) is tipi-
cally used to evaluate the effectiveness of polygonal
approximation. It is defined as:

E2 =
∑

j d2
j , j = 1, ..., n

where dj is the distance of a contour pointpj ,
j = 1, ..., n from the segment betweenp∗i andp∗i+1 ,
p∗i , i = 1, ...,m is the i-th of dominant points such
thatp∗i ≤ pl ≤ p∗i+1. We report the value of threshold
s choosen also. The results clearly demonstrate
better perfomance of our method respect to other
techniques. Infact theE2 error (and subsequently
the E2/CR value) is always lower keeping the
same number of dominant points of other methods.
Viceversa if we set an acceptable value ofE2 error
our method gives the lowest number of dominant
points, i.e. well-located points, compared to the other.

After the refinement process described in 3.4 theE2

error decrease some more. The comparison of results
obtianed applying or not this step are shown in table 2.

We test our method and compare it to the other
dominant points extraction techniques on common
shapes (taken by [42] and [43]) also. In fig. 7 it’s
possibile to see some shapes we used in experiments.
These images are processed by tresholding camera
taken objects and are affected by noise. For each
image the graph which shows theE2 error trend
against the dominant point number is plotted. We use
the log scale for the errorE2. We obtain such values
by varying the input parameter for each method
except for the Teh-Chin method which does not
require any. These graphs confirm the effectiveness of
our method. Worse results of other methods probably
are due to the noise sensitivity.

The polygonal approximation for some real im-
ages like Africa’s map and maple leaf (taken by [44])
are shown in fig. 8 and 9, respectively. We work
with Matlab 2008 running on a Linux 64 bit operating
system on AMD64 6000 platform. The Africa’s map
contour is composed by 1364 points: we calculate the
approximation with 20, 30 and 40 points respectively
(the dotted line is the original contour). The result-
ing computational time is 0.0756 sec., 0.0731 sec and
0.0659 sec. The maple leaf shape is composed by
1630 points : we calculate the approximation with 40,
45 and 50 points respectively (the dotted line is the
original contour). The resulting computational time is
0.1343 sec., 0.1449 sec and 0.1895 sec. respectively.

5 Conclusions

The problem to find a fast and accurate method to
find a set of dominant points given a contour shape
is addressed in this paper. The proposed method not
only has a very low computational time and robust-
ness to noise but also produces a good polygonal ap-
proximation while keeping low theE2 error. By em-
pirical evidence we notice that a threshold value in a
range around 0.5 give the bestE2/CR value and an
improvement of the proposed method by doing with-
out the threshold input parameter in future works is
planned.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Chromosome shape (50 points) : (a) Teh-Chin (15 points), (b) Wu BV (16 points), (c) Wu DYN (17
points), (d) our method (15 points), (e) our method (16 points), (f) our method (17 points)

(a) (b) (c)

(d)

Figure 4: Infinite shape (45 points) : (a) Teh-Chin (13 points), (b) Wu BV (13 points), (c) Wu DYN (13 points),
(d) our method (13 points)
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(a) (b) (c)

(d) (e) (f)

Figure 5: Leaf shape (120 points) : (a) Teh-Chin (29 points), (b) Wu BV (24 points), (c) Wu DYN(23 points), (d)
our method (23 points), (e) our method (24 points), (f) our method (29 points)

(a) (b) (c)

(d) (e)

Figure 6: Semicircle shape (102 points) : (a) Teh-Chin (22 points), (b) Wu BV (26 points), (c) Wu DYN (27
points), (d) our method (23 points), (e) our method (27 points)
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Figure 7: Shapes used in the experiments.
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(a) (b)

(c) (d)

Figure 8: Africa’s map : (a) original shape, (b) 20 points approximation, (c) 30 points approximation, (b) 40 points
approximation

(b)

(c) (d)

Figure 9: Maple leaf : (a) original shape, (b) 40 points approximation, (c) 45 points approximation, (b) 50 points
approximation
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Contour Method m CR E2 s E2/CR
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Our method 27 3.78 6.85 .44 1.51
Teh-Chin 22 4.64 21.86 none 4.45
Wu bv 26 3.92 9.04 n.a. 2.18
Wu dyn 27 3.78 9.92 n.a. 2.49
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