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Abstract: - Intelligent safety-critical systems, such as intelligent automotive systems or intelligent robots, 
require a stringent reliability while the systems are in operation. As system-on-chip (SoC) becomes prevalent in 
the intelligent system applications, the reliability issue of SoC is getting more attention in the design industry 
while the SoC fabrication enters the very deep submicron technology. The system bus, such as AMBA AHB, 
provides an integrated platform for IP-based SoC. Apparently, the robustness of system bus plays an important 
role in the SoC reliability. In this study, we propose a useful bus system vulnerability model and present a 
thorough analysis of system bus vulnerability in SystemC transaction-level modeling (TLM) design level by 
injecting faults into the bus signals, which can assist us in predicting the robustness of the system bus, in 
locating the weaknesses of the bus system, and in understanding the effect of bus faults on system behavior 
during the SoC design phase. The impact of benchmarks on system bus vulnerability is also addressed. The 
contribution of this work is to promote the dependability verification to TLM abstraction level that can 
significantly enhance the simulation performance, and provide the comprehensive results to validate the system 
bus dependability in early design phase for safety-critical applications. 
Keywords: Fault injection, reliability, SystemC, system bus dependability, system-on-chip (SoC). 
 

1 Introduction 
As SoC becomes more and more complicated, the 
SoC could encounter the reliability problem due to 
the increased likelihood of faults or 
radiation-induced soft errors especially when the 
chip fabrication enters the very deep submicron 
technology [1-3]. Such influences raise the urgent 
need to incorporate the fault tolerance into the 
high-performance microprocessors, SoC and 
embedded systems for safety-critical applications 
[4-6]. As a consequence, it is essential to perform 
the failure mode and effects analysis (FMEA) 
procedure to locate the weaknesses of the system 
and provide the practical fault-tolerant strategies to 
improve the reliability [7]. However, due to the 
high complexity of the SoC, the incorporation of 
the FMEA procedure and fault-tolerant demand 
into the SoC will further raise the design 
complexity. Therefore, we need to adopt the 
behavioral level or higher level of abstraction to 

describe/model the SoC, such as using SystemC, to 
tackle the complexity of the SoC design and 
verification. An important issue in the design of 
SoC is how to validate the system dependability as 
early in the development phase to reduce the 
re-design cost. As a result, a system-level 
dependability verification platform is required to 
facilitate the designers in assessing the 
dependability of a system with an efficient manner. 
Normally, the fault injection approach is employed 
to verify the robustness of the systems.  

Most of the previous fault injection studies 
focus on the VHDL design platform, whereas only 
a few works [8]-[12] address the fault injection 
issue in SystemC design platform. In our previous 
paper [10], we proposed a fault injection 
methodology for cycle-accurate register-transfer 
level (RTL) and compared the results of injection 
campaigns with the outcomes derived from the 
VHDL RTL. This scheme can only apply to RTL, 
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which limits the scope of applications. In [8] and 
[9], the authors proposed a fault injection technique 
based on a centralized injection control approach 
that is applicable to functional level and transaction 
layer 1 in SystemC. We devised a distributed 
injection control method [11] to inject the faults 
into the bus-cycle accurate level and untimed 
functional TLM with primitive channel sc_fifo. 
The paper [12] characterized the susceptibility of 
AMBA bus on errors in various signals over 
different transactions in SystemC cycle-accurate 
level. 

As we know, the system bus, such as AMBA 
AHB, provides an interconnected platform for 
IP-based SoC. Clearly, the robustness of system 
bus has a decisive influence on the SoC reliability. 
So, performing the system bus FMEA is imperative 
to validate the reliability of SoC. In previous 
related work, the issue of system bus dependability 
analysis in SystemC design platform is rarely 
addressed except the work proposed in paper [12]. 
The paper [12] characterized the susceptibility of 
AMBA bus on errors in various signals over 
different transactions in SystemC cycle-accurate 
level. However, the approach presented in [12] is 
dedicated to cycle-accurate level, which may still 
be time-consuming in fault injection and simulation 
campaigns. In addition, the previous fault injection 
methodologies are all based on time-triggering 
approach to decide when to inject a fault. While the 
modeling levels of systems come to the untimed 
functional TLM and timed functional TLM, the 
time-triggering fault injection approach is no 
longer applicable to these levels or becomes 
improper. Instead, the event-triggering fault 
injection approach is effective in keeping the fault 
injection easier and efficient at untimed/timed 
functional TLM, especially in the performing of 
system bus FMEA. Besides the above points, the 
results given in [12] lack the analysis of the effect 
of errors occurring in burst-read and burst-write 
transaction modes on system reliability in various 
benchmarks.  

The types of data transaction in the system bus 
normally consist of the single-read, single-write, 
burst-read and burst-write operations. Each type of 
bus transaction could be incorrect or failed during 
its operation because some faults occur in the bus 
signals. So, a question arises in our analysis as to 
how the susceptibility of a system to the faults 
occurring in different bus signals over various 
transaction types. Consequently, the analyses in 
this study focus on the following three issues: 1. 
the effect of faults occurring in different bus 
signals on system dependability; 2. the effect of 

errors occurring in various bus transaction types on 
system dependability; 3. the influence of 
benchmarks on bus and system dependability. The 
analyses of issues 1 and 2 can identify the 
vulnerability of bus signals and bring out the 
susceptibility of the system to a particular data 
transaction type error, respectively.  

In summary, the goal of this research is to 
propose an effective system bus fault injection 
framework in SystemC design platform at the 
abstraction levels of untimed/timed functional 
TLM and to comprehensively investigate the 
susceptibility of a system to faults on bus signals as 
well as the impact of bus faults on system behavior 
and the vulnerability of the bus system at SystemC 
TLM abstraction level. The results of analyses can 
guide us to propose a proper protection scheme for 
bus system. Since the modeling of systems is raised 
to the level of TLM abstraction, the simulation 
speed and fault injection effectiveness are 
enhanced significantly. 

The remaining paper is organized as follows. In 
Section 2, the SystemC untimed/timed functional 
TLM and the concept of Transactor are presented. 
We propose a system bus fault injection 
methodology and fault injection tool in Section 3. 
A vulnerability model of bus system is proposed in 
the Section 4. The experimental results and a 
thorough dependability analysis are given in 
Section 5. The conclusions appear in Section 6. 

2 SystemC Functional TLM 
SystemC, a system-level modeling language, 
provides a wide variety of modeling levels of 
abstraction and allows us to model a system 
utilizing one or a mixture of various abstraction 
levels. It is quite common that the modules within a 
SoC are modeled at different levels of abstraction 
using SystemC design language. The primary goal 
of TLM is to reduce the modeling complexity and 
increase the simulation speeds, while offering 
enough accuracy for the design task. The Open 
SystemC Initiative (OSCI) categorizes the TLM in 
SystemC into the following levels: Programmers 
View (PV), Programmers View with Timing (PV+T) 
and Cycle Callable (CC), where the modeling level 
of abstraction and simulation speed is from high to 
low among these three levels. The PV level is 
equivalent to untimed functional TLM and PV+T 
level is the level of timed functional TLM. 

We adopt the CoWare Platform Architect [13] 
and AMBA bus [14] to demonstrate our system bus 
fault injection approach and its applications. The 
Platform Architect provides the modeling levels of 
PV and PV+T and allows the mixture of these two 
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levels in the IP-based SoC design. In this paper, we 
address the issue of system bus fault injection in 
PV and PV+T levels, which can be used to assist us 
in performing the FMEA procedure during the SoC 
design phase. Fig. 1 shows the ARM-based systems 
modeled with the mixed abstraction levels of PV 
and PV+T, where the ‘Transactor’ likes bridge to 
connect the PV and PV+T levels and its function is 
to convert the bus protocols between PV and PV+T 
levels. In Fig. 1, the AHB and APB components are 
modeled at PV+T abstraction level with AMBA 
protocol; whereas the ‘IP’ slave modules are 
modeled at PV level with PV protocol. The PV bus 
can be utilized to connect the slave modules as 
shown in Fig. 1(a) and (c). Then, the ‘Transactor’ 
behaves like bridge between PV bus and AHB or 
APB. Fig. 1(b) and (d) do not use the PV bus for 
slave modules. Instead, each slave module connects 
to the AHB or APB through the ‘Transactor’. The 
reason of employing the PV modeling level is to 
speed up both the modeling process itself as well as 
the simulation of the resulting specification. 

The AMBA library of Platform Architect 
provides three kinds of ‘Transactor’ module, which 
are named as AHBLiteTarget_PV, APBTarget_PV 
and ScmlPost_AHBInitiator. The former two types 
of ‘Transactor’ offer the bridge between slave 
modules modeled at PV level and AHB/APB 
modeled at PV+T level; ScmlPost_AHBInitiator 
connects the master modules modeled at PV level 
to AHB modeled at PV+T level. We exploit the 
system platform as illustrated in Fig. 2, which 
combines the Fig. 1(a) and (c) to demonstrate our 
system bus fault injection methodology. The 
injection mechanism for systems as shown in Fig. 
1(b) and (d) is similar to the one applicable to Fig. 
2 system. Therefore, we omit its details. 

 
Fig. 1: ARM-based system modeled with mixed 
levels of PV and PV+T, where IP represents the 
slave module.  

 
Fig. 2: An AMBA-based system modeled at PV and 
PV+T levels. 

3 System Bus Fault Injection 
Scheme 

An AMBA-based system as illustrated in Fig. 2 is 
exploited to demonstrate our system bus fault 
injection methodology. It is evident that the 
transaction error modes of the bus operation could 
be classified as single-read, single-write, burst-read 
and burst-write transaction errors. A specific 
transaction error mode, such as burst-read 
transaction error, means that a fault occurs in the 
bus signals during the burst-read data transaction. 
Therefore, if we want to perform the effect analysis 
of a specific transaction error mode, for example 
burst-read, on the system failure behavior, the 
event-driven fault trigger approach can be utilized 
to guide the fault injection to guarantee the faults 
injected in the bus signals during the simulation 
campaigns, which always lead to the burst-read 
transaction errors. In this case, the event of fault 
trigger can be set as burst-read operation of bus 
transactions. 

A fault-triggering event is used to represent a 
particular type of bus transaction or a specific bus 
operation that decide the conditions of fault 
trigger/injection. In this work, we define four 
fault-triggering events for our injection campaigns, 
which are single-read, single-write, burst-read and 
burst-write events. It is important that using the 
event-driven fault injection can easily produce the 
desired transaction error mode and effectively 
characterize its effect on the system behavior. So, 
the event-driven fault injection approach is very 
suitable for the FMEA mission. Compared to 
event-driven fault trigger, the time-driven approach 
suffers from the poor injection effectiveness for a 
particular transaction error mode, because the 
time-driven fault trigger cannot guarantee the 
injected faults that will cause the desired 
transaction errors. As a result, it will degrade the 
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efficiency of carrying out the process of FMEA and 
system robustness validation. 

The principal idea of our event-driven 
approach is based on the insertion of a fault 
injection module (FIM) into the bus 
interconnection, where the FIM is to control the 
fault injection activity. The function of FIM is to 
monitor the bus data transactions and check 
whether the declared event occurs; if yes, the fault 
is injected into the bus.  

3.1 FIM Generation Flow 
The flow of FIM generation consists of two phases 
and is described as follows: 
Phase 1: Since FIM employs the event-driven fault 
trigger approach, we need to collect the desired bus 
transaction information that include read/write, 
address, data and control signals into the 
operational profiles during the program execution. 
The operational profiles are used as a reference for 
generation of events embedded in the FIMs, which 
will be the conditions of fault trigger. The function 
of ‘Transactor’ module as shown in Fig. 2 and 3(a) 
can be enhanced by adding the ability of bus 
transaction information collection to ‘Transactor’. 
This modified version of ‘Transactor’ is called 
operational profile module (OPM) as displayed in 
Fig. 3(b). We utilize the AMBA bus API [15] 
furnished by CoWare Platform Architect to 
implement the function of OPM. What kinds of bus 
transaction information should be collected all 
depends on the designer need.  

The following pseudo code is used to exhibit 
the address information collection for each 
bus-read data transaction. We note that AHB bus 
allows multiple masters, and therefore we offer the 
OPM to have the capability to collect the bus 
transaction information for each master. The other 
classes of bus transaction information, such as data 
and protocol signals, can be achieved in the similar 
way. The information for each type of bus data 
transaction is gathered to a profile for each master 
during the fault-free simulation campaign.  

While (1) { 
int Master_ID;  //multiple masters, each 

given an unique number; 
fstream profile_master_1(“Data1.txt”,ios::app);  
//gathering the address of master 1 to a profile; 
fstream profile_master_2(“Data2.txt”,ios::app);   
//gathering the address of master 2 to a profile; 

port.getReadDataTrf()  //check whether the bus 
is performing read 
transaction or not;  

Master_ID =port.getMasterId() //which master is 

using bus; 
If (Master_ID == 1){ 

profile_master_1<<port.getAddress()<<endl;  
//acquire the address and write it to the 
operational profile of master 1 ;}                  
  

If (Master_ID == 2){ 
profile_master_2<< port.getAddress()<<endl; 
//acquire the address and write it to the 
operational profile of master 2 ;}  

  Protocol transformation;  //original function of 
Transactor; 

  send Transfer(); //call function of set/get read 
data; 

  profile_master_1.close(); 
  profile_master_2.close(); 
  wait();  
} 

Next, we discuss the relationship between 
event and operational profile. As mentioned before, 
the operational profiles are utilized to help us 
create the desired fault-triggering events that 
decide the time instant of fault injection. Fig. 4 
exhibits the event tree and its possible 
combinations for a bus system. Basically, the types 
of data transaction in the bus are read and write 
operations, which are the first level of events as 
shown in Fig. 4. The second level of events 
includes burst and single data transactions. The 
third level of events consists of data, address and 
burst length etc. Our event-driven fault trigger 
methodology provides diverse sorts of events. The 
types of a fault-triggering event can be a single 
event, like bus-read or bus-write event, or the 
combination of events, such as read combined with 
burst to form burst-read event, as illustrated in Fig. 
4. The event combinations can be formed either 
from first-level events coupled with second-level 
events or from first, second then third-level events 
in sequence. To support the event-driven fault 
trigger, the OPM needs to create the desired 
operational profiles, which furnish the information 
for the generation of fault-triggering events.  

 
   (a)      (b)            (c) 

Fig. 3: Transactor, OPM and FIM functions. 
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Fig. 4: Event tree and event combinations. 

We give an example of event combination and 
its application below: 
Example 1: From Fig. 4, we can construct an event 
combination using first-level events coupled with 
second-level events, like read associated with burst 
to compose a new sort of fault-triggering event, 
termed as burst-read event. An OPM is created to 
collect the information of each burst-read data 
transaction occurring in the bus operation. 

According to the operational profile generated 
from the fault-free simulation campaign, assume 
that there are ten thousand times of burst-read data 
transactions occurring in the bus operation. To 
obtain the effect analysis of burst-read transaction 
errors on system operation, we need to conduct a 
huge amount of fault injection campaigns, saying 
five hundred campaigns, to obtain the solid results. 
The burst-read event is used here as a 
fault-triggering event in the fault injection 
campaigns. Each campaign injects a fault which is 
triggered when the number of burst-read 
transactions appearing in the bus has reached to a 
specific number x, where x is between 1 and 10000. 
The number of x for each injection campaign is 
decided by randomly choosing a number between 1 
and 10000. For instance, the number of x for an 

injection campaign is 100. In this case, the fault is 
triggered while the number of burst-read 
transactions appearing in the bus has reached to 
100. The OPM in this case needs to produce an 
operational profile that collects the information of 
burst-read bus transactions including the total 
number of burst-read transactions and the details of 
each burst-read transaction, like the length data.  

We should point out that the OPM is developed 
to gather the bus transaction information for a 
particular fault-triggering event. So, we need to 
decide the fault-triggering event exploited in 
injection campaigns, and develop the 
corresponding OPM for operational profile 
generation. As discussed before, the formation of a 
fault-triggering event can be either a single event or 
event combination. The more number of events are 
combined, the more control of fault-triggering 
condition can be achieved. 

Phase 2: According to the operational profiles 
produced in Phase 1, the FIM as illustrated in Fig. 
3(c) is generated for each injection campaign. A 
FIM can be constructed from the ‘Transactor’ by 
adding the following functions to it: 
fault-triggering event check and fault injection. The 
FIM replaces the ‘Transactor’ module as shown in 
Fig. 2, and is responsible for event check to 
determine when the fault should be injected. If the 
event check finds the particular fault-triggering 
condition happens, the fault is injected. The 
following pseudo code is employed to demonstrate 
how to implement the event check and fault 
injection operations in the FIM. The function of 
FIM in this demonstration is to inject a fault when 
the bus is in read transaction and a specific address 
occurs. Again, we utilize the AMBA bus API [15] 
furnished by CoWare Platform Architect to 
implement the function of FIM.  
While (1) { 

int Master_ID;     
port.getReadDataTrf();  //check whether the bus 

is performing read 
transaction or not; 

Master_ID=port.getMasterId();  //which master 
is using bus 

If (Master_ID == 1){    
If (port.getAddress()==0x40000000)  

{Fault_injection}}      
//master 1 is bus owner & address is 0x40000000 
If (Master_ID == 2){     

If (port.getAddress()==0x80000000)  
{Fault_injection}}      

//master 2 is bus owner & address is 0x80000000 
Protocol transformation; send Transfer(); wait();} 
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3.2 Fault Injection Tool 
We have created an effective fault injection tool 
based on the system bus fault injection 
methodology described in last subsection and the 
fault injection schemes presented in paper [11] 
under the environment of CoWare Platform 
architect [13] for dependability validation of 
system design with SystemC. The tool platform 
provides the capability to quickly handle the 
operation of fault injection campaigns and 
dependability analysis for the systems modeled by 
one or a mixture of the following levels of 
abstraction: bus-cycle accurate level, untimed 
functional TLM with primitive channel sc_fifo, and 
timed functional TLM with hierarchical channel. 
Fig. 5 shows the flow of fault injection tool.  

The tool is able to deal with the fault injection 
at different modeling levels of abstraction and 

offers the time-triggered or event-triggered 
methodologies to decide when to inject a fault. This 
injection tool can significantly reduce the effort and 
time for performing the fault injection campaigns. 
Besides that, the tool dramatically increases the 
efficiency of carrying out the system robustness 
validation. In the following, we briefly depict the 
main functions of the tool: 

 Automatically generate the OPM that replaces 
the ‘Transactor’ as shown in Fig. 2 to establish 
the SoC platform, which is used to produce the 
desired operational profiles for each master.  

 According to the operational profiles, choose 
the event for fault-triggering condition; 
automatically generate the FIMs that replace 
the ‘Transactors’ to establish the targeted SoC 
platforms for fault injection campaigns. 

 
Fig. 5: The functional flow of fault injection tool. 
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4 Bus System Vulnerability Model 
In general, there are four major data transaction 
modes: single-read, single-write, burst-read and 
burst-write offered in system bus operations. It is 
evident that the faults happening in the bus signals 
will lead to the data transaction errors and finally 
cause the system failures. So, in this study of 
system bus vulnerability, we devote our efforts to 
three aspects: 1. the susceptibility of a system to 
the faults occurring in various bus signals; 2. the 
susceptibility of a system to the errors occurring in 
various data transaction modes; 3. the influence of 
benchmarks on bus and system dependability.  

 The following notations are developed: 
 x: number of categories in bus signals 

considered to be faulty; 
 y: number of data transaction modes; 
 z: number of possible failure modes of the 

system; 
 SC(i): ith category of the bus signals, where 1 ≤ 

i ≤ x; 
 W(SC(i)): signal width of SC(i); 
 TW: total width of bus signals considered; 
 TM(j): jth mode of data transaction, where 1 ≤ j 

≤ y; 
 N(TM(j)): number of data transactions for 

TM(j); 
 TN: total number of data transactions in bus 

system; 
 FM(k): kth failure mode of the system, where 1 

≤ k ≤ z; 
 NE: no effect which means that a fault/error 

occurring in the bus system has no impact on 
the system operation at all; 

 P (FM(K)) | SC(i), TM(j): probability of FM(K) 
which is caused due to a fault happening in 
SC(i) and leading to an error during the 
operation of TM(j); 

 P (NE) | SC(i), TM(j): probability of no effect 
under the condition of a fault occurring in SC(i) 
and leading to an error during the operation of 
TM(j); 

 Pf (i, j) | SC(i), TM(j): probability of system 
failure which is caused due to a fault 
happening in SC(i) and leading to an error 
during the operation of TM(j); 

 Pf (i) | SC(i): probability of system failure 
which is caused due to a fault occurring in 
SC(i); 

 Pf (j) | TM(j): probability of system failure 
resulting from an error happening in the 
operation of TM(j); 

 P (FM(K)) | SC(i): probability of FM(K) due to 
a fault taking place in SC(i); 

 P (NE) | SC(i): probability of no effect for a 
fault taking place in SC(i); 

 P (FM(K)): probability of FM(K); 
 P (NE): probability of no effect; 
 P (SC(i)): probability of a fault hitting the ith 

category of bus signals; 
 P (TM(j)): probability of the bus system 

performing the jth mode of data transaction. 

The bus system vulnerability can be computed 
by the following equations: 
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Equations (4) and (5) represent the 
susceptibility of a system to the faults occurring in 
various bus signals and the susceptibility of a 
system to the errors occurring in various data 
transaction modes, respectively. Also from the 
above notations and equations, we can infer that 
the terms of N(TM(j)), TN, P (TM(j)), Pf (i) | SC(i), 
P (FM(K)) | SC(i) as well as  P (FM(K)) are 
benchmark-variant. As a result, the bus and system 
dependability is benchmark-variant too. 

5 Experimental Results 
An ARM-based system platform provided by 
CoWare Platform Architect [13] was used to 
investigate the data transaction vulnerability of 
AMBA AHB. The system platform is modeled at 
the timed functional TLM abstraction level. We 

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 412 Issue 2, Volume 8, February 2009



exploit the SoC-level fault injection platform 
described in Section 3 to analyze the AMBA AHB 
vulnerability based on the equations (1) to (7). The 
bus signals considered in the vulnerability analysis 
are ‘HADDR[31:0]’, ‘HSIZE[2:0]’ as well as 
‘HDATA[31:0]’. The failure modes of the system 
identified from the fault injection campaigns are 
fatal failure (FF), silent data corruption (SDC), 
correct data/incorrect time (CD/IT), and deadlock 
(DL) (note that we declare the failure mode as DL 
if the execution of benchmark exceeds the 1.5 
times of normal execution time). In the following, 
we summarize the data used in the bus 
vulnerability analysis. 

 x = 3, {SC(1), SC(2), SC(3)} = {HADDR[31:0], 
HSIZE[2:0], HDATA[31:0]}; {W(SC(1)), 
W(SC(2)), W(SC(3))} = {32, 3, 32} 

 y = 4, {TM(1), TM(2), TM(3), TM(4)} = 
{Burst-Read (BR), Burst-Write (BW), 
Single-Read (SR), Single-Write (SW)}; 
N(TM(j)), j = 1 to 4, can be found in Table 1; 

 z = 4, {FM(1), FM(2), FM(3), FM(4)} = {FF, 
SDC, CD/IT, DL}. 
The benchmarks employed in the fault 

injection campaigns are: JPEG (pixels: 255 × 154), 
matrix multiplication (M-M: 50 × 50), quicksort 
(QS: 3000 elements) and FFT (256 points). Table 1 
gives the statistics of the data transactions of the 
aforementioned benchmarks and the average 
statistics of the four benchmarks. 

Table 1: Statistics of data transaction modes for 
several benchmarks and the average statistics. 

 Cycles BR BW SR SW Total

QS 3887348 470416 5 251677 30007 752105

M-M 4689502 403083 2 265196 10102 678383

FFT  8060732 1059811 29365 441430 118058 1648664

JPEG 21115374 18584 19632 1457996 325063 1821275

Avg. 9438239 487974 12251 604075 120808 1225108

Table 2 shows the results of P (FM(K)) | SC(i), 
TM(j) for JPEG benchmark, where i = 1 to 3, j = 1 
to 4 and k = 1 to 4. We omit the P (FM(K)) | SC(i), 
TM(j) results for other three benchmarks for space 
consideration. The results of a row in Table 2 were 
derived from the five hundred fault injection 
campaigns, where each injection campaign injected 
1-bit flip fault to bus signal SC(i) while bus system 
is performing the TM(j) operation. The fault 
duration lasts for the length of one time data 
transaction. The statistics derived from five 

hundred times of fault injection campaigns have 
been verified to guarantee the validity of the 
analysis.  

The Pf (i, j) | SC(i), TM(j), Pf (i) | SC(i) as well 
as  Pf (j) | TM(j) can be calculated by expressions 
(3), (4) and (5). Table 3 illustrates the results of Pf 
(i, j) | SC(i), TM(j), Pf (i) | SC(i) and Pf (j) | TM(j) 
for the used benchmarks. The results of Table 3 
reveal that the rank of vulnerability of bus signals 
is ‘HADDR’ > ‘HSIZE’ > ‘HDATA’ for all 
benchmarks, and the susceptibility of the system to 
errors over different data transaction modes is 
benchmark-variant. We note that an error occurring 
in the SR transaction operation during the running 
of JPEG and FFT benchmarks has the highest 
probability to cause the system failure compared to 
errors in BR, BW and SW, whereas the 
susceptibility of the system to SW data transaction 
error is the highest for M-M and QS benchmarks.  

Table 4 furnishes the data of P (FM(K))|SC(i) 
and P (NE)|SC(i) for JPEG benchmark. It is clear 
that the data of Table 4 can be easily derived from 
the data of Table 2 and expression (6). Again, we 
omit the data for other three benchmarks for space 
consideration. The data shown in Table 4 indicate 
the probability distribution of failure modes for 
each of the signal category considered to be 
possibly faulty in bus system. For system running 
JPEG, we can observe that SDC is the failure mode 
that has the highest probability to occur while a 
fault arises in the bus signals. The other interesting 
phenomenon worth to mention is the ‘HSIZE’ and 
‘HDATA’ faults rarely cause the FF, whereas 
‘HADDR’ faults show a significant possibility to 
lead to the FF.   

Based on the data of P (FM(K))|SC(i), P 
(FM(K)) can be evaluated by expression (7) and the 
results are given in Table 5. From Table 5, it is 
evident that the susceptibility of the system to 
faults is benchmark-dependent and the rank of 
system vulnerability over different benchmarks is 
JPEG > M-M > FFT > QS. However, all 
benchmarks exhibit the same trend in that the 
probabilities of FF show no substantial difference, 
and while a fault arises in the bus signals, the 
occurring probabilities of SDC and FF occupy the 
top two ranks.  

P (burst | error) and P (single | error) illustrated 
in Table 6 represent the data of the susceptibility of 
the system to errors happening in the burst 
transaction mode and single transaction mode, 
respectively; similarly, P (read | error) and P (write 
| error) shown in Table 6 represent the data of the 
susceptibility of the system to errors happening in 
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the read operation and write operation in the bus 
system, respectively. P (burst | error) can be 
computed by the following expression: 

P (burst | error) = ))1()1((
))2(())1((

))1(( TMP
TMNTMN

TMN
f |×

+
 

))2()2((
))2(())1((

))2(( TMP
TMNTMN

TMN
f |×

+
+ (10) 

Other three probability expressions can be obtained 
similarly as expression (10). The salient points 
observed from Table 6 are: first is the system is 
more sensitive to errors arising in single data 
transaction than errors arising in burst data 
transaction; second is the system is more sensitive 
to errors arising in write data operation than errors 
arising in read data operation except the JPEG 
benchmark. 

Table 7 offers the average dependability 
statistics over four benchmarks employed in the 
validation process. The data of Pf (i, j) | SC(i), TM(j) 
in Table 7 were obtained by mathematical average 
of Pf (i, j) | SC(i), TM(j) for all benchmarks. Then, 
the rest of the data in Table 7 can be computed 
using the equations presented in Section 4. Since 
the severity of system vulnerability is 
benchmark-dependent, the results of Table 7 give 
us the expected probabilities for the vulnerability 
of the developing system, which are very valuable 
for us to gain the robustness of the bus system and 
the critical bus signals to be protected. With 
reference to Table 7, for bus signals, we see that the 
‘HADDR’ is the top priority to protect; for data 
transaction modes, single-read as well as 
single-write are the ones to be protected. The 
robustness measure of the bus system is only 
0.2678, which means that a fault occurring in the 
bus system, the application system has the 
probability of 0.2678 to be survived for that fault. 
Last but not least, we note that the SDC is the most 
popular failure mode for the application system 
responding to the bus faults or errors.  

Table 2: P (FM(K)) | SC(i), TM(j) results for JPEG 
benchmark. 

 FF(%) SDC(%) CD/IT(%) DL(%) NE(%)

HADDR, BR 42.4 30.4 0.2 7.6 19.4

HADDR, BW 42.0 23.2 0.2 2.2 32.4

HADDR, SR 38.4 42.0 0.0 14.0 5.6

HADDR, SW 40.6 49.0 0.4 1.0 9.0

HSIZE, BR 0.0 57.4 1.4 10.6 30.6

HSIZE, BW 0.0 30.0 0.2 2.0 67.8

HSIZE, SR 0.2 69.8 0.2 14.2 15.6

HSIZE, SW 0.0 64.0 0.4 0.8 34.8

HDATA, BR 0.0 46.8 0.4 20.6 32.2

HDATA, BW 0.0 60.2 0.0 12.0 27.8

HDATA, SR 0.0 48.2 0.2 25.4 26.2

HDATA, SW 0.0 39.6 0.4 0.0 60.0

Table 3: Pf (i, j)|SC(i),TM(j), Pf (i)|SC(i) and Pf (j)| 
TM(j) for the used benchmarks. 

JPEG BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 80.6 67.6 94.4 91.0 93.36%

HSIZE 69.4 32.2 84.4 65.2 80.26%

HDATA 67.8 72.2 73.8 40.0 67.69%

Pf (j)|TM(j) 73.99 68.21 84.11 65.49  

M-M BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 79.4 45.8 98.6 99.4 87.20%

HSIZE 74.4 48.8 87.0 94.4 79.62%

HDATA 56.8 0.0 94.8 98.2 72.27%

Pf (j)|TM(j) 68.38 24.06 96.27 98.60  

QS BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 65.8 64.6 76.4 98.2 70.64%

HSIZE 64.6 50.6 76.4 66.2 68.61%

HDATA 26.2 25.0 56.4 97.0 39.13%

Pf (j)|TM(j) 46.83 45.06 66.85 96.19  

FFT BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 73.8 78.6 88.4 80.4 78.27%

HSIZE 65.4 59.4 84.2 60.6 69.98%

HDATA 37.2 77.6 66.4 67.2 47.89%

Pf (j)|TM(j) 55.94 77.26 77.70 73.21  

Table 4: P (FM(K))|SC(i) and P (NE)|SC(i) for JPEG 
benchmark. 

 FF  SDC  CD/IT  DL NE  

HADDR 38.87% 42.93% 0.08% 11.49% 6.64%

HSIZE 0.16% 68.21% 0.25% 11.64% 19.74%

HDATA 0.00% 46.78% 0.24% 20.67% 32.31%
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Table 5: P (FM(K)) and P (NE) for the used 
benchmarks. 

 FF (%) SDC (%) CD/IT (%) DL (%) NE (%)

JPEG 18.57 45.90 0.16 15.88 19.49 

M-M 18.95 55.06 2.15 3.57 20.27 

QS 20.06 17.52 12.24 5.67 44.50 

FFT 20.18 21.09 15.74 6.38 36.61 

Table 6: P (burst | error) vs. P (single | error) and P 
(read | error) vs. P (write | error) 

 P (burst | 
error)  

P (single | 
error)  

P (read | 
error) 

P (write | 
error)  

JPEG 71.02% 80.72% 83.99% 65.64% 

M-M 68.38% 96.35% 79.45% 98.59% 

QS 46.83% 69.97% 53.81% 96.19% 

FFT 56.52% 76.76% 62.34% 74.02% 

Table 7: Average dependability statistics over four 
benchmarks. 

  BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 74.90 64.15 89.45 92.25 83.68% 

HSIZE 68.45 47.75 83.00 71.60 75.73% 

HDATA 47.00 43.70 72.85 75.60 62.53% 

Pf (j)|TM(j) 61.29 53.65 81.23 83.37  

 FF (%) SDC (%) CD/IT (%) DL (%) NE (%) 

 19.41 38.16 7.59 8.06 26.78 

 
P (burst | 

error)  
P (single | 

Error)  
P (read |  

error) 
P (write | 

error)  
 

 61.10% 81.59% 72.32% 80.64%  

6 Conclusions 
In this work, we have presented a valuable 
dependability model for SoC bus system, and 
exploited an ARM-based application system to 
demonstrate its feasibility and usefulness. The main 
contributions of this study are first to raise the level 
of dependability validation to the untimed/timed 
functional TLM and devise an effective system 
verification platform under the CoWare Platform 
Architect to assist us in performing the fault 
injection and simulation campaigns. Therefore, the 
efficiency of the validation process is dramatically 
increased; second to develop a useful dependability 
model to analyze the robustness of the bus system; 

third to conduct a thorough vulnerability analysis 
of the AMBA bus system based on a real 
ARM-based system platform modeled in SystemC 
TLM abstraction level. The analyses help us 
measure the robustness of the bus system and 
locate the critical bus signals to be guarded. 
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