
Analysis of System Bus Transaction Vulnerability
Based on FMEA Methodology in SystemC TLM Design Platform

YUNG-YUAN CHEN, CHUNG-HSIEN HSU, AND KUEN-LONG LEU+

Department of Computer Science and Information Engineering
Chung-Hua University

No. 707, Sec. 2, Wu-Fu Rd., Hsin-Chu
TAIWAN

E-mail: chenyy@chu.edu.tw, m09402067@chu.edu.tw
+Department of Electrical Engineering

National Central University
No. 300, Jhongda Rd., JhongLi City, Taoyuan County

TAIWAN
945401025@cc.ncu.edu.tw

Abstract: - Intelligent safety-critical systems, such as intelligent automotive systems or intelligent robots,
require a stringent reliability while the systems are in operation. As system-on-chip (SoC) becomes prevalent in
the intelligent system applications, the reliability issue of SoC is getting more attention in the design industry
while the SoC fabrication enters the very deep submicron technology. The system bus, such as AMBA AHB,
provides an integrated platform for IP-based SoC. Apparently, the robustness of system bus plays an important
role in the SoC reliability. In this study, we propose a useful bus system vulnerability model and present a
thorough analysis of system bus vulnerability in SystemC transaction-level modeling (TLM) design level by
injecting faults into the bus signals, which can assist us in predicting the robustness of the system bus, in
locating the weaknesses of the bus system, and in understanding the effect of bus faults on system behavior
during the SoC design phase. The impact of benchmarks on system bus vulnerability is also addressed. The
contribution of this work is to promote the dependability verification to TLM abstraction level that can
significantly enhance the simulation performance, and provide the comprehensive results to validate the system
bus dependability in early design phase for safety-critical applications.
Keywords: Fault injection, reliability, SystemC, system bus dependability, system-on-chip (SoC).

1 Introduction
As SoC becomes more and more complicated, the
SoC could encounter the reliability problem due to
the increased likelihood of faults or
radiation-induced soft errors especially when the
chip fabrication enters the very deep submicron
technology [1-3]. Such influences raise the urgent
need to incorporate the fault tolerance into the
high-performance microprocessors, SoC and
embedded systems for safety-critical applications
[4-6]. As a consequence, it is essential to perform
the failure mode and effects analysis (FMEA)
procedure to locate the weaknesses of the system
and provide the practical fault-tolerant strategies to
improve the reliability [7]. However, due to the
high complexity of the SoC, the incorporation of
the FMEA procedure and fault-tolerant demand
into the SoC will further raise the design
complexity. Therefore, we need to adopt the
behavioral level or higher level of abstraction to

describe/model the SoC, such as using SystemC, to
tackle the complexity of the SoC design and
verification. An important issue in the design of
SoC is how to validate the system dependability as
early in the development phase to reduce the
re-design cost. As a result, a system-level
dependability verification platform is required to
facilitate the designers in assessing the
dependability of a system with an efficient manner.
Normally, the fault injection approach is employed
to verify the robustness of the systems.

Most of the previous fault injection studies
focus on the VHDL design platform, whereas only
a few works [8]-[12] address the fault injection
issue in SystemC design platform. In our previous
paper [10], we proposed a fault injection
methodology for cycle-accurate register-transfer
level (RTL) and compared the results of injection
campaigns with the outcomes derived from the
VHDL RTL. This scheme can only apply to RTL,

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 406 Issue 2, Volume 8, February 2009

which limits the scope of applications. In [8] and
[9], the authors proposed a fault injection technique
based on a centralized injection control approach
that is applicable to functional level and transaction
layer 1 in SystemC. We devised a distributed
injection control method [11] to inject the faults
into the bus-cycle accurate level and untimed
functional TLM with primitive channel sc_fifo.
The paper [12] characterized the susceptibility of
AMBA bus on errors in various signals over
different transactions in SystemC cycle-accurate
level.

As we know, the system bus, such as AMBA
AHB, provides an interconnected platform for
IP-based SoC. Clearly, the robustness of system
bus has a decisive influence on the SoC reliability.
So, performing the system bus FMEA is imperative
to validate the reliability of SoC. In previous
related work, the issue of system bus dependability
analysis in SystemC design platform is rarely
addressed except the work proposed in paper [12].
The paper [12] characterized the susceptibility of
AMBA bus on errors in various signals over
different transactions in SystemC cycle-accurate
level. However, the approach presented in [12] is
dedicated to cycle-accurate level, which may still
be time-consuming in fault injection and simulation
campaigns. In addition, the previous fault injection
methodologies are all based on time-triggering
approach to decide when to inject a fault. While the
modeling levels of systems come to the untimed
functional TLM and timed functional TLM, the
time-triggering fault injection approach is no
longer applicable to these levels or becomes
improper. Instead, the event-triggering fault
injection approach is effective in keeping the fault
injection easier and efficient at untimed/timed
functional TLM, especially in the performing of
system bus FMEA. Besides the above points, the
results given in [12] lack the analysis of the effect
of errors occurring in burst-read and burst-write
transaction modes on system reliability in various
benchmarks.

The types of data transaction in the system bus
normally consist of the single-read, single-write,
burst-read and burst-write operations. Each type of
bus transaction could be incorrect or failed during
its operation because some faults occur in the bus
signals. So, a question arises in our analysis as to
how the susceptibility of a system to the faults
occurring in different bus signals over various
transaction types. Consequently, the analyses in
this study focus on the following three issues: 1.
the effect of faults occurring in different bus
signals on system dependability; 2. the effect of

errors occurring in various bus transaction types on
system dependability; 3. the influence of
benchmarks on bus and system dependability. The
analyses of issues 1 and 2 can identify the
vulnerability of bus signals and bring out the
susceptibility of the system to a particular data
transaction type error, respectively.

In summary, the goal of this research is to
propose an effective system bus fault injection
framework in SystemC design platform at the
abstraction levels of untimed/timed functional
TLM and to comprehensively investigate the
susceptibility of a system to faults on bus signals as
well as the impact of bus faults on system behavior
and the vulnerability of the bus system at SystemC
TLM abstraction level. The results of analyses can
guide us to propose a proper protection scheme for
bus system. Since the modeling of systems is raised
to the level of TLM abstraction, the simulation
speed and fault injection effectiveness are
enhanced significantly.

The remaining paper is organized as follows. In
Section 2, the SystemC untimed/timed functional
TLM and the concept of Transactor are presented.
We propose a system bus fault injection
methodology and fault injection tool in Section 3.
A vulnerability model of bus system is proposed in
the Section 4. The experimental results and a
thorough dependability analysis are given in
Section 5. The conclusions appear in Section 6.

2 SystemC Functional TLM
SystemC, a system-level modeling language,
provides a wide variety of modeling levels of
abstraction and allows us to model a system
utilizing one or a mixture of various abstraction
levels. It is quite common that the modules within a
SoC are modeled at different levels of abstraction
using SystemC design language. The primary goal
of TLM is to reduce the modeling complexity and
increase the simulation speeds, while offering
enough accuracy for the design task. The Open
SystemC Initiative (OSCI) categorizes the TLM in
SystemC into the following levels: Programmers
View (PV), Programmers View with Timing (PV+T)
and Cycle Callable (CC), where the modeling level
of abstraction and simulation speed is from high to
low among these three levels. The PV level is
equivalent to untimed functional TLM and PV+T
level is the level of timed functional TLM.

We adopt the CoWare Platform Architect [13]
and AMBA bus [14] to demonstrate our system bus
fault injection approach and its applications. The
Platform Architect provides the modeling levels of
PV and PV+T and allows the mixture of these two

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 407 Issue 2, Volume 8, February 2009

levels in the IP-based SoC design. In this paper, we
address the issue of system bus fault injection in
PV and PV+T levels, which can be used to assist us
in performing the FMEA procedure during the SoC
design phase. Fig. 1 shows the ARM-based systems
modeled with the mixed abstraction levels of PV
and PV+T, where the ‘Transactor’ likes bridge to
connect the PV and PV+T levels and its function is
to convert the bus protocols between PV and PV+T
levels. In Fig. 1, the AHB and APB components are
modeled at PV+T abstraction level with AMBA
protocol; whereas the ‘IP’ slave modules are
modeled at PV level with PV protocol. The PV bus
can be utilized to connect the slave modules as
shown in Fig. 1(a) and (c). Then, the ‘Transactor’
behaves like bridge between PV bus and AHB or
APB. Fig. 1(b) and (d) do not use the PV bus for
slave modules. Instead, each slave module connects
to the AHB or APB through the ‘Transactor’. The
reason of employing the PV modeling level is to
speed up both the modeling process itself as well as
the simulation of the resulting specification.

The AMBA library of Platform Architect
provides three kinds of ‘Transactor’ module, which
are named as AHBLiteTarget_PV, APBTarget_PV
and ScmlPost_AHBInitiator. The former two types
of ‘Transactor’ offer the bridge between slave
modules modeled at PV level and AHB/APB
modeled at PV+T level; ScmlPost_AHBInitiator
connects the master modules modeled at PV level
to AHB modeled at PV+T level. We exploit the
system platform as illustrated in Fig. 2, which
combines the Fig. 1(a) and (c) to demonstrate our
system bus fault injection methodology. The
injection mechanism for systems as shown in Fig.
1(b) and (d) is similar to the one applicable to Fig.
2 system. Therefore, we omit its details.

Fig. 1: ARM-based system modeled with mixed
levels of PV and PV+T, where IP represents the
slave module.

Fig. 2: An AMBA-based system modeled at PV and
PV+T levels.

3 System Bus Fault Injection
Scheme

An AMBA-based system as illustrated in Fig. 2 is
exploited to demonstrate our system bus fault
injection methodology. It is evident that the
transaction error modes of the bus operation could
be classified as single-read, single-write, burst-read
and burst-write transaction errors. A specific
transaction error mode, such as burst-read
transaction error, means that a fault occurs in the
bus signals during the burst-read data transaction.
Therefore, if we want to perform the effect analysis
of a specific transaction error mode, for example
burst-read, on the system failure behavior, the
event-driven fault trigger approach can be utilized
to guide the fault injection to guarantee the faults
injected in the bus signals during the simulation
campaigns, which always lead to the burst-read
transaction errors. In this case, the event of fault
trigger can be set as burst-read operation of bus
transactions.

A fault-triggering event is used to represent a
particular type of bus transaction or a specific bus
operation that decide the conditions of fault
trigger/injection. In this work, we define four
fault-triggering events for our injection campaigns,
which are single-read, single-write, burst-read and
burst-write events. It is important that using the
event-driven fault injection can easily produce the
desired transaction error mode and effectively
characterize its effect on the system behavior. So,
the event-driven fault injection approach is very
suitable for the FMEA mission. Compared to
event-driven fault trigger, the time-driven approach
suffers from the poor injection effectiveness for a
particular transaction error mode, because the
time-driven fault trigger cannot guarantee the
injected faults that will cause the desired
transaction errors. As a result, it will degrade the

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 408 Issue 2, Volume 8, February 2009

efficiency of carrying out the process of FMEA and
system robustness validation.

The principal idea of our event-driven
approach is based on the insertion of a fault
injection module (FIM) into the bus
interconnection, where the FIM is to control the
fault injection activity. The function of FIM is to
monitor the bus data transactions and check
whether the declared event occurs; if yes, the fault
is injected into the bus.

3.1 FIM Generation Flow
The flow of FIM generation consists of two phases
and is described as follows:
Phase 1: Since FIM employs the event-driven fault
trigger approach, we need to collect the desired bus
transaction information that include read/write,
address, data and control signals into the
operational profiles during the program execution.
The operational profiles are used as a reference for
generation of events embedded in the FIMs, which
will be the conditions of fault trigger. The function
of ‘Transactor’ module as shown in Fig. 2 and 3(a)
can be enhanced by adding the ability of bus
transaction information collection to ‘Transactor’.
This modified version of ‘Transactor’ is called
operational profile module (OPM) as displayed in
Fig. 3(b). We utilize the AMBA bus API [15]
furnished by CoWare Platform Architect to
implement the function of OPM. What kinds of bus
transaction information should be collected all
depends on the designer need.

The following pseudo code is used to exhibit
the address information collection for each
bus-read data transaction. We note that AHB bus
allows multiple masters, and therefore we offer the
OPM to have the capability to collect the bus
transaction information for each master. The other
classes of bus transaction information, such as data
and protocol signals, can be achieved in the similar
way. The information for each type of bus data
transaction is gathered to a profile for each master
during the fault-free simulation campaign.

While (1) {
int Master_ID; //multiple masters, each

given an unique number;
fstream profile_master_1(“Data1.txt”,ios::app);
//gathering the address of master 1 to a profile;
fstream profile_master_2(“Data2.txt”,ios::app);
//gathering the address of master 2 to a profile;

port.getReadDataTrf() //check whether the bus
is performing read
transaction or not;

Master_ID =port.getMasterId() //which master is

using bus;
If (Master_ID == 1){

profile_master_1<<port.getAddress()<<endl;
//acquire the address and write it to the
operational profile of master 1 ;}

If (Master_ID == 2){
profile_master_2<< port.getAddress()<<endl;
//acquire the address and write it to the
operational profile of master 2 ;}

 Protocol transformation; //original function of
Transactor;

 send Transfer(); //call function of set/get read
data;

 profile_master_1.close();
 profile_master_2.close();
 wait();
}

Next, we discuss the relationship between
event and operational profile. As mentioned before,
the operational profiles are utilized to help us
create the desired fault-triggering events that
decide the time instant of fault injection. Fig. 4
exhibits the event tree and its possible
combinations for a bus system. Basically, the types
of data transaction in the bus are read and write
operations, which are the first level of events as
shown in Fig. 4. The second level of events
includes burst and single data transactions. The
third level of events consists of data, address and
burst length etc. Our event-driven fault trigger
methodology provides diverse sorts of events. The
types of a fault-triggering event can be a single
event, like bus-read or bus-write event, or the
combination of events, such as read combined with
burst to form burst-read event, as illustrated in Fig.
4. The event combinations can be formed either
from first-level events coupled with second-level
events or from first, second then third-level events
in sequence. To support the event-driven fault
trigger, the OPM needs to create the desired
operational profiles, which furnish the information
for the generation of fault-triggering events.

 (a) (b) (c)

Fig. 3: Transactor, OPM and FIM functions.

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 409 Issue 2, Volume 8, February 2009

Fig. 4: Event tree and event combinations.

We give an example of event combination and
its application below:
Example 1: From Fig. 4, we can construct an event
combination using first-level events coupled with
second-level events, like read associated with burst
to compose a new sort of fault-triggering event,
termed as burst-read event. An OPM is created to
collect the information of each burst-read data
transaction occurring in the bus operation.

According to the operational profile generated
from the fault-free simulation campaign, assume
that there are ten thousand times of burst-read data
transactions occurring in the bus operation. To
obtain the effect analysis of burst-read transaction
errors on system operation, we need to conduct a
huge amount of fault injection campaigns, saying
five hundred campaigns, to obtain the solid results.
The burst-read event is used here as a
fault-triggering event in the fault injection
campaigns. Each campaign injects a fault which is
triggered when the number of burst-read
transactions appearing in the bus has reached to a
specific number x, where x is between 1 and 10000.
The number of x for each injection campaign is
decided by randomly choosing a number between 1
and 10000. For instance, the number of x for an

injection campaign is 100. In this case, the fault is
triggered while the number of burst-read
transactions appearing in the bus has reached to
100. The OPM in this case needs to produce an
operational profile that collects the information of
burst-read bus transactions including the total
number of burst-read transactions and the details of
each burst-read transaction, like the length data.

We should point out that the OPM is developed
to gather the bus transaction information for a
particular fault-triggering event. So, we need to
decide the fault-triggering event exploited in
injection campaigns, and develop the
corresponding OPM for operational profile
generation. As discussed before, the formation of a
fault-triggering event can be either a single event or
event combination. The more number of events are
combined, the more control of fault-triggering
condition can be achieved.

Phase 2: According to the operational profiles
produced in Phase 1, the FIM as illustrated in Fig.
3(c) is generated for each injection campaign. A
FIM can be constructed from the ‘Transactor’ by
adding the following functions to it:
fault-triggering event check and fault injection. The
FIM replaces the ‘Transactor’ module as shown in
Fig. 2, and is responsible for event check to
determine when the fault should be injected. If the
event check finds the particular fault-triggering
condition happens, the fault is injected. The
following pseudo code is employed to demonstrate
how to implement the event check and fault
injection operations in the FIM. The function of
FIM in this demonstration is to inject a fault when
the bus is in read transaction and a specific address
occurs. Again, we utilize the AMBA bus API [15]
furnished by CoWare Platform Architect to
implement the function of FIM.
While (1) {

int Master_ID;
port.getReadDataTrf(); //check whether the bus

is performing read
transaction or not;

Master_ID=port.getMasterId(); //which master
is using bus

If (Master_ID == 1){
If (port.getAddress()==0x40000000)

{Fault_injection}}
//master 1 is bus owner & address is 0x40000000
If (Master_ID == 2){

If (port.getAddress()==0x80000000)
{Fault_injection}}

//master 2 is bus owner & address is 0x80000000
Protocol transformation; send Transfer(); wait();}

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 410 Issue 2, Volume 8, February 2009

3.2 Fault Injection Tool
We have created an effective fault injection tool
based on the system bus fault injection
methodology described in last subsection and the
fault injection schemes presented in paper [11]
under the environment of CoWare Platform
architect [13] for dependability validation of
system design with SystemC. The tool platform
provides the capability to quickly handle the
operation of fault injection campaigns and
dependability analysis for the systems modeled by
one or a mixture of the following levels of
abstraction: bus-cycle accurate level, untimed
functional TLM with primitive channel sc_fifo, and
timed functional TLM with hierarchical channel.
Fig. 5 shows the flow of fault injection tool.

The tool is able to deal with the fault injection
at different modeling levels of abstraction and

offers the time-triggered or event-triggered
methodologies to decide when to inject a fault. This
injection tool can significantly reduce the effort and
time for performing the fault injection campaigns.
Besides that, the tool dramatically increases the
efficiency of carrying out the system robustness
validation. In the following, we briefly depict the
main functions of the tool:

 Automatically generate the OPM that replaces
the ‘Transactor’ as shown in Fig. 2 to establish
the SoC platform, which is used to produce the
desired operational profiles for each master.

 According to the operational profiles, choose
the event for fault-triggering condition;
automatically generate the FIMs that replace
the ‘Transactors’ to establish the targeted SoC
platforms for fault injection campaigns.

Fig. 5: The functional flow of fault injection tool.

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 411 Issue 2, Volume 8, February 2009

4 Bus System Vulnerability Model
In general, there are four major data transaction
modes: single-read, single-write, burst-read and
burst-write offered in system bus operations. It is
evident that the faults happening in the bus signals
will lead to the data transaction errors and finally
cause the system failures. So, in this study of
system bus vulnerability, we devote our efforts to
three aspects: 1. the susceptibility of a system to
the faults occurring in various bus signals; 2. the
susceptibility of a system to the errors occurring in
various data transaction modes; 3. the influence of
benchmarks on bus and system dependability.

 The following notations are developed:
 x: number of categories in bus signals

considered to be faulty;
 y: number of data transaction modes;
 z: number of possible failure modes of the

system;
 SC(i): ith category of the bus signals, where 1 ≤

i ≤ x;
 W(SC(i)): signal width of SC(i);
 TW: total width of bus signals considered;
 TM(j): jth mode of data transaction, where 1 ≤ j

≤ y;
 N(TM(j)): number of data transactions for

TM(j);
 TN: total number of data transactions in bus

system;
 FM(k): kth failure mode of the system, where 1

≤ k ≤ z;
 NE: no effect which means that a fault/error

occurring in the bus system has no impact on
the system operation at all;

 P (FM(K)) | SC(i), TM(j): probability of FM(K)
which is caused due to a fault happening in
SC(i) and leading to an error during the
operation of TM(j);

 P (NE) | SC(i), TM(j): probability of no effect
under the condition of a fault occurring in SC(i)
and leading to an error during the operation of
TM(j);

 Pf (i, j) | SC(i), TM(j): probability of system
failure which is caused due to a fault
happening in SC(i) and leading to an error
during the operation of TM(j);

 Pf (i) | SC(i): probability of system failure
which is caused due to a fault occurring in
SC(i);

 Pf (j) | TM(j): probability of system failure
resulting from an error happening in the
operation of TM(j);

 P (FM(K)) | SC(i): probability of FM(K) due to
a fault taking place in SC(i);

 P (NE) | SC(i): probability of no effect for a
fault taking place in SC(i);

 P (FM(K)): probability of FM(K);
 P (NE): probability of no effect;
 P (SC(i)): probability of a fault hitting the ith

category of bus signals;
 P (TM(j)): probability of the bus system

performing the jth mode of data transaction.

The bus system vulnerability can be computed
by the following equations:

∑
=

=
x

i

iSCWTW
1

))((; ∑
=

=
y

j

jTMNTN
1

))(((1)

P (SC(i)) =
TW

iSCW))((; P (TM(j)) =
TN

jTMN))(((2)

Pf (i, j) | SC(i), TM(j) = ∑
=

|
z

k

TM(j)iSCP (FM(K))
1

 ,)((3)

Pf (i) | SC(i) =)(),(),())((
1

jTMiSCjiPjTMP
y

j

f |×∑
=

 (4)

Pf (j) | TM(j) =)(),(),())((
1

jTMiSCjiPiSCP
x

i

f |×∑
=

 (5)

P (FM(K))|SC(i) = ∑
=

|×
y

j
TM(j)iSCP (FM(K))jTMP

1
 ,)())(((6)

P (FM(K)) =)())(())((
1

iSCkFMPiSCP
x

i
|×∑

=
 (7)

P (NE)|SC(i),TM(j)=1-∑
=

|
z

k

TM(j)iSCP (FM(K))
1

 ,)((8)

P (NE) = ∑
=

−
z

k

kFMP
1

))((1 (9)

Equations (4) and (5) represent the
susceptibility of a system to the faults occurring in
various bus signals and the susceptibility of a
system to the errors occurring in various data
transaction modes, respectively. Also from the
above notations and equations, we can infer that
the terms of N(TM(j)), TN, P (TM(j)), Pf (i) | SC(i),
P (FM(K)) | SC(i) as well as P (FM(K)) are
benchmark-variant. As a result, the bus and system
dependability is benchmark-variant too.

5 Experimental Results
An ARM-based system platform provided by
CoWare Platform Architect [13] was used to
investigate the data transaction vulnerability of
AMBA AHB. The system platform is modeled at
the timed functional TLM abstraction level. We

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 412 Issue 2, Volume 8, February 2009

exploit the SoC-level fault injection platform
described in Section 3 to analyze the AMBA AHB
vulnerability based on the equations (1) to (7). The
bus signals considered in the vulnerability analysis
are ‘HADDR[31:0]’, ‘HSIZE[2:0]’ as well as
‘HDATA[31:0]’. The failure modes of the system
identified from the fault injection campaigns are
fatal failure (FF), silent data corruption (SDC),
correct data/incorrect time (CD/IT), and deadlock
(DL) (note that we declare the failure mode as DL
if the execution of benchmark exceeds the 1.5
times of normal execution time). In the following,
we summarize the data used in the bus
vulnerability analysis.

 x = 3, {SC(1), SC(2), SC(3)} = {HADDR[31:0],
HSIZE[2:0], HDATA[31:0]}; {W(SC(1)),
W(SC(2)), W(SC(3))} = {32, 3, 32}

 y = 4, {TM(1), TM(2), TM(3), TM(4)} =
{Burst-Read (BR), Burst-Write (BW),
Single-Read (SR), Single-Write (SW)};
N(TM(j)), j = 1 to 4, can be found in Table 1;

 z = 4, {FM(1), FM(2), FM(3), FM(4)} = {FF,
SDC, CD/IT, DL}.
The benchmarks employed in the fault

injection campaigns are: JPEG (pixels: 255 × 154),
matrix multiplication (M-M: 50 × 50), quicksort
(QS: 3000 elements) and FFT (256 points). Table 1
gives the statistics of the data transactions of the
aforementioned benchmarks and the average
statistics of the four benchmarks.

Table 1: Statistics of data transaction modes for
several benchmarks and the average statistics.

 Cycles BR BW SR SW Total

QS 3887348 470416 5 251677 30007 752105

M-M 4689502 403083 2 265196 10102 678383

FFT 8060732 1059811 29365 441430 118058 1648664

JPEG 21115374 18584 19632 1457996 325063 1821275

Avg. 9438239 487974 12251 604075 120808 1225108

Table 2 shows the results of P (FM(K)) | SC(i),
TM(j) for JPEG benchmark, where i = 1 to 3, j = 1
to 4 and k = 1 to 4. We omit the P (FM(K)) | SC(i),
TM(j) results for other three benchmarks for space
consideration. The results of a row in Table 2 were
derived from the five hundred fault injection
campaigns, where each injection campaign injected
1-bit flip fault to bus signal SC(i) while bus system
is performing the TM(j) operation. The fault
duration lasts for the length of one time data
transaction. The statistics derived from five

hundred times of fault injection campaigns have
been verified to guarantee the validity of the
analysis.

The Pf (i, j) | SC(i), TM(j), Pf (i) | SC(i) as well
as Pf (j) | TM(j) can be calculated by expressions
(3), (4) and (5). Table 3 illustrates the results of Pf
(i, j) | SC(i), TM(j), Pf (i) | SC(i) and Pf (j) | TM(j)
for the used benchmarks. The results of Table 3
reveal that the rank of vulnerability of bus signals
is ‘HADDR’ > ‘HSIZE’ > ‘HDATA’ for all
benchmarks, and the susceptibility of the system to
errors over different data transaction modes is
benchmark-variant. We note that an error occurring
in the SR transaction operation during the running
of JPEG and FFT benchmarks has the highest
probability to cause the system failure compared to
errors in BR, BW and SW, whereas the
susceptibility of the system to SW data transaction
error is the highest for M-M and QS benchmarks.

Table 4 furnishes the data of P (FM(K))|SC(i)
and P (NE)|SC(i) for JPEG benchmark. It is clear
that the data of Table 4 can be easily derived from
the data of Table 2 and expression (6). Again, we
omit the data for other three benchmarks for space
consideration. The data shown in Table 4 indicate
the probability distribution of failure modes for
each of the signal category considered to be
possibly faulty in bus system. For system running
JPEG, we can observe that SDC is the failure mode
that has the highest probability to occur while a
fault arises in the bus signals. The other interesting
phenomenon worth to mention is the ‘HSIZE’ and
‘HDATA’ faults rarely cause the FF, whereas
‘HADDR’ faults show a significant possibility to
lead to the FF.

Based on the data of P (FM(K))|SC(i), P
(FM(K)) can be evaluated by expression (7) and the
results are given in Table 5. From Table 5, it is
evident that the susceptibility of the system to
faults is benchmark-dependent and the rank of
system vulnerability over different benchmarks is
JPEG > M-M > FFT > QS. However, all
benchmarks exhibit the same trend in that the
probabilities of FF show no substantial difference,
and while a fault arises in the bus signals, the
occurring probabilities of SDC and FF occupy the
top two ranks.

P (burst | error) and P (single | error) illustrated
in Table 6 represent the data of the susceptibility of
the system to errors happening in the burst
transaction mode and single transaction mode,
respectively; similarly, P (read | error) and P (write
| error) shown in Table 6 represent the data of the
susceptibility of the system to errors happening in

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 413 Issue 2, Volume 8, February 2009

the read operation and write operation in the bus
system, respectively. P (burst | error) can be
computed by the following expression:

P (burst | error) =))1()1((
))2(())1((

))1((TMP
TMNTMN

TMN
f |×

+

))2()2((
))2(())1((

))2((TMP
TMNTMN

TMN
f |×

+
+ (10)

Other three probability expressions can be obtained
similarly as expression (10). The salient points
observed from Table 6 are: first is the system is
more sensitive to errors arising in single data
transaction than errors arising in burst data
transaction; second is the system is more sensitive
to errors arising in write data operation than errors
arising in read data operation except the JPEG
benchmark.

Table 7 offers the average dependability
statistics over four benchmarks employed in the
validation process. The data of Pf (i, j) | SC(i), TM(j)
in Table 7 were obtained by mathematical average
of Pf (i, j) | SC(i), TM(j) for all benchmarks. Then,
the rest of the data in Table 7 can be computed
using the equations presented in Section 4. Since
the severity of system vulnerability is
benchmark-dependent, the results of Table 7 give
us the expected probabilities for the vulnerability
of the developing system, which are very valuable
for us to gain the robustness of the bus system and
the critical bus signals to be protected. With
reference to Table 7, for bus signals, we see that the
‘HADDR’ is the top priority to protect; for data
transaction modes, single-read as well as
single-write are the ones to be protected. The
robustness measure of the bus system is only
0.2678, which means that a fault occurring in the
bus system, the application system has the
probability of 0.2678 to be survived for that fault.
Last but not least, we note that the SDC is the most
popular failure mode for the application system
responding to the bus faults or errors.

Table 2: P (FM(K)) | SC(i), TM(j) results for JPEG
benchmark.

 FF(%) SDC(%) CD/IT(%) DL(%) NE(%)

HADDR, BR 42.4 30.4 0.2 7.6 19.4

HADDR, BW 42.0 23.2 0.2 2.2 32.4

HADDR, SR 38.4 42.0 0.0 14.0 5.6

HADDR, SW 40.6 49.0 0.4 1.0 9.0

HSIZE, BR 0.0 57.4 1.4 10.6 30.6

HSIZE, BW 0.0 30.0 0.2 2.0 67.8

HSIZE, SR 0.2 69.8 0.2 14.2 15.6

HSIZE, SW 0.0 64.0 0.4 0.8 34.8

HDATA, BR 0.0 46.8 0.4 20.6 32.2

HDATA, BW 0.0 60.2 0.0 12.0 27.8

HDATA, SR 0.0 48.2 0.2 25.4 26.2

HDATA, SW 0.0 39.6 0.4 0.0 60.0

Table 3: Pf (i, j)|SC(i),TM(j), Pf (i)|SC(i) and Pf (j)|
TM(j) for the used benchmarks.

JPEG BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 80.6 67.6 94.4 91.0 93.36%

HSIZE 69.4 32.2 84.4 65.2 80.26%

HDATA 67.8 72.2 73.8 40.0 67.69%

Pf (j)|TM(j) 73.99 68.21 84.11 65.49

M-M BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 79.4 45.8 98.6 99.4 87.20%

HSIZE 74.4 48.8 87.0 94.4 79.62%

HDATA 56.8 0.0 94.8 98.2 72.27%

Pf (j)|TM(j) 68.38 24.06 96.27 98.60

QS BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 65.8 64.6 76.4 98.2 70.64%

HSIZE 64.6 50.6 76.4 66.2 68.61%

HDATA 26.2 25.0 56.4 97.0 39.13%

Pf (j)|TM(j) 46.83 45.06 66.85 96.19

FFT BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 73.8 78.6 88.4 80.4 78.27%

HSIZE 65.4 59.4 84.2 60.6 69.98%

HDATA 37.2 77.6 66.4 67.2 47.89%

Pf (j)|TM(j) 55.94 77.26 77.70 73.21

Table 4: P (FM(K))|SC(i) and P (NE)|SC(i) for JPEG
benchmark.

 FF SDC CD/IT DL NE

HADDR 38.87% 42.93% 0.08% 11.49% 6.64%

HSIZE 0.16% 68.21% 0.25% 11.64% 19.74%

HDATA 0.00% 46.78% 0.24% 20.67% 32.31%

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 414 Issue 2, Volume 8, February 2009

Table 5: P (FM(K)) and P (NE) for the used
benchmarks.

 FF (%) SDC (%) CD/IT (%) DL (%) NE (%)

JPEG 18.57 45.90 0.16 15.88 19.49

M-M 18.95 55.06 2.15 3.57 20.27

QS 20.06 17.52 12.24 5.67 44.50

FFT 20.18 21.09 15.74 6.38 36.61

Table 6: P (burst | error) vs. P (single | error) and P
(read | error) vs. P (write | error)

 P (burst |
error)

P (single |
error)

P (read |
error)

P (write |
error)

JPEG 71.02% 80.72% 83.99% 65.64%

M-M 68.38% 96.35% 79.45% 98.59%

QS 46.83% 69.97% 53.81% 96.19%

FFT 56.52% 76.76% 62.34% 74.02%

Table 7: Average dependability statistics over four
benchmarks.

 BR (%) BW (%) SR (%) SW (%) Pf (i)|SC(i)

HADDR 74.90 64.15 89.45 92.25 83.68%

HSIZE 68.45 47.75 83.00 71.60 75.73%

HDATA 47.00 43.70 72.85 75.60 62.53%

Pf (j)|TM(j) 61.29 53.65 81.23 83.37

 FF (%) SDC (%) CD/IT (%) DL (%) NE (%)

 19.41 38.16 7.59 8.06 26.78

P (burst |

error)
P (single |

Error)
P (read |

error)
P (write |

error)

 61.10% 81.59% 72.32% 80.64%

6 Conclusions
In this work, we have presented a valuable
dependability model for SoC bus system, and
exploited an ARM-based application system to
demonstrate its feasibility and usefulness. The main
contributions of this study are first to raise the level
of dependability validation to the untimed/timed
functional TLM and devise an effective system
verification platform under the CoWare Platform
Architect to assist us in performing the fault
injection and simulation campaigns. Therefore, the
efficiency of the validation process is dramatically
increased; second to develop a useful dependability
model to analyze the robustness of the bus system;

third to conduct a thorough vulnerability analysis
of the AMBA bus system based on a real
ARM-based system platform modeled in SystemC
TLM abstraction level. The analyses help us
measure the robustness of the bus system and
locate the critical bus signals to be guarded.

Acknowledgments: The authors acknowledge the
support of the National Science Council, R.O.C.,
under Contract No. NSC 97-2221-E-216-018.
Thanks are also due to the National Chip
Implementation Center, R.O.C., for their support of
SystemC design tool - CoWare Platform Architect.

References:
[1] C. Constantinescu, “Impact of deep submicron

technology on dependability of VLSI circuits,”
in 2002 Proc. IEEE Int. Conf. On DSN, pp.
205-209.

[2] R. Baumann, “Soft errors in advanced
computer systems,” IEEE Design & Test of
Computers, vol. 22, issue 3, pp. 258-266,
May-June 2005.

[3] Y. Zorian et al., “Impact of soft error challenge
on SoC design,” in 2005 Proc. 11th IEEE Int.
On-Line Testing Symposium, pp. 63-68.

[4] Short, M., Schwarz M. and Boercsoek J.:
‘Efficient Implementation of Fault-Tolerant
Data Structures in Embedded Control
Software’, WSEAS TRANSACTIONS on
ELECTRONICS, 5, (1), January 2008, pp.
12-24.

[5] Hahanov, V., Hahanova, A., Chumachenko, S.
and Galagan, S.: ‘Diagnosis and Repair
Method of SoC Memory’, WSEAS
TRANSACTIONS on CIRCUITS AND
SYSTEMS, 7, (7), July 2008, pp. 698-707.

[6] Hahanov, V., Obrizan, V., Litvinova, E. and
Man, K. L.: ‘Algebra-Logical Diagnosis Model
for SoC F-IP’, WSEAS TRANSACTIONS on
CIRCUITS AND SYSTEMS, 7, (7), July 2008,
pp. 708-717.

[7] R. Mariani, G. Boschi, and F. Colucci, “Using
an innovative SoC-level FMEA methodology
to design in compliance with IEC61508,” in
2007 Proc. Design, Automation & Test in
Europe Conf. & Exhibition, pp. 492-497.

[8] K. Rothbart et al., “High level fault injection
for attack simulation in smart cards,” in 2004
Proc. 13th Asian Test Symposium, pp. 118-121.

[9] K. Rothbart et al., “A smart card test
environment using multi-level fault injection in
SystemC”, in 2005 Proc. 6th IEEE
Latin-American Test Workshop, pp. 103-108.

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 415 Issue 2, Volume 8, February 2009

[10] K. L. Leu, Y. Y. Chen, and J. E. Chen, “A
comparison of fault injection experiments
under different verification environments,” in
2007 Proc. IEEE 4th Int. Conf. on Information
Technology and Applications, pp. 582-587.

[11] K. J. Chang, and Y. Y. Chen, “System-level
fault injection in SystemC design platform,” in
2007 Proc. 8th Int. Symposium on Advanced
Intelligent Systems, pp. 354-359.

[12] I. C. Lin, S. Srinivasan, & N. Vijaykrishnan,
“Transaction level error susceptibility model
for bus based SoC architectures,” in 2006 7th
Int. Symposium on Quality Electronic Design,
pp. 775-780.

[13] CoWare Model Library, “Platform Creator
User’s Guide,” Product Version V2006.1.2.

[14] CoWare Model Library, “AMBA Bus
Library,” Product Version V2006.1.2.

[15] CoWare Model Library, “SystemC Modeling
Library Manual,” Product Version V2006.1.2.

WSEAS TRANSACTIONS on COMPUTERS Yung-Yuan Chen, Chung-Hsien Hsu, Kuen-Long Leu

ISSN: 1109-2750 416 Issue 2, Volume 8, February 2009

	27-512
	28-437
	28-838
	28-839
	28-849
	28-855
	

	28-861

