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Abstract: - Aspect mining is a research direction that tries to identify crosscutting concerns in already developed
software systems, without using aspect oriented programming. The goal is to identify them and then to refactor
them to aspects, to achieve a system that can be easily understood, maintained and modified. In this paper we aim
at presenting a partitional clustering algorithm for identifying crosscutting concerns in existing software systems.
We experimentally evaluate our algorithm using the open source JHotDraw case study, for three distance functions,
providing a comparison of the proposed approach with similar existing approaches. The experimental evaluation
conducts us to the best semi-metric distance function to be used in the clustering process.
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1 Introduction
Nowadays, software systems have become more and
more complex and large. Usually, a software system
is composed of many core concerns and (some) cross-
cutting concerns (like logging, exception handling).
If core concerns can be cleanly separated and imple-
mented using existing programming paradigms, this
is not true for crosscutting concerns, as a crosscut-
ting concern has a more system-wide behavior that
cuts across many of the core concerns implementa-
tion modules. Separation of concerns [22] is a very
important principle of software engineering that, in
its most general form, refers to the ability to iden-
tify, encapsulate and manipulate those parts of soft-
ware that are relevant to a particular concept, goal,
or purpose. The aspect oriented paradigm (AOP) is
one of the approaches proposed so far, for designing
and implementing crosscutting concerns [13]. Aspect
oriented techniques allow crosscutting concerns to be
implemented in a new kind of module called aspect,
by introducing new language constructs like pointcuts
and advices.

Kiczales et al. introduce for the first time as-
pect oriented programming (AOP) in [13]. Since 1997
the aspect oriented paradigm has been slowly adopted
by the industry, too, leading to the appearance of
new research problems like software reverse engineer-
ing, reengineering, and refactoring to use the aspect-
oriented paradigm in order to benefit from the advan-
tages it brings.

Aspect mining is a research direction that tries to
identify crosscutting concerns in already developed

software systems, without using AOP. The goal is to
identify them and then to refactor them to aspects, to
achieve a system that can be easily understood, main-
tained and modified.

There are many reasons for migrating a legacy
system to an aspect oriented based system. An in-
adequate solution for crosscutting concerns imple-
mentation has a negative impact on the final system
with consequences like duplicated code, scattering of
concerns throughout the entire system and tangling
of concern-specific code with that of other concerns.
These consequences lead to software systems that are
hard to maintain and to evolve. When aspect ori-
ented techniques are used, the crosscutting concerns
are cleanly separated from the core concerns.

The main contribution of this paper is to intro-
duce a partitional clustering algorithm for identifying
crosscutting concerns in existing software systems.

The rest of the paper is structured as follows. Sec-
tion 2 presents some existing work in the field of as-
pect clustering. The main aspects related to the prob-
lem of clustering, particularly to partitional clustering
are presented in Section 3. A new partitional clus-
tering algorithm (PACO) for identifying crosscutting
concerns is proposed in Section 4. An experimental
evaluation of the proposed algorithm is presented in
Section 5, together with a comparison of our approach
with similar existing approaches. Some conclusions
of the paper and further research directions are given
in Section 6.
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2 Related Work
Aspect mining is a relatively new research domain.
However, many aspect mining techniques have been
proposed. Some use metrics [18], some use formal
concept analysis [4, 30, 31], or execution relations [3].
There are also a few approaches that use clone detec-
tion techniques [5, 28] or natural language processing
[24]. A few techniques use clustering in order to iden-
tify crosscutting concerns [9, 21, 26, 29].

In the following we will briefly present some of
the existing approaches in aspect mining.

Marin et al [18] have proposed an aspect mining
technique that uses the fanin metric [10]. Their idea
is to search for crosscutting concerns among the meth-
ods that have the value of the fanin metric greater than
a given threshold. The result obtained by this tech-
nique can be viewed as a partition of the software sys-
tem to be mined. The partition contains two clusters:
the first one contains the methods that have the fanin
greater than the given threshold and the second con-
tains the remaining methods.

A graph based approach in aspect mining is intro-
duced in [25]. The basic idea of this technique is to
determine methods that are similar. The approach is
to construct a graph between the methods of the soft-
ware system, to determine the connex components of
this graph, called clusters, and then to identify cross-
cutting concerns in the obtained clusters.

Breu and Krinke [3] have proposed an aspect min-
ing technique based on dynamic analysis. The mined
software system is run and program traces are gen-
erated. From program traces, recurring execution
relations that satisfy some constraints are selected.
Among these recurring execution relations they search
for aspect candidates. This approach is adapted to
static analysis in [14]. In this approach the recurring
execution relations are obtained from the control flow
graph of the program.

Qu and Liu [23] proposed a modified approach
of that proposed by Breu and Krinke. They also mine
for crosscutting concerns using the same execution re-
lations defined by Breu and Krinke, but they obtain
these relations using a method call tree. This approach
uses a method call tree to generate method call traces.
These traces are then investigated for the same recur-
ring method patterns and the same constrains as those
defined by Breu and Krinke.

Tonella and Ceccato [30] have also proposed an
aspect mining technique based on dynamic analysis.
An instrumented version of the mined software sys-
tem is run and execution traces for each use case are
obtained. Formal concept analysis [7] is applied on
these execution traces and the concepts that satisfy
some constraints are considered as aspect candidates.

Tourwé and Mens [31] have proposed an aspect

mining technique based on identifier analysis. The
identifiers associated with a method or class are com-
puted by splitting up its name based on where capitals
appear in it. They apply formal concept analysis on
the identifiers to group entities with the same iden-
tifiers. The groups that satisfy some constraints and
that contain a number of elements larger than a given
threshold are considered as aspect candidates.

Bruntink et al [5] have studied the effectiveness
of clone detection techniques in aspect mining. They
did not propose a new aspect mining technique, but
they tried to evaluate how useful clone detection tech-
niques are in aspect mining.

Shepherd et al [28] have proposed an aspect min-
ing technique based on clone detection. They search
for code duplication in the source code using the pro-
gram dependency graph. The obtained results are fur-
ther analyzed to discover crosscutting concerns.

Breu and Zimmermann [4] have proposed an his-
tory based aspect mining technique. They mine CVS
repositories for add-call transactions on which they
apply formal concept analysis. Concepts that satisfy
some constraints are considered aspect candidates.

Sampaio et al [24] have proposed an aspect min-
ing technique to discover aspect candidates early in
the development lifecycle. They use natural lan-
guage processing techniques on different documents
(requirements, interviews, etc.) to discover words that
are used in many sentences. The words that have a
high frequency and have the same meaning in all the
sentences are considered aspect candidates.

There are a few aspect mining techniques pro-
posed in the literature that use clustering in order to
identify crosscutting concerns [9, 26, 27, 29].

He and Bai [9] have proposed an aspect mining
technique based on dynamic analysis. They obtain ex-
ecution traces for each use case, but they apply clus-
tering and association rules to discover aspect candi-
dates.

Shepherd and Pollock [29] have proposed an as-
pect mining tool based on clustering. They use hier-
archical clustering to find methods that have common
substrings in their names. The obtained clusters are
then manually analyzed to discover crosscutting con-
cerns.

Şerban and Moldovan have proposed a clustering
approach for identifying crosscutting concerns and a
partitional clustering algorithm named kAM is intro-
duced in [26].

An evolutionary approach in aspect mining is in-
troduced in [27] by Şerban and Moldovan and two ge-
netic clustering algorithms used to identify crosscut-
ting concerns are proposed.
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3 Partitional Clustering. The k-
medoids clustering algorithm

Unsupervised classification, or clustering, as it is
more often referred as, is a data mining activity that
aims to differentiate groups (classes or clusters) in-
side a given set of objects [8], being considered the
most important unsupervised learning problem. The
resulting subsets or groups, distinct and non-empty,
are to be built so that the objects within each cluster
are more closely related to one another than objects
assigned to different clusters. Central to the cluster-
ing process is the notion of degree of similarity (or
dissimilarity) between the objects.

Let O = {O1, O2, . . . , On} be the set of objects
to be clustered. The measure used for discriminat-
ing objects can be any metric or semi-metric function
d : O ×O −→ <. The distance expresses the dissim-
ilarity between objects.

A well-known class of clustering methods is the
one of the partitioning methods, with representatives
such as the k-means algorithm or the k-medoids algo-
rithm. Essentially, given a set of n objects and a num-
ber k, k ≤ n, such a method divides the object set
into k distinct and non-empty clusters. The partition-
ing process is iterative and heuristic; it stops when a
“good” partitioning is achieved. Finding a “good” par-
titioning coincides with optimizing a criterion func-
tion defined either locally (on a subset of the objects)
or globally (defined over all of the objects, as in k-
means). These algorithms try to minimize certain cri-
teria (i.e., a squared error function); the squared error
criterion tends to work well with isolated and compact
clusters [11].

In k-medoids or PAM (Partitioning around
medoids) algorithm [12], each cluster is represented
by one of the objects in the cluster. It finds repre-
sentative objects, called medoids, in clusters. The al-
gorithm starts with k initial representative objects for
the clusters (medoids), then iteratively recalculates the
clusters (each object is assigned to the closest clus-
ter - medoid), and their medoids until convergence is
achieved. At a given step, a medoid of a cluster is
replaced with a non-medoid if it improves the total
distance of the resulting clustering [12].

The main disadvantages of PAM algorithm are:

• The performance of the algorithm depends on the
initial centroids. So, the algorithm gives no guar-
antee for an optimal solution.

• The user needs to specify the number of clusters
in advance.

4 A New Partitional Clustering Al-
gorithm for Crosscutting Concerns
Identification (PACO)

In this section we introduce a new partitional clus-
tering algorithm (PACO) (Partitional Clustering Al-
gorithm for Crosscutting Concerns Identification) for
identifying crosscutting concerns in existing software
systems. In order to discover the crosscutting con-
cerns from the system, we analyze the source code of
the software system to be mined. All classes, meth-
ods and relations between them are computed. Af-
terwards, PACO algorithm is used to identify a parti-
tion of a software system S in which the methods be-
longing to a crosscutting concern should be grouped
together. The final step is to manually analyzed the
obtained results.

Let us consider that the software system to be
mined consists of a set of classes C = {c1, c2, . . . , cs},
each class containing one ore more methods. In
our clustering approach, the objects to be clustered
are the methods from the software system S, i.e.,
M = {m1, m2, . . . ,mn}. Our focus is to group the
methods such that the methods belonging to the same
crosscutting concern are placed in the same cluster.

4.1 Distance functions
In order to apply a clustering algorithm, the dissimi-
larity degree between any two methods from the soft-
ware system S have to be considered.

Crosscutting concerns in non AO systems have
two symptoms: code scattering and code tangling. In
the following we will define three distance functions
in order to express the dissimilarity degree between
the methods from the software system considering the
code scattering and the code tangling symptoms.

“Scattering” distance
The code scattering symptom means that the code that
implements a crosscutting concern is spread across the
system.

The first distance function that we propose illus-
trates the code scattering symptom. Consequently, we
consider the distance dS(mi, mj) between two meth-
ods mi and mj as expressed in Equation (1).

dS(mi, mj) =

{
1− |in(mi)∩in(mj)|

|in(mi)∪in(mj)| if in(mi) ∩ in(mj) 6= ∅
∞ otherwise

(1)

where, for a given method m ∈M, in(m) defines the
set of methods and classes that invoke m, as expressed
in Equation (2).

in(m) = {m} ∪ {m′ ∈M∪ C| m′ invoke m}. (2)
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In our view, the distance between two methods
as defined in (1) expresses the following idea: if two
methods are invoked by common methods or classes,
they should belong to the same cluster. This means
that scattered methods would be placed in the same
cluster, and the methods that do not represent aspects
would not be placed together with methods from as-
pects as the latest are invoked from multiple places.
Consequently, methods that belong to the same cross-
cutting concern are close (considering distance dS) to
each other.

Many programming languages allow the defini-
tion of inner classes, classes that are defined inside
of another class. The definition of classes inside of
other classes are used in order to group classes that
are related. This semantic information can be rel-
evant for identifying crosscutting concerns. Group-
ing of classes frequently appears in real life software
projects, and our distance consider this situation, also.
The set in(m) contains not only the class c that invoke
the method, but also the class that contains class c.

“Tangling” distance

The code tangling symptom means that the code that
implements some concern is mixed with code from
other (crosscutting) concerns.

The second distance function that we propose il-
lustrates the code tangling symptom. For a method
m from the software system to be mined we denote
by r(m) the set of relevant properties for each invo-
cation context inv ∈ in(m). Each invokation of the
metod m is analyzed and the set r(m) is constructed
by collecting all the local variables defined and used,
all used attributes, all classes accesed and parameter
types used by the invoker method. The ideea is to col-
lect all the information that can be considered as the
context of the invocation for method m.

Consequently, we consider the distance
dT (mi, mj) between two methods mi and mj

as expressed in Equation (3).

dT (mi, mj) =

{
1− |r(mi)∩r(mj)|

|r(mi)∪r(mj)| if r(mi) ∩ r(mj) 6= ∅
∞ otherwise

(3)

where, for a given method m ∈M, in(m) is defined
as in Equation (2).

In our view, the distance between two methods
as defined in (3) expresses the following idea: if two
methods are invoked in similar contexts, they should
belong to the same cluster. Consequently, methods
that belong to the same crosscutting concern are close
(considering distance dT ) to each other.

“Scattering-Tangling” distance
The third distance function that we propose considers
both the code scattering and code tangling symptoms.
Consequently, we consider the distance dST (mi, mj)
between two methods mi and mj as expressed in
Equation (4).

dST (mi, mj) = min{dS(mi, mj), dT (mi, mj).} (4)

4.2 PACO algorithm
In order to avoid the two main disadvantages of the
traditional k-medoids algorithm, PACO algorithm uses
a heuristic for choosing the number of medoids (clus-
ters) and the initial medoids. This heuristic is particu-
lar to aspect mining and it will provide a good enough
choice of the initial medoids.

After selecting the initial medoids, PACO behaves
like the classical k-medoids algorithm.

In the following we will consider that the distance
d between two methods from the software system is
given by one of the distances dS (Equation (1)), dT

(Equation (3)) or dST (Equation (4)).
The main idea of PACO’s heuristic for choos-

ing the initial medoids and the number p of clusters
(medoids) is the following:

(i) The initial number p of clusters is n (the number
of methods from the software system).

(ii) The method chosen as the first medoid is the
most “distant” method from the set of all meth-
ods (the method that maximizes the sum of dis-
tances from all other methods).

(iii) In order to choose the next medoid we reason as
follows. For each remaining method (that was
not chosen as medoid), we compute the mini-
mum distance (dmin) from the method and the
already chosen medoids. The next medoid is
chosen as the method m that maximizes dmin
and this distance is greater than a positive given
threshold (distMin). If such a method does not
exist, it means that m is very close to all the
medoids and should not be chosen as a new
medoid. From the aspect mining point of view
this means that m should belong to the same
(crosscutting) concern with an existing medoid.
In this case, the number p of medoids will be de-
creased.

(iv) The step (iii) will be repeatedly performed, until
p medoids will be reached.
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We have to notice that step (iii) described above
assures, from the aspect mining point of view, that
near methods (with respect to the given threshold dist-
Min) will be merged in a single (crosscutting) con-
cern (cluster), instead of being distributed in different
(crosscutting) concerns.

We mention that at steps (ii) and (iii) the choice
could be a non-deterministic one. In the current ver-
sion of PACO algorithm, if such a non-deterministic
case exists, the first selection is made. Future im-
provements of PACO algorithm will deal with these
kind of situations.

The main idea of the PACO algorithm that we ap-
ply in order to group methods from a software system
is the following:

(i) The initial number p of clusters and the ini-
tial medoids are determined by the heuristic de-
scribed above.

(ii) The clusters are recalculated, i.e., each object is
assigned to the closest medoid.

(iii) Recalculate the medoid i of each cluster k based
on the following idea: if h is an object from k

such that
∑
j∈k

(d(j, h) − d(j, i)) is negative, then

h becomes the new medoid of cluster k.

(iv) Steps (ii)-(iii) are repeatedly performed until
there is no change in the partition K.

We give, next, PACO algorithm.

Algorithm PACO is

Input:
- the software system S = {m1, . . . , mn}
- the semi-metric d between methods

- the threshold distMin,

- noMaxIter the maximum number of iterations

allowed.

Output:
- the partition K = {K1, K2, ..., Kp} of the system

S.

Begin
k ← n //the initial number of medoids

//the index i1 of the first medoid is chosen

i1 ← argmaxi=1,n

{
n∑

j=1,j 6=i

d(mi, mj)

}
//the number of the already chosen medoids

nr ← 1

While nr < k do

D ← {j | 1 ≤ j ≤ n, j /∈ {i1, ..., inr}, d =

minl=1,nr

{
d(mj , mil

)
}

, d > distMin}
If D = ∅ then

//the number of medoids is decreased

k ← k − 1

else

nr ← nr + 1//another medoid is chosen

inr ← argmaxj∈D

{
minl=1,nr−1{d(mj ,il

)}
}

endif

endwhile

p← k //the number of medoids

//the initial medoids are determined

For j ← 1, k do

medoidj ← mij

endfor

While (K changes) and

(no. of iterations ≤ noMaxIter) do

For j ← 1, p do

Kj ← {si | 1 ≤ i ≤ n, ∀l, l 6= j,

d(mi, medoidj) ≤ d(mi, medoidl)}
endfor

For i← 1, p do

If Ki = ∅ then

//the number of clusters is decreased

@ Remove element Ki from K
else

@ Calculate the new medoid of Ki

For each h ∈ Ki do

@ Compute dist =
∑
j∈k

(d(j, h)−d(j, medoidi))

If dist < 0 then

medoidi ← h

endif

endfor

endif

endfor

endwhile

End.

We mention that PACO algorithm provides a par-
tition of a software system S, partition that ideally
would contain separate clusters for each crosscutting
concern.

Regarding to PACO algorithm, we have to notice
the following:

• If, at a given moment, a cluster becomes empty,
this means that the number of clusters will be de-
creased.

• Because the initial medoids are selected based
on the heuristic described above, the dependence
of the algorithm on the initial medoids is elimi-
nated.

• We have chosen the value 1 for the thresh-
old distMin, because distances greater than 1
are obtained only for unrelated entities (Equa-
tions (1), (3), (4)). Our intuition for choosing
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the value for the threshold distMin was ex-
perimentally confirmed. The most appropiate
value for distMin is dependent on the nature of
the analyzed system. In the future we plan to
find the most appropriate value for the threshold
distMin using supervised learning techniques
[19] and to give a rigorous proof for our selec-
tion.

5 Experimental Evaluation
In this section we want to evaluate how well did
PACO algorithm succeed in grouping the elements
from crosscutting concerns in clusters. For this pur-
pose we consider a simple Java code example and the
open source JHotDraw case study. The evaluation will
be made considering a measure that is described in
Subsection 5.1.

5.1 Evaluation measure
In order to evaluate the results we use a quality mea-
sure, called DISP, that we have previously introduced
in [20]. This measure defines the dispersion degree
of crosscutting concerns in clusters, considering, for
each crosscutting concern, the number of clusters that
contain elements belonging to the concern.

We give below the formal definition of DISP mea-
sure. In the following CCC denotes the set of cross-
cutting concerns existing in a software system, K de-
notes a partition of the set M of methods from the
software system to be mined. The partition K can be
obtained using a clustering algorithm (PACO in this
paper).

Definition 1 [20] DISPersion of crosscutting con-
cerns - DISP.
The dispersion of the set CCC of crosscut-
ting concerns in the partition K, denoted by
DISP (CCC,K), is defined as

DISP (CCC,K) =
1

|CCC|

|CCC|∑
i=1

disp(Ci,K).

(5)
disp(C,K) is the dispersion of a crosscutting concern
C and is defined as:

disp(C,K) =
1
|DC |

, (6)

where

DC = {k|k ∈ K and k ∩ C 6= ∅}. (7)

DC is the set of clusters that contain elements which
are also in C.

The values of the DISP measure are in the interval
[0, 1]. The proof can be found in [20]. In order to
obtain more cohesive partitions, DISP measure has
to be maximized.

5.2 Example
In this subsection we present a small example that
shows how methods are grouped in clusters by PACO
algorithm using distances dS (Equation (1)), dT

(Equation (3)) and dST (Equation (4)). We have cho-
sen the example below in order to provide the reader
with an easy to follow example of crosscutting con-
cerns identification.

Let us consider the Java code example given in
Table 1.

public class A {
public A(L l){
mC();

mB(); }
public void mA(L l){
l.m1();

mB();

l.m2(); }
public void mB(){ }
public void mC(){ }

}
public class L {
public L(){}
public void m1(){}
public void m2(){}

}
public class B {
private L l=new L();

private A a;

public B(){
a=new A(l);

a.mA(l);

a.mB(); }
public void mC(){
l.m1(); }
public void mD(){
a.mB();

a.mC(); }
}

Table 1: Java Code example.

For the code illustrated in Table 1, the set of
crosscutting concerns is CCC = {C1}, where C1 =
{L.m1(), L.m2()}.
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5.2.1 Distance dS

The distances between the methods from the system
described above are given in Table 2. We present only
the non-zero distances that are not∞.

Method Method Distance
A.A A.mA 0.5
A.A A.mB 0.57
A.A A.mC 0.66
A.A B.B 0.66
A.A L.L 0.5
A.A L.m1 0.85
A.mA A.mB 0.57
A.mA A.mC 0.85
A.mA B.B 0.66
A.mA L.L 0.5
A.mA L.m1 0.66
A.mA L.m2 0.8
A.mB A.mC 0.5
A.mB B.B 0.85
A.mB A.mD 0.85
A.mB L.L 0.75
A.mB L.m1 0.66
A.mB L.m2 0.75
A.mC A.mD 0.8
A.mC L.L 0.85
A.mC L.m1 0.75
A.mC L.m2 0.85
B.B L.L 0.66
B.mC L.m1 0.8
L.L L.m1 0.85
L.m1 L.m2 0.66

Table 2: Distances dS between the methods.

After applying PACO algorithm using distance
dS , the obtained clusters are shown in Table 3.

5.2.2 Distance dT

The distances between the methods from the system
described above are given in Table 4. We present only
the non-zero distances that are not∞.

After applying PACO algorithm using distance
dT , the obtained clusters are shown in Table 5.

5.2.3 Distance dST

The distances between the methods from the system
described above are given in Table 6. We present only
the non-zero distances that are not∞.

Cluster Methods
C1 { B.mC }
C2 { B.mD }
C3 { L.m1, L.m2 }

C4
{ A.A, A.mA, A.mB,

A.mC, B.B, L.L }

Table 3: The clusters obtained by PACO using dis-
tance dS .

Method Method Distance
A.A A.mB 0.28
A.A A.mC 0.61
A.A L.m1 0.64
A.A L.m2 0.83
A.mA A.mB 0.28
A.mA A.mC 0.61
A.mA L.m1 0.64
A.mA L.m2 0.83
A.mB A.mC 0.28
A.mB L.L 0.28
A.mB L.m1 0.37
A.mB L.m2 0.37
A.mC L.L 0.61
A.mC L.m1 0.64
A.mC L.m2 0.73
L.L L.m1 0.64
L.L L.m2 0.83
L.m1 L.m2 0.28

Table 4: Distances dT between the methods.

After applying PACO algorithm using distance
dST , the obtained clusters are shown in Table 7.

Analyzing the results obtained for the Java code
example described in Table 1, for distances dS , dT ,
dST we obtain the folowing:

• For each distance used, PACO algorithm identi-
fies the existing crosscutting concern C1.

• Both elements of the crosscutting concern C1

(i.e., L.m1 and L.m2) are grouped in the same
cluster, for each distance.

• The value of DISP measure is 1 for every dis-
tance.

• The best results are obtained using distance dS ,
as the cluster containing the crosscutting concern
C1 does not contain methods from other con-
cerns.
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Cluster Methods
C1 { B.B }
C2 { B.mC }
C3 { B.mD }

C4
{ A.A, A.mA, A.mB, A.mC,

L.L, L.m1, L.m2 }

Table 5: The clusters obtained by PACO using dis-
tance dT .

5.3 JHotDraw case study
In this subsection we consider the open source JHot-
Draw version 5.4b1 case study [6] for evaluating
PACO algorithm. It is a Java GUI framework for
technical and structured graphics, developed by Erich
Gamma and Thomas Eggenschwiler, as a design ex-
ercise for using design patterns. It consists of 396
classes and 3359 methods.

The set of crosscutting concerns used for the eval-
uation is : Adapter, Command, Composite, Consistent
behavior, Contract enforcement, Decorator, Excep-
tion handling, Observer, Persistence, and Undo. The
set of crosscutting concerns and their implementing
methods was constructed using the results reported by
Marin et al. and publicly available at [17].

We have applied PACO algorithm for JHotDraw
case study for the distance functions dS , dT and dST .
The obtained results are shown in Table 8.

Analyzing the obtained results, we can conclude
the folowing:

• The best results are obtained using distance dS ,
as the value of DISP measure is greater for
this distance. Considering both the simple ex-
ample from Subsection 5.2 and JHotDraw case
study, we can experimentally conclude that dis-
tance semi-metric dS is the best distance to be
used by PACO algorithm in the clustering pro-
cess.

• As distance dST illustrates both scattering and
tangling symptoms, we would expect to obtain
better result with this distance. But, as shown in
Table 8 with dST distance, PACO provides the
worst results. That is why we have to improve
the distance dST in order to better illustrate both
scattering and tangling symptoms.

We have compared the results obtained by PACO
algorithm with the results obtained by kAM algorithm
proposed in [26]. kAM algorithm is based on the idea
of k-means clustering and uses an heuristic for choos-
ing the initial centroids and the initial number of clus-
ters. The similarity between two methods is computed

Method Method Distance
A.A A.mB 0.28
A.A A.mC 0.61
A.A B.B 0.66
A.A L.m1 0.64
A.A L.m2 0.83
A.mA A.mB 0.28
A.mA A.mC 0.61
A.mA B.B 0.66
A.mA L.m1 0.64
A.mA L.m2 0.8
A.mB A.mC 0.25
A.mB B.B 0.85
A.mB B.mD 0.85
A.mB L.L 0.28
A.mB L.m1 0.37
A.mB L.m2 0.37
A.mC B.mD 0.8
A.mC L.L 0.61
A.mC L.m1 0.64
A.mC L.m2 0.73
B.B L.L 0.66
B.mC L.m1 0.8
L.L L.m1 0.64
L.L L.m2 0.83
L.m1 L.m2 0.28

Table 6: Distances dST between the methods.

using a vector space model based approach. The value
of the DISP measure obtained by kAM for the same
case study is 0.4005.

Comparatively, considering the DISP measure,
PACO algorithm has obtained better results than kAM
algorithm. This means that in the partition obtained
by PACO algorithm the methods from the crosscutting
concerns were better grouped than in the partition ob-
tained by kAM algorithm. However, the elements of
crosscutting concerns are spread in two or more clus-
ters of a partition for both algorithms, as the values of
the DISP measure are less than 0.5 for both PACO

Cluster Methods
C1 { B.mC }
C2 { B.mD }

C3
{ A.A, A.mA, A.mB, A.mC,

B.B, L.L, L.m1, L.m2 }

Table 7: The clusters obtained by PACO using dis-
tance dST .
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Distance function DISP
dS 0.4444
dT 0.4433
dST 0.4207

Table 8: Results for JHotDraw case study.

and kAM algorithms.
We did not provide a comparison of the consid-

ered approach with the two other existing clustering
based aspect mining approaches for the following rea-
sons:

• Shepherd and Pollock have proposed in [29] an
aspect mining tool based on clustering that does
not automatically identify the crosscutting con-
cerns. The user of the tool has to manually an-
alyze the obtained clusters in order to discover
crosscutting concerns.

• The technique proposed by He and Bai [9] can-
not be reproduced, as they do not report neither
the clustering algorithm used, nor the distance
metric between the objects to be clustered. Also,
the results obtained for the case study used by the
authors for evaluation are not available.

The non-clustering aspect mining techniques can-
not be compared with our approach because of the fol-
lowing reasons:

• some techniques are dynamic and they depend on
the data used during executions [3, 30];

• for the static techniques [18] only parts of the re-
sults are publicly available;

• there is no case study used by all these tech-
niques.

6 Conclusions and Future Work
We have presented in this paper a new partitional
clustering algorithm (PACO) that can be used for
identifying crosscutting concerns in existing software
systems. The proposed algorithm uses an heuristic
for choosing the number of clusters and the initial
medoids, reducing this way the disadvantages of the
traditional k-medoids method.

In order to evaluate the obtained results, we have
considered JHotDraw case study.

Further work can be done in the following direc-
tions:

• To improve PACO algorithm by improving the
heuristic used for selecting the initial medoids.

• To use other clustering techniques that were pro-
posed in the literature [1, 2, 15, 16] in order to
identify crosscutting concerns in existing soft-
ware systems.

• To improve the distances used for discriminating
the methods in the clustering process in order to
better illustrate the code scattering and code tan-
gling symptoms.

• To apply PACO algorithm on real software sys-
tems.

• To approach the problem of aspect mining by us-
ing machine learning techniques [19].
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