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Abstract: - In this paper we explore complex relationships between mechanical and sensory properties of 

fabrics, and the perceived tactile comfort. Mechanical properties, measured objectively by Kawabata 

Evaluation System for Fabrics (KES-FB), and handfeel properties, measured subjectively by sensory expert 

panel, are related to the tactile comfort of fabrics using statistical regression approaches. A universe of 48 

fabrics is examined to analyze and map the relations. The initial 17 mechanical and 17 handfeel parameter sets 

were reduced to 4 and 5 properties, respectively. Adjusted R
2 

values were 0.657 for mechanical and 0.863 for 

handfeel parameters, reflecting sound goodness-of-fit measures, and providing reasonable ways for prediction 

of tactile fabric comfort from mechanical and handfeel parameters. 
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1 Introduction 
Perception of tactile sensations is a complex 

process. Several stimulus factors are involved in the 

generation of responses on human skin, and such 

responses are fed to the brain for a perceived 

sensation of variable intensity. Analyzing the 

relationship between quantifiable characteristics of 

fabrics in the context of predicting the tactile 

perception has gained momentum because of the 

increased application of sophisticated fabrics for 

functional clothing systems. Models based on 

energy equations [1], finite element analysis [2, 3], 

stochastic formulations, [4] and Artificial Neural 

Networks [5] exist to identify the interrelationship 

between the structure of textile materials and their 

functional properties. Linear models to predict the 

tactile comfort of textile materials in terms of both 

subjective and objective measurements are also 

found [6]. Researchers have found that human 

tactile perception towards a textile material is 

complex [7], thereby limiting the application of the 

existing models. Moreover, these models are 

domain-specific and their extent of extrapolation is 

limited. In this paper, statistical regression 

approaches are used to analyze the underlying 

relationships between the mechanical and handfeel  

 

properties of fabrics, and the overall tactile comfort 

perception.  

 

2 Data Collection – Mechanical, 

Handfeel Properties, and Tactile 

Comfort Measurements 
A diversified set of 48 fabrics (universe of fabrics), 

including woven, knitted, and nonwoven materials, 

was selected for evaluation. Laminated fabrics with 

water-, fire-, and chemical-retardant finishes were 

included. The fabrics’ mechanical properties, 

measured using the KES-FB Kawabata Evaluation 

System, are in Table I. While these 17 properties 

form the independent variables, a human perception 

score of tactile comfort is used as a dependent 

variable. The human perception score is measured 

using the Comfort Affective Labeled Magnitude 

(CALM) scale, shown in Figure 1. The scale, 

developed at the Individual Protection Directorate, 

US Army Natick Soldier Center, Natick, MA, 

ranges from –100 to 100 where a score of –100 

represents the greatest imaginable discomfort, and a 

100 represents the greatest imaginable comfort. The 

other labels are distributed in a progressive ratio 

scale [8]. 
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Table 1 

Range of Mechanical Properties as Measured 

Using KES-FB Kawabata Evaluation System 

 
 

Figure 1 

Comfort Affective Labeled  

Magnitude (CALM) Scale 

 
 

We repeat here the process of the developing the 

scale, after [8], as it completely defines the way our 

output variable, tactile fabric comfort, was formed. 

According to the scale developers [8] in order to 

develop a sensitive, reliable, and valid labeled 

magnitude scale of comfort, thirty-five volunteers, 

none of whom were members of the descriptive 

hand panel, were recruited from a random list. Word 

adjectives that could be used to modify the terms 

"comfortable" and "uncomfortable" to reflect 

intensity differences were compiled from previous 

scaling literature and from standard English 

language resources. The adjectives "greatest 

imaginable" and "greatest possible" were included 

to define scale values commensurate with a 

common fixed end-point of positive and negative 

affective experience, as used in previously 

developed labeled magnitude scales [8]. These 

adjectives were used to create forty-one word 

phrases, which in combination with two nonpolar 

terms ("neutral" and "neither comfortable nor 

uncomfortable"), resulted in a total of forty-three 

phrases to be used in scale development. The forty-

three phrases were printed on separate pages and 

assembled in random order into testing booklets. 

Before testing, subjects were provided with written 

instructions on the procedure to be used in scaling 

the semantic meaning of the phrases. Oral 

instructions with an example were also provided. 

Subjects sequentially rated each of the phrases to 

index the magnitude of comfort or discomfort 

connoted by the phrase, using a modulus-free 

magnitude estimation procedure. In this procedure, 

subjects assign an arbitrary number to indicate the 

magnitude of comfort or discomfort reflected by the 

first phrase (positive numbers used for comfort, 

negative numbers for discomfort). Subjects then 

make all subsequent judgments relative to the first, 

so that if the second phrase denotes twice as much 

comfort as the first, a number twice as large is 

assigned; if it denotes one third as much comfort, a 

number one-third as large as the first is assigned, 

etc. All ratings were made in spaces provided in the 

testing booklet [8].  

A subset of phrases was chosen to construct a 

labeled magnitude scale of comfort [8]. The criteria 

for selecting terms were low variability in perceived 

semantic meaning, parallelism in the terms used to 

describe comfort and discomfort, and selection of an 

equal number of comfortable and uncomfortable 

phrases (a decision based on evidence from the 

preference scaling literature showing that balanced 

scales are better for differentiating products).  

Examination of the standard errors of the geometric 

means for each of the phrases [8] led to the 

elimination of several phrases (e.g., "mediocre 

comfort," "barely comfortable," "a little 

comfortable") due to their variable semantic 
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meaning to the subjects. Other phrases were 

eliminated because of a lack of suitable parallelism 

in terminology for the purpose of establishing 

bipolarity (e.g., "superior comfort," "oppressively 

uncomfortable"). Applying the remaining criterion 

to the phrases resulted in the selection of eleven 

phrases for use in the scale: five associated with 

comfort, five associated with discomfort, and one 

neutral term ("neither comfortable nor 

uncomfortable") to define the zero point. The 

geometric mean magnitude estimates of the positive 

and negative phrases were transformed to range 

from 0 to +100 (positive phrases) and 0 to -100 

(negative phrases). The phrases were then placed 

along a 100-mm vertical analogue line scale in 

accordance with their transformed values. The 

resulting labeled affective magnitude scale of 

comfort is shown in Figure 1.  

The comfort affect labeled magnitude (CALM) 

scale shown in Figure 1 has several advantages over 

other comfort scales commonly used in the literature 

[8]. With this scale, the level of comfort or 

discomfort experienced by an individual can be 

readily indexed by simply placing a mark 

somewhere on the line. This stands in contrast to the 

difficulty often encountered by subjects using 

magnitude estimation procedures. However, by 

having positioned the phrases of comfort/discomfort 

along the analogue line scale at points representing 

the magnitude of their semantic meaning as 

determined by a magnitude estimation procedure, it 

becomes possible to treat the measured distances 

along the scale as ratio level data. This stands in 

contrast to category scales of comfort, which 

provide only ordinal data. The ratio nature of the 

CALM scale enables statements to be made about 

whether a particular sample is 20%, 40%, three 

times, etc., as comfortable (or uncomfortable) as 

another sample. In addition, it does not require that 

the data be normalized, as is the case with 

magnitude estimates. Last, by using the "greatest 

imaginable" comfort (or discomfort) as end-points 

on the scale, the scale enables better discrimination 

between samples/conditions that are either very high 

or very low in comfort/discomfort and establishes a 

common ruler by which comfort/discomfort ratings 

of different subjects can be compared.  

 

A set of forty eight fabrics (universe of fabrics), 

including woven, knitted, and nonwoven materials, 

was evaluated subjectively for seventeen handfeel 

properties, and the property ranges of those fabrics 

are listed in Table 2. 

Table 2 

Range of Handfeel  

Properties 

 
 

Forty eight fabric specimens were selected for 

evaluation of mechanical and handfeel properties, 

and the same set of fabrics was evaluated by fifty 

human subjects for their perceived tactile comfort 

CALM score. The fabric samples were sequenced in 

random order for the subjects to evaluate.  

The mechanical properties were tested with 5 

replicates making a data set of 240 seventeen-

dimensional vectors. The handfeel properties were 

tested with 27 replicates resulting in a data set of 

1,296 seventeen-dimensional vectors. The above-

mentioned vectors (mechanical and handfeel) were 

mapped to 2,400 tactile comfort scores (48x50). 

Averages were selected to represent the seventeen-

dimensional vectors and their corresponding tactile 

comfort scores in both cases. The dimension 

variables for both handfeel and mechanical are 

defined below. 

 

Handfeel attributes 

1. Gritty – amount of small, round particles in 

the surface of the sample 

2. Grainy – amount of small, abrasive, picky 

particles in the surface of the sample 

3. Fuzzy (circular motion) – amount of pile, 

fiber, fuzz on the surface of the sample 

4. Thickness – perceived distance between the 

thumb and the index finger (when the 

sample is placed between the two) 

5. Tensile Stretch – degree to which the 

sample stretches from its original shape 
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6. Hand Friction – force required to move the 

palm of the hand across the surface of the 

sample 

7. Fabric to Fabric Friction – force required to 

move the fabric over itself 

8. Depression Depth – amount that the sample 

depresses when downward force is applied 

9. Springiness – rate at which the sample 

returns to its original position after the 

downward force is released 

10. Force to Gather – amount of force required 

to gathered  the sample into the palm 

11. Force to Compress – amount of force 

required to compress the gathered sample 

into the palm 

12. Fullness/ Volume – amount of material felt 

in the hand 

13. Stiffness – degree to which the sample feels 

pointed, ridged, and cracked; not pliable 

14. Compression Resilience – perceived force 

with which the sample exerts resistive 

pressure against the cupped hands 

15. Compression Resilience Rate – rate at 

which the sample returns to its original 

shape or rate at which the sample opens 

after compression 

16. Noise Intensity – loudness of the noise 

17. Noise pitch – pitch (frequency) of the noise 

 

Mechanical Variables 

 

Parameters Description Property 

definition 

Tensile   

LT 
Linearity of 

load/extension curve 

It defines 

the stress, 

strain 

relationship 

at tensile 

loading 

conditions. 

WT Tensile energy 

Work done 

on material 

(energy 

consumed 

by the 

material) to 

strain it to a 

particular 

limit. 

RT Tensile resilience 

Energy 

absorbed by 

the material 

when 

deformed 

elastically. 

EMT Extensibility 

The ability 

of material 

to be 

stretched 

without 

breaking 

Bending   

B Bending rigidity 

Material 

resistance 

to bending 

2HB 
Hysteresis of bending 

moment 

Energy 

dissipated 

by the 

material at 

time of 

bending 

Shearing   

G Shear stiffness 

Material 

resistance 

to 

deformation 

at shear 

loading 

2HG 
Hysteresis of shear 

force 

Energy 

dissipated 

by the 

material at 

time of 

shear 

loading 

2HG5 
Hysteresis of shear 

force 

Energy 

dissipated 

by the 

material at 

time of 

shear 

loading 
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Compressio

n 

LC 

Linearity of 

compression/thicknes

s curve 

It defines 

the stress, 

strain 

relationship 

at 

compressio

n loading 

conditions. 

WC 
Compressional 

energy  

Work done 

on material 

(energy 

consumed 

by the 

material) to 

strain it to a 

particular 

limit. 

RC 
Compressional 

resilience 

Energy 

absorbed by 

the material 

when 

deformed 

elastically. 

Surface   

MIU Coefficient of friction 

Represents 

the 

resistance 

to sliding of 

two 

surfaces in 

contact. 

MMD 
Mean deviation of 

coefficient of friction 

Represents 

the 

frictional 

roughness 

of the 

surface 

SMD Geometric roughness 

Represents 

the 

geometrical 

roughness 

of the 

material 

 

 

Constructio

n 

 

 

T Fabric thickness  

W 
Fabric weight/unit 

area 

 

 

 

3 Methods 
3.1. Regression Analysis  

First, the mechanical properties data set was used to 

form a regression equation with the mechanical 

properties as independent variables and the tactile 

comfort score as the dependent variable. Then, the 

handfeel properties data set was used to form 

another regression equation relating the handfeel 

properties and the tactile comfort score. The 

equations are given below as (1) and (2), 

respectively. The corresponding variables are listed 

in Tables 3 and 4. 

 

Tactile Comfort Score = 121.71 + 2.56 EMT – 

24.28 LT – 1.12 WT – 0.81 RT – 30.02 B – 

16.68 HB - 4.29 G + 1.78 HG + 0.063 HG5 + 

4.40 LC + 58.57 WC - 0.067 RC - 178.95 MIU - 

51.42 MMD -1.13 SMD - 210.65 T + 0.542 W0 

                                                                        (1) 

The equation fits with the R
2 

value of 0.767 and 

the adjusted R
2 
of 0.631. 

Tactile Comfort Score = 80.73 – 3.75 Gritty – 

2.92 Grainy + 2.30 Fuzzy – 2.56 Thickness + 

1.47 Tensile Stretch -1.92 Hand Friction + 0.64 

Fab-to-Fab Friction + 0.38 Depression Depth -

0.03 Springiness + 4.39 Force to Gather – 1.05 

Force to Compress + 4.25 Fullness  - 5.14 

Stiffness + 3.98 Compression Resilience – 

10.38 CR Rate – 0.28 Noise Intensity + 3.97 

Noise Pitch                                                     (2) 

The R
2
 value of the fitted equation is 0.909 and 

the adjusted R
2 
is 0.857. 

 

The adjusted R
2 

measures the proportion of the 

variation in the Tactile Comfort Score accounted for 

by the independent mechanical and handfeel 
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variables. Unlike R
2
,
 
an adjusted R

2
 allows for the 

degrees of freedom associated with the sums of the 

squares. Therefore, even though the residual sum of 

squares decreases or remains the same as new 

independent variables are added, the residual 

variance does not. For this reason, adjusted R
2 

is 

generally considered to be a more accurate 

goodness-of-fit measure than R
2
. 

 

  Table 3 

Handfeel Variables for Tactile Comfort Score 

   

Model  Variables 

Unstandardized 

Coefficients 

 All 

variables   B 

Std. 

Error 

 Constant 80.730 24.536 

  GRITTY -3.748 1.983 

  GRAINY -2.924 1.540 

  FUZZY 2.302 3.936 

  THICK -2.560 3.620 

  TEN_STR 1.472 1.012 

  H_FRIC -1.917 5.368 

  F_F_FRIC .640 2.211 

  D_DEPTH .380 3.841 

  SPRING -.029 3.868 

  F_GATHER 4.368 9.057 

  F_COMP -1.046 8.787 

  FULL_B 4.247 4.855 

  STIFF -5.141 3.131 

  COM_RES 3.983 5.254 

  COM_RR -10.383 3.831 

  NOIS_I -.281 2.802 

  NOIS_PI 3.970 3.148 
 

 

3.2. Dimension Reduction Using Stepwise 

Regression Analysis 

Both handfeel and Kawabata mechanical properties 

include seventeen independent attributes and one 

dependent attribute. Though all the independent 

attributes contribute in the regression equation to 

predict the tactile comfort score, a few of the 

attributes contribute more than others. If the  

Table 4 

Mechanical Variables for Tactile Comfort Score 

 

Model 

 

Variables 

Unstandardized 

Coefficients 

 All    B Std. Error 

 Constant 121.713 50.998 

  K_EMT 2.558 3.273 

  K_LT -24.281 34.553 

  K_WT -1.119 2.007 

  K_RT -.808 .485 

  K_B -30.020 24.103 

  K_HB -16.678 21.508 

  K_G -4.292 3.439 

  K_HG 1.783 .928 

  K_HG5 .063 1.286 

  K_LC 4.399 54.669 

  K_WC 58.569 40.665 

  K_RC -.067 .341 

  K_MIU -178.951 147.507 

  K_MMD -51.417 119.303 

  K_SMD -1.129 1.246 

  K_TO -210.652 312.409 
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  K_W .542 .829 

 

attributes that contribute the least to the prediction 

ability of the regression equation are eliminated, the 

overall dimension of the data set comes down. One 

of the mechanisms to reduce the dimension of the 

data is stepwise regression analysis. 

Data containing the mechanical properties and 

the CALM score for 48 fabrics are used to formulate 

the stepwise (forward) regression equation and is 

given in equation (3). Out of the seventeen 

parameters, four were included in the equation 

based on their contribution to the overall variance of 

the data set. The corresponding values are listed in 

Table 5, while the excluded variables are deoicted in 

Table 6. The method behind the exclusion is 

summarized in Table 7. 

Tactile Comfort Score = 48.63 + 1.29 EMT – 

43.47B – 52.35LT + 0.992HG                        (3) 

The equation fits with a R
2 
value of 0.687 and the 

adjusted R
2 
of 0.657. 

 

 

 

Table 5 

Mechanical variables (reduced set) for 

Comfort 

 

Model 

 KES 

variables 

Unstandardized 

Coefficients 

    B Std. Error 

4 Constant 48.626 13.546 

  K_EMT 1.292 .392 

  K_B -43.468 10.190 

  K_LT -52.352 15.510 

  K_HG .992 .328 

 

 

 

 

 

 

 

Table 6            

Excluded Mechanical Variables 

 

Mo-

del   Beta  

Partial 

Correlation 

    Standardized    

4 K_WT -.291 -.086 

  K_RT -.116 -.183 

  K_HB .158 .050 

  K_G -.301 -.183 

  K_HG

5 
-.303 -.097 

  K_LC .012 .020 

  K_WC .081 .133 

  K_RC -.007 -.012 

  K_MI

U 
-.021 -.035 

  K_M

MD 
-.049 -.076 

  K_SM

D 
-.054 -.079 

  K_TO .006 .010 

  K_W -.011 -.011 

 

Similarly, a regression equation relating the 

handfeel properties and the tactile comfort score is 

formulated using the set of attributes selected using 

the stepwise regression approach. The formed 

relation is given in (4), in which five out of the 

seventeen handfeel properties are included. The 

corresponding unstandardized  and standardized 

values are listed in Tables 8 and 9, while the 

excluded variables are depicted in Table 10. 
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Tactile Comfort Score = 84.99 – 3.92 Gritty – 

4.14 Grainy + 3.17 Fuzzy + 1.76 Tensile 

Stretch + 3.98 Compression Resilience 

                                                                        (4) 
The R

2
 value of the fitted equation is 0.878 and 

the adjusted R
2 
is 0.863. 

 

Table 7                   

Mechanical variables entered 

 

Model 

Variables 

Entered Method 

1 

K_EMT 

Stepwise (Criteria: 

Probability-of-F-to-

enter <= .050, 

Probability-of-F-to-

remove >= .100). 

2 

K_B 

Stepwise (Criteria: 

Probability-of-F-to-

enter <= .050, 

Probability-of-F-to-

remove >= .100). 

3 

K_LT 

Stepwise (Criteria: 

Probability-of-F-to-

enter <= .050, 

Probability-of-F-to-

remove >= .100). 

4 

K_HG 

Stepwise (Criteria: 

Probability-of-F-to-

enter <= .050, 

Probability-of-F-to-

remove >= .100). 

 

 

4 Conclusion 
A diversified set of 48 fabrics (universe of fabrics) 

was analyzed using statistical tools such as 

regression analysis and stepwise regression analysis. 

The initial 17 mechanical and 17 handfeel parameter 

sets were reduced to 4 and 5 properties, 

respectively. Adjusted R
2 

values improved slightly 

from 0.631 to 0.657 for mechanical properties, and 

from 0.857 to 0.863 for handfeel parameters. The 

values reflect sound goodness-of-fit measures, and 

provide reasonable ways for prediction of tactile 

fabric comfort from mechanical and handfeel 

parameters.  

 

The handfeel and mechanical variables, as well as 

comfort are described in terms of linguistic terms, 

thus, could be used with fuzzy logic analysis [9]. 

 

It is expected that an Artificial Neural Network 

approach [10, 11] will capture more complex 

relationships among the properties and the 

corresponding tactile comfort scores, and will result 

in higher adjusted R
2 
values.  

  

Table 8 

Handfeel B Variables (reduced set) for Comfort 

 

Mode

l   

Unstandardized 

Coefficients 

    B Std. Error 

5 Constant 84.991 13.796 

  COM_RR -5.908 1.090 

  GRAINY -4.140 .893 

  GRITTY -3.917 1.021 

  TEN_STR 1.763 .622 

  FUZZY 3.171 1.391 
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Table 9 

Handfeel Beta Variables (reduced set) for 

Comfort 

 

Mode

l   

 Standardized 

Coefficients 

    Beta 

5 Constant   

  COM_RR -.448 

  GRAINY -.299 

  GRITTY -.216 

  TEN_STR .206 

  FUZZY .137 

 

Table 10 

Excluded Handfeel Variables 

 

Model   Beta  

Partial 

Correlation 

    

Standar-

dized    

5 THICK .061 .088 

  H_FRIC -.054 -.060 

  F_F_FRI

C 
.067 .117 

  D_DEPT

H 
-.034 -.086 

  SPRING -.021 -.056 

  F_GAT .091 .216 

HER 

  F_COM

P 
.086 .206 

  FULL_B -.021 -.036 

  STIFF -.048 -.061 

  COM_R

ES 
.164 .201 

  NOIS_I .103 .131 

  NOIS_PI .018 .036 
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