
UML4ODP: OCL 2.0 Constraints Specification & UML Modeling
of Interfaces in the Computational Metamodel

OUSSAMA REDA, BOUABID EL OUAHIDI
Mohammed-V University, Faculty of Sciences

Dept of Computer Sciences
Ibn Battouta P.O Box 10 14, Rabat

MOROCCO
ouahidi@fsr.ac.ma, redaoussama@yahoo.fr

DANIEL BOURGET
ENST Bretagne

Dept of Computer Sciences
Technopôle Iroise - CS 83818, 29238 Brest

FRANCE
Daniel.Bourget@enst-bretagne.fr

Abstract:-The purpose of this work is analysis of computational language concepts and introduction of novel per-
tinent ones in order to provide a new computational metamodel of interaction signatures in UML4ODP FDIS. we
mainly introduce the concept ofFunctionalcomputational interface which unify signal and operation interfaces
notions. The unification ofsignalandoperationinteractions concepts is presented by introducing theParameter-
ized interaction concept. We show that parameterized interactions are of two main kinds; namely,primitivesand
compounds. we also introduce the notion ofincomingandoutgoingprimitives. As an application of our modeling
choices we redefine interaction, refinement and type checking rules in a concise manner, and then specify them us-
ing the useful specification functionalities of OCL 2.0, showing how novel definitions as well as their specification
are easy to read, write and understand.

Key–Words:RM-ODP, UML4ODP, Computational language, Meta-modeling, Computational interface, Interac-
tion Signature, type checking, Interaction refinements.

1 Introduction

The expansion of distributed processing field has led
to the ODP standardization initiative which consists of
a framework [1][2][3][4]by which distributed systems
can be modeled using five viewpoints. The computa-
tional viewpoint is concerned with the description of
the system as a set of objects that interact at interfaces
constrained by rules such that, amongst others, typing
rules, naming rules and refinement rules. No particu-
lar formal description and specification techniques for
the specification of ODP systems has been prescribed
by RM-ODP to be used. Over the past several years,
there has been a considerable amount of research
[6][5][11][7][8][9][10][13][14][?][16][12][15][17]
[18][19][20] in the field of applying the UML Lan-
guage as a formal notation with the ODP viewpoints,
particularly for the computational language. The out-
come of these works, amongst others, was the adop-
tion of the UML4ODPFDIS (Final Draft Interna-
tional Standard)[23] which provides the necessary
needed framework for ODP systems specification us-
ing UML 2.0 [24]. Works [13][14][16] within the
computational viewpoint have mainly addressed the
specification of the functional decomposition of an
ODP system using UML. [?][15][17][18][19]
[20] have shown the UML4ODP computational meta-

model contains inconsistencies concerning the seman-
tic relationship between interaction signatures con-
cepts and action templates, then proposed in reliable
solutions. In the same perspective we analyze com-
putational interfaces and interaction signatures con-
cepts so as to resolve residual inconsistencies in the
UML4ODP computational metamodel.
On the other hand, the second main focus of this work
is application of our modeling choices to the redefi-
nition of refinements of interactions, typing rules as
well as naming rules. We shall see how to refine any
kind of interactions intoprimitiveswhich are elemen-
tary interactions and provide OCL constraints relating
to those refinements. we also see how can we rede-
fine operational interfaces typing rules and general in-
teraction rules concisely then, specify them in OCL
2.0[25]. In doing so, we are addressing fundamental
QoS (Quality of Service) as well as distribution trans-
parencies issues.
The remainder of the paper is organized as follows. In
Section 2, we present concepts of computational in-
terfaces and interactions signatures provided by RM-
ODP. We address in section 3 the problem concerning
the relationship betweenInteraction Signaturesand
Action Templates. In section 4 we lead a conceptual
algebraic analysis ofcomputational interfacesandin-
teraction signatures notions in order to steadily de-

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 269 Issue 2, Volume 8, February 2009

fine these concepts. We prove interactions are either
parameterizedor flows, then classifyparameterized
interactions inprimitives and compoundsones. We
also define the concept offunctional computational
interface. The result of this analysis is the definition
and introduction of new concepts to the computational
language. Section 5 deals with the introduction of
complementary concepts (incomingandoutgoingin-
teractions) to those given in section 4 in order to pro-
vide the final model of computational interfaces and
interaction signatures. In section 6 we discuss interac-
tion refinements rules and provide their specification
in OCL 2.0. We also discuss typing rules of oper-
ational computational interfaces and general interac-
tion rules, then specify those rules in OCL 2.0 based
on this discussion. A conclusion and perspectives end
the paper.

2 Computational Interface Signa-
tur es concepts definitions

In this section, we present interaction signatures con-
cepts as they are defined in the computational lan-
guage. These definitions will serve us to discuss the
ideas of the rest of the paper. the definitions are given
as follows:

A Computational interface template is an inter-
face template for either a signal interface, a stream
interface or an operation interface. Each interface has
a signature:

� a signal interface signature comprises a finite set
of Action Templates, one for each signal type in
the interface. Each action template comprises the
name for the signal, the number, names and types
of its parameters and an indication of causality
(initiating or responding, but not both) with re-
spect to the object which instantiates the tem-
plate.

� An operation interface signature comprises a set
of announcement and interrogation signatures as
appropriate, one for each operation type in the
interface, together with an indication of causal-
ity (client or server, but not both) for the inter-
face as a whole, with respect to the object which
instantiates the template.

Each announcement signature is an action tem-
plate containing both the name of the invocation
and the number, names and types of its parame-
ters.

Each interrogation signature comprises an action
template with the following elements : the name
of the invocation; the number, names and types

of its parameters, a finite, non-empty set ofAc-
tion Templates, one for each possible termination
type of the invocation, each containing both the
name of the termination and the number, names
and types of its parameters.

� A stream interface comprises a finite set of action
templates, one for each flow type in the stream
interface. Each action template for a flow con-
tains the name of the flow, the information type
of the flow, and an indication of causality for the
flow (i.e., producer or consumer but not both)
with respect to the object which instantiates the
template.
These concepts are the necessary and sufficient
ones for our proposals.

3 Interaction Signatures: What is
the matter?

The matter with interaction signatures concepts is the
difficulty of expressingoperation signaturesin terms
of Action Templatessince it is not obvious whether
operation signaturesare kinds ofAction Templatesor
are constituents ofAction Templates. Another issue
concerning interaction signatures is the way we can
describe all of them in terms ofAction Templatesin
one blow. The problem with all this difficulty in mod-
eling is that the definitions of the concepts are not pre-
cise and leaves room to plenty of interpretations. To
eliminate this ambiguity one have to analyze the defi-
nitions on a conceptual level in order to bring out the
exact semantic relationships between those concepts.
In fact we show interactions are of two kinds:parame-
terizedinteractions and flows.Parameterizedinterac-
tions are composed byprimitive andcompoundinter-
actions,primitives are beingincomingand outgoing
interactions.
On the other hand, interface signatures are defined in
terms of three kind of computational interfaces. How-
ever when we analyze interface signatures concepts
we show that in fact there are only two relevant cate-
gories they are to be classified in. We shall see how in-
terface signatures can principally be classified in two
main classes, namely;Functionalinterface signatures
and stream interface signatures.

4 Functional In terface Signature &
Parameterized Interaction Signa-
tures

We begin by introducing the notation needed to
demonstrate our propositions.

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 270 Issue 2, Volume 8, February 2009

Notation:

� The symbol
�

denote the intersection of alge-
braic sets (it has the same meaning as it is in clas-
sical set theory).

� Di, Pi and Ci are respectively the contracture of
Definition i, Proposition i and corollary i, where
i is an integer related to the order of their appear-
ance in the text.

� A � B denotes the set of elements which are in A
and are not in B.

� bby is the contracture ofby and only by.

Let SAinv, SAann, SAint, SAter, SAflo, denote
the sets of attributes that respectively describe signa-
tures ofInvocations, Announcements, Interrogations,
Terminationsand finallyFlows.

Definition 1:
An Action Templateis definedbby the name of

the action and its causality.

Proposition 1: All Interaction Signatures are
Action Templates.

Proof :
We have :

SAinv = SAann = SAint = SAter = � name,
numbers of parameters, names of parameters, types of
parameters, causality� and separately SAflo=� name,
causality, information type� .

The led set of these sets denoted SA which is
their intersection SA = SAinv� SAann � SAint �
SAter=� name, causality� is the set composedby and
only by both the name and causality of interaction
signatures. Moreover, the Action Templateconcept
is involved in the core description of all interaction
Signatures concepts, and since the UML semantic of
intersection is ageneralization, it follows that
all Interaction Signatures areAction Templates.

Proposition 2: Interaction Signatures but flows
are parameterized(i.e contain finite set of parameters
as well as their name and numbers).

Proof :
The sets SAinv� SA, SAann� SA, SAint� SA,

SAter� SA have the same elements since SAinv� SA=
SAann� SA = SAint� SA = SAter� SA =� numbers
of parameters, names of parameters, causality� .
Consequently, All Interaction Signatures butFlow

Signaturesare parameterized (i.e described by finite
sets of parameters as well as their names and num-
bers).

Now, when we separately take the set
SAflo� SA=� information type� we deduce that
flow signatures are of different nature than the other
Interaction Signatures.

Flow Signaturesare Action Templateswith an
(information type) attribute which is not significant
to the other interactions. Conversely, all Interaction
Signatures have parameters, their name and their
numbers as attributes which do not contribute to the
description of flows.

Definition 2:
A Parameterizedinteraction signature is an

Action Templatewith a finite set of parameters as well
as their numbers.

Corollary 1:
From P1, P2 and the definition of interface signa-

tures given in the previous section we have :

1. Interaction signatures are of two kinds:Param-
eterizedinteractions signaturesand flow inter-
actions signatures.

2. Operation Interfaces signatures and Signal Inter-
faces signatures are composedbby Parameter-
izedinteraction signatures.

3. A stream interface signature is composedbby a
set of flow interactions signatures.

Definition 3: A Functional Interface Signature
is an interface signature composedbbyParameterized
interactions signatures.

Corollary 2: From D3 and the definition of inter-
face signatures given in the previous section we have
:
Interface Signatures are of two kinds, namely;Func-
tional Interface Signature and Stream Interface Sig-
natures.

5 Computational Interface Signa-
tures UML Metamodel

In this section we model computational interfaces and
interaction signatures by means of constructs of the
UML language.
Interactions in the computational language are of three
kinds (signals, operations and flows). We have shown

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 271 Issue 2, Volume 8, February 2009

interactions are of two main kinds:Parameterizedin-
teractions and flows. Signals in the computational lan-
guage are defined as being atomic interactions that
constitutes the building blocks of the other kinds of
interactions. Similarly,parameterizedinteractions are
classified in two main categories:Primitive parame-
terizedinteractions (homologous of signals) andcom-
pound parameterizedinteractions (homologous of op-
erations). This classification is necessary to guaran-
tee that the metamodel given (see figure 1) serves as
a basis to define end-to-end QoS in open distributed
systems, and the operation of multi-party binding and
bindings between different kinds of interfaces (e.g.
stream to operation interface bindings).

ParameterizedInteractionSignature

-numberOfParameters : int

CompoundInteractionSignature

ProceduralInterfaceSignature

PrimitiveInteractionSignature

StreamInterfaceSignature

FlowInterfaceSignature

FlowSignature

+Type : flowInformationType

Parameter

+name : String
+type : ParameterDataType

InterfaceSignature

+causality : int

ActionTemplate

+name : String
+causality : String

1

incoming

outgoing

0..*

Figure 1: Functional interface signature & Parameter-
ized interaction signatures

In the computational language operations in a
computational interface consist of invocations and an-
nouncements which areoutgoing interactions. To
each invocation in the interface corresponds a finite
non empty set of terminations which areincoming in-
teractions. In [18] we have shown that invocations
and announcements do play the same role concep-
tually and practically. Thus, We defineCompound
parameterizedinteraction signatures as being com-
posed by two kinds of interactions:outgoing inter-
actions andincoming interactions. Indeed, invoca-
tions and announcements are identicaloutgoing in-
teractions. Moreover, invocations and terminations
which are (terminations) incoming interactions are as-
sociated to each other by a one to many correspon-
dance, and since announcements can be replied to or
not during the interaction, we conclude there is a cor-
respondance betweenoutgoingandincoming interac-
tions. That is, for everyoutgoing interaction corre-
sponds a finite set (possibly empty) ofincominginter-
actions (see figure 1).
Signals in the computational language are the least de-
gree of representation of interactions between com-
putational objects. Since signals do provide the con-
structing bricks of all other interactions, it is tempt-
ing to make use of them in order to refine interac-
tions in their terms. To do so, the computational lan-

guage imposes rules on these mappings so as to pro-
vide for reliable refinements when required.Prim-
itive parameterizedinteractions do play the role of
signals. While operations are represented in terms of
signals,compound parameterizedinteractions can be
decomposed in terms ofprimitive parameterizedin-
teractions which are now elementaryparameterized
interactions.
Another application of our conceptual modeling
choices is specification of computational interfaces
non recursive type checking system. We present the
definitions of computational typing rules[18][22]and
redefine them based on the novel concepts presented
before. In effect, We provide novel definitions based
only on incomingandoutgoinginteractions. Finally,
we redefine then specify in OCL interaction naming
rules as well as interaction parameters naming rules
in a concise manner based on the concepts introduced
before.

6 Application

In this section, we show how our unification choices
in modeling computational interface signatures and
interaction signatures concepts help us to specify
compact OCL constraints applied on interaction
rules, computational interface refinements and type
checking rules.

6.1 Interaction rules

6.1.1 Parameterized interaction rules & OCL
constraints specification

Each interaction of a computational object occurs at
one of its computational interfaces. The computa-
tional language imposes constraints on the behavior
permitted at a computational interface. Particularly,
constraints are imposed on the kind of interaction oc-
curring at well defined interfaces[3].
The interaction part of the computational language
supports three models of interaction, each of which
has an associated kind of computational interface:

� Signals and signal interfaces.

� Flows and stream interfaces.

� Operations and operation interfaces.

Flow interaction rules:
A computational object offering a signal interface

of a given signal interface type[3]:

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 272 Issue 2, Volume 8, February 2009

� Generates signals that have initiating causality in
the interface’s signature.

� Receives to signals that have responding causal-
ity in the interface’s signature.
Since stream interface signatures and flow inter-
action signature have not been redefined in the
current work, flow interaction rules OCL specifi-
cation are not presented here.

Signal interaction rules:

A computational object offering a signal interface
of a given signal interface type[3]:

� Initiates signals that have initiating causality in
the interface’s signature.

� Responds to signals that have responding causal-
ity in the interface’s signature.

Operation interaction rules:

A client object using an operation interface
invokes the operations named in the interface’s
signature. A server object offering an operation
interface expects any of the operations named in the
interface’s signature. In the case of an interrogation,
the server responds to the invocation by initiating any
one of the terminations named for the operation in the
server interface signature. The client expects any of
the terminations named for the operation in the client
interface signature. The duration of the operation is
arbitrary unless required otherwise by environnement
contracts applicable and interfaces involved[3].

Since signals and operations areparameterized
interactions, operation and signal interaction rules
can be reduced to only rules applicable toparameter-
ized interaction signaturesoccurring in the context
of functional interfaces. ”client” and ”initiate”
causalities are reduced to”acting” causality while
”server” and ”respond” causalities are reduced to
”reacting” causality. Having stating that, the new
interaction rules of parameterized interactions are as
follows:

A computational object offering afunctional
interface of a given signal interface type:

� Enact PARAMETERIZED interactions that have
”acting” causality in the interface’s signature.

The OCL specification of this rule is given as
follows:

Context FunctionalInterfaceSignatureinv :

Let PIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
PrimitiveInteractionSignature)

FunctionalInterfacesignature� forAll(PIS : P �

P.oclAsType(PIS.outgoing)
implies
P.causality=”acting”

� React to PARAMETERIZED interactions that
have ”reacting” causality in the interface’s
signature.

The OCL specification of this rule is given as
follows:

Context FunctionalInterfaceSignatureinv :

Let PIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
PrimitiveInteractionSignature)

FunctionalInterfacesignature� forAll(PIS : P �

P.oclAsType(PIS.incoming)
implies
P.causality=”reacting”

6.1.2 Interaction naming rules & OCL contraints
specification:

Each kind of name defined in the computational
language has an associated context, as follows:

� A signal name in a signal interface signature is
an identifier in the context of that signature.

� A flow name name in a stream interface signature
is an identifier in the context of that signature.

� A invocation name in a operation interface sig-
nature is an identifier in the context of that signa-
ture.

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 273 Issue 2, Volume 8, February 2009

� A termination name in a signal interface signa-
ture is an identifier in the context of the operation
template in which it appears.

Since signal invocation and terminations are primitive
interactions, interaction naming rules can be redefined
in just two rules, as what follows:

� A primitive interaction name in a functional
interface signature is an identifier in the context
of that signature.

The OCL specification of this rule is given as
follows:

Context FunctionalInterfaceSignatureinv :

Let PIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
ParameterizedInteractionSignature)

PIS � forAll(p,q �
p.name=q.name
implies
p=q)

� A flow name in a stream interface signature is an
identifier in the context of that signature.

The OCL specification of this rule is given as
follows:

Context StreamInterfaceSignatureinv :

Let FIS : FlowInteractionSignature =
FlowInteractionSignature.oclAsType(
FlowInteractionSignature)

FIS � forAll(p,q �
p.name=q.name
implies
p=q)

6.1.3 Interaction parameters naming rules &
OCL contraints specification:

� The name of a parameter in a signal template in
a signal interface signature is an identifier in the
context of that template.

� The name of a parameter in an invocation tem-
plate in an operation interface signature is an
identifier in the context of that template.

� The name of a parameter in a termination tem-
plate in an operation interface signature is an
identifier in the context of that template.

Since flows have no parameters[21][18][22] and that
signals, invocations and terminations are primitive
interactions, interaction parameters naming rules are
reduced to only one rule, it is defined as what follows:

� The name of a parameter in aprimitive interac-
tion template in afunctional interface signature
is an identifier in the context of that template.

The OCL specification of this rule is given as
follows:

Context ParmeterizedInteractionSignatureinv :

Let PIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
ParameterizedInteractionSignature)

PIS � forAll(parameter: p,q�
p.name=q.name
implies
p=q)

6.2 Refinement rules for Interaction Signa-
tur es

An operation or a flow can be resolved in terms
of a composition of several individual signals. For
instance, we can interpret an interrogation in terms
of a sequence of four signals: invocation emission
(by the client object), invocation receipt (by the
server object), termination emission (by the server),
termination receipt (by the client). In opposition,
since the computational model do not provide the
precise semantics of flows, their mapping on signals
is not defined. In fact, a definition of flows using
signals depends upon the details of the interactions
abstracted in the specification of the stream interface
concerned and therefore is beyond the scope of the
ODP Reference Model [3].

In [19] we specified those constraints based on
their definitions provided in RM-ODP [3] which are
given as follows :

� In a signal interface corresponding to a client
operation interface there is a signal -invocation
submit- corresponding to each invocation with

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 274 Issue 2, Volume 8, February 2009

the same parameters. in the case of an interface
containing interrogations, a signal - termina-
tion deliver - corresponding to each possible
termination with the same parameters as that
termination.

� In the signal interface corresponding to a server
operation interface there is a signal -invocation
deliver- corresponding to each invocation with
the same parameters. in the case of an interface
containing interrogations there is a signal -
termination submit- corresponding to each
possible termination with the same parameters
as that termination.

In the definitions above the correspondance rules
do neither depend on the causality of computational
interfaces nor the causality of interactions. What
only matters is the existence of a corresponding
refining interaction with the same parameters. Thus
we can redefine those rules in one unified rule
applied to parameterized interactions establishing
a correspondance betweenprimitive and compound
parameterizedinteractions. This rule is given as
follows :

Compound into primitive refinement rule:

For eachCompound parameterizedinteraction
there is a correspondingPrimitive Parameterized
interaction with the same parameters.

We can break down this rule to bring OCL
sub-expression out of it which establishes a corre-
spondance betweenparameterized interactions.
That is, two parameterized interactions related
by a refinement relationship must have the same
parameters. The OCL sub-expression is given in what
follows:

Context ParameterizedInteractionSignatureinv:

def: hasSameParameters(PIS:
ParamterizedInteractionSignature): Boolean =
self.Parameter� forAll(Px : Parameter�
ParamterizedInteractionSignature� Exists(
Py: Parameter�
Px.name = Py.name
and
Px.type = Py.type))

The final OCL constraint to refineCompound
interactions intoprimitives interactions is given in

what follows:

Context ParameterizedInteractionSignatureinv:

Let CIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
CompoundInteractionSignature)

Let PIS: ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
PrimitiveInteractionSignature)

CIS � forAll(c �
PIS � Exists(P �
CIS.hasSameParameters(PIS)))

This constraint establishes a correspondance be-
tweenprimitive and compoundinteractions offunc-
tional computational interfaces, thus providing for
end to end QoS characteristics to be defined, as well
as allowing for different kind of computational inter-
faces to be bound (e.gfunctional to stream interfaces
bindings).

6.3 Type checking rules specification in OCL
2.0

In this subsection we specify semantics of interaction
signatures related to subtyping rules. Type checking
rules are not precisely defined in the computational
language[21][18][22]. In [18][22] we have redefined
those literal rules in order to consistently specify them
in OCL. Typing rules corresponding to operation in-
terface signatures are defined[18][22] as follows:

Operation interface X is a signature subtype of
interface Y if the conditions below are met:

� For every interrogation in Y, there is an interro-
gation signature X with the same name, with the
same numbers and names of parameters and that
each parameter in the interrogation signature in
Y is a subtype of the corresponding parameter in
the interrogation signature in X.

� For every termination in an interrogation signa-
ture in Y, there is a corresponding termination
in interrogation signature X with the same name,
with the same numbers and names of parameters
and that each parameter in the termination of the
interrogation signature in X is a subtype of the
interrogation signature in Y.

� For every announcement in Y, there is an an-
nouncement signature X with the same name,
with the same numbers and names of parame-
ters and that each parameter in the interrogation

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 275 Issue 2, Volume 8, February 2009

signature in Y is a subtype of the corresponding
parameter in the interrogation signature in X.

Since interrogations (invocations in the context of
type checking rules definitions) and announcements
areoutgoing interactions and on the other hand, ter-
minations areincoming interactions we can redefine
those rules which will hold in only two rules:
Functional Interface X is a signature subtype of in-
terface Y if the conditions below are met:

� For every outgoing interaction signature in Y
there is a correspondingoutgoinginteraction sig-
nature in X with the same name, with the same
number and names of parameters, and that each
parameter type in Y is a subtype of the corre-
sponding parameter type in X.

� For every incoming interaction signature in X
there is a correspondingincoming interaction
signature in Y with the same name, with the same
number and names of parameters, and that each
parameter type in X is a subtype of the corre-
sponding parameter type in Y.

In [21] it is shown that ODP does not distinguish
between the clients and servers when establishing type
relationships for operational computational interfaces.
This leads to incorrect type checking rules specifica-
tion. In our model this is implicitly stated by the fact
that we only have two kinds of primitive interactions;
namely, incoming and outgoing interactions.

At this point, we specify typing rules in OCL
2.0. We can break down those two rules to bring
OCL sub-expression out of them which establishes
a correspondance betweenincoming interactions
and outgoing interactions for two computational
interfaces related by a type/subtype relationship.
That is, twoincoming or two outgoing interactions
related by a type/subtype relationship must have
the same name, the same number and names of
parameters, and that corresponding parameter types
verify type/subtype relationship following the rules
provided above. The OCL sub-expressions are given
in what follows:

Context ParameterizedInteractionSignatureinv:

def: hasSameName(PAT: ParameterizedInterac-
tionSignature): Boolean =
self.name= PAT.name)

def: hasSameParametersNumber(PAT: Parame-
terizedInteractionSignature): Boolean =
(self.parameternumbers= PAT. parameternumbers)

def: hasSameParametersNames(PAT: Parame-
terizedInteractionSignature): Boolean =
self.Parameter� forAll(Px : Parameter�
ParameterizedInteractionSignature� Exists(
Py: Parameter�
Px.name = PAT.Py. name))

def: isSubTypeOf (PAT: ParameterizedInterac-
tionSignature): Boolean =
self.Parameter� forAll(Px : Parameter�
ParameterizedInteractionSignature� Exists(
Py: Parameter�
PAT.Py.type.oclIsKindOf(Px.type)))

Based on the sub-expressions above we can
specify Functional typing rules interfaces as follows:

Context FunctionalInterfaceSignatureinv :

Let PIS : ParameterizedInteractionSignature =
ParameterizedInteractionSignature.oclAsType(
PrimitiveInteractionSignature)

FunctionalInterfacesignature� forAll(X,Y �

(PIS.outgoing� forAll(PY �
PIS.outgoing� exists(PX�
Y.PY.hasSameName(X.PX)
and
Y.PY.hasSameParametersNumbers(X.PX)
and
PY.hasSameParametersNames(X.PX)
and
Y.PY.isSubTypeOf(X.PX)))))

and

(PIS.incoming� forAll(PY �
PIS.incoming� exists(PX�
Y.PY.hasSameName(X.PX)
and
Y.PY.hasSameParametersNumbers(X.PX)
and
PY.hasSameParametersNames(X.PX)
and
X.PX.isSubTypeOf(Y.PY)))))

implies

X.oclIsKindOf(Y)

Since stream interface signatures and flow inter-
action signature have not been redefined in the current
work, stream interface signatures typing rules OCL
specification are not presented here, since they are

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 276 Issue 2, Volume 8, February 2009

provided in [18][22].

7 Conclusion
We analyze in this work computational interfaces and
interaction signatures in order to consistently model
them within the UML4ODP computational meta-
model. Computational interfaces in the computational
language are of three kinds (signals, operations and
streams). We show that computational interfaces are
classified in two main classes instead of three: Func-
tional and stream interfaces. We also demonstrate that
interactions are of two kinds, namely; Parameterized
and flowing interactions. Then, we show that only two
kinds of parameterized interactions have to be taken
into account, Primitive and Compound interactions,
primitives are being incoming or outgoing interac-
tions. Based on these, we provide a UML metamodel
of interfaces and interactions signatures. Finally, we
show how our modeling choices prove to be pertinent
to specify OCL constraints on refinements of interac-
tions to define end-to-end QoS and bindings between
computational interfaces. We also provide OCL spec-
ification of type checking rules which are essential to
support distribution transparencies as well as general
rules in a concise manner.

8 perspectives

Interactions between given computational interfaces
is only possible if a binding (i.e. some communi-
cation path) has been established between them.
Binding in the Reference Model is defined with
reference to binding actions. Use of such actions
is called explicit binding. There are two kinds
of binding actions: primitive binding actions and
compound binding actions. Primitive binding actions
enable binding of an interface of the object which
initiates the action to another interface (of another
object, or itself). Compound binding actions enable a
set of interfaces to be bound, using a binding object
to support the binding [1][3].
On the other hand, a primitive binding action binds
two computational object directly. A compound
binding action uses primitive binding actions linking
two or more computational objects via a binding
object.
The UML4ODP computational metamodel lacks the
specification of binding refinements. Thus, there is a
need to provide for such a refinement to be realized.
We are looking forward to provide for such refine-
ments, especially by establishing a correspondance
between PRIMITIVE interactions andPRIMITIVE

BINDING actions from one side andCOMPOUND

interactions andCOMPOUND BINDING actions on the
other side.
Finally, since all kinds of interactions may be mapped
into primitive interactions (signals), many rules relat-
ing to interactions can be reduced to rules applied on
primitive interactions (signals). We are investigating
how to define all the rules relating to interactions in
terms of rules corresponding toprimitives.

References:

[1] ISO/IEC, Basic Reference Model of Open Dis-
tributed Processing-Part1: Overview and Guide
to UseISO/IEC CD 10746-1, 1994.

[2] ISO/IEC, RM-ODP-Part2: Descriptive Model
ISO/IEC DIS 10746-2, 1994.

[3] ISO/IEC, RM-ODP-Part3: Perspective Model
ISO/IEC DIS 10746-3, 1994.

[4] ISO/IEC, RM-ODP-Part4: Architectural seman-
tics ISO/IEC DIS 10746-4, 1994.

[5] P.F. Linington et al., The specification and
testing of conformance in ODP systems,
http://citeseer.nj.nec.com/170353.html, 1999.

[6] M. W. A. Steen et al.,Formalising ODP Enter-
prise Policies, IEEE Com. Soc. Press, EDOC’99,
1999.

[7] X. Blanc et al., Using the UML Language
to Express the ODP Enterprise ConceptsIn
Proceedings of the 3rd International Enter-
prise Distributed Object Computing Conference
(EDOC’99), Germany, pp. 50-59, September
1999. IEEE Computer Society Press.

[8] J. Aagedal et al.,ODP Enterprise Language:
UML PerspectiveIn Proceedings of the 3rd 29
International Enterprise Distributed Object Com-
puting Conference (EDOC’99), Germany, pp. 60-
71, September 30 1999. IEEE Computer Society
Press.

[9] M. W. Steen and al.ODP Enterprise Viewpoint
Specification In Computer Standards & Inter-
faces, 22(3):165-189, September 2000. Elsevier.

[10] OMG, Relationship of the Unified Modelling
language to the Reference Model of Open Dis-
tributed ProcessingOMG document ormsc/2001-
01-01, Version 1.4, January 2001.

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 277 Issue 2, Volume 8, February 2009

[11] Interoperability Technology Associa-
tion for Information Processing, Japan,
Guide for Using RM-ODP and UML Pro-
file for EDOC Document available at
http://www.net.intap.or.jp/e/odp/intap-guide.pdf.

[12] , ID. Hashimoto et al.,UML 2 Models for ODP
Engineering/Technology ViewpointsIn Proc of
the Second International Workshop on ODP for
Enterprise Computing (WODPEC 2005), pages
32-Enschede, The Netherlands, September 2005.

[13] B. Bordbar et al.,Using UML to specify QoS
constraints in ODP, Computer Networks Journal
pp. 279-304, 2002

[14] D.H.Akehurst et al.,Addressing Computational
Viewpoint Design, Seventh IEEE International
EDOC, IEEE Computer Society, 2003

[15] O. Reda et al.,Interaction Signatures and Ac-
tion Templates in the ODP Computational View-
point In proceedings of SEPADS’07, 6th WSEAS
International Conference on SOFTWARE EN-
GINEERING, PARALLEL and DISTRIBUTED
SYSTEMS, Greece, Februry 16-19, 2007.

[16] R. Romeo et al.,Modelling the ODP Compu-
tational Viewpoint with UML 2.0IEEE Interna-
tional Enterprise Distributed Object Computing
Conference, 2005.

[17] O. Reda et al.Resolving the ODP Computational
Viewpoint Interaction Signatures in Terms of Ac-
tion Templates using UMLICTIS’O7 : Informa-
tion and Communication Technologies Interna-
tIonal Symposium , April 3-5, Fes, Maroc, 2007

[18] O. Reda et al.Specification of OCL Constraints
on ODP Computational Interfaces7th WSEAS
International Conference on Applied Informatics
And Communications (AIC’07), August 24-26,
Athens, Greece, 2007

[19] O. Reda et al.Towards a Refinement of the
Open Distributed Systems Interactions Signatures
WSEAS transactions on communications, April
2007, vol. 6, pp. 601-607

[20] O. Reda et al.Modeling of Interactions and Re-
finements of Bindings in the UML4ODP Com-
putational Meta-Model, International Journal on
Information and Communication Technologies
(IJICT 2008).

[21] Richard O. Sinnott and Kenneth J. Turner,Type
Checking in Open Distributed Systems: A Com-
plete Model and its Z Specification, Rolia, Ja-
cob Slonim and John Botsford, editors, Open

Distributed Processing and Distributed Platforms,
pages 85-96, Chapman and Hall, May 1997.

[22] O. Reda et al,OCL 2.0 Constraints Specification
On Computional Interfaces of ODP Applications,
accepted in Proc. CARI’08 (Africain Conference
on Research in Computer Science and Applied
Mathematics) Rabat, October 2008.

[23] ITU-T Recommendation X.906 — ISO/IEC
19793, Information technology Open distributed
processing Use of UML for ODP system specifi-
cations, SC 7/WG19 and ITU-T, 2007.

[24] OMG, UML 2.0 Superstructure Specification,
OMG document formal/05-07-04, 2005 .

[25] OMG, OCL 2.0 Specification, version 2.0 OMG
document ptc/05-06-06, 2005.

WSEAS TRANSACTIONS on COMPUTERS Oussama Reda, Bouabid El Ouahidi, Daniel Bourget

ISSN: 1109-2750 278 Issue 2, Volume 8, February 2009

