
Visual interactive environment
for doing geometrical constructions

ANCA IORDAN1, GEORGE SAVII2, MANUELA PĂNOIU1, CAIUS PĂNOIU1

1 Technical University of Timişoara, Engineering Faculty of Hunedoara,
Revolutiei 5, 331128 Hunedoara

2 Technical University of Timişoara, Mechanical Engineering Faculty,
Mihai Viteazu 1, 300222 Timişoara

ROMANIA
anca.iordan@fih.upt.ro

Abstract: - In this work will be presented the elaboration of an educational informatics system for doing
geometry on a computer. In a way it replaces pencil, paper, ruler and compass with equivalent computer tools.
The achieved informatics system will be able to be used for teachning Euclidean geometry, both in pre-
university and in university education.

Key-Words: - Dynamical software, Euclidean geometry, Java, distance education.

1 Introduction
“Dynamic geometry software” has become a generic
term for a class of geometry software environments
where geometric objects can be continuously
transformed on the screen by dragging, with only
those features based on geometric properties
remaining invariant. Accurate measurements can be
performed, and the software incorporates Euclidean
geometry tools, such as angle bisector and
perpendicular line.

Laborde [1] asserts that dynamic drawings offer
stronger visual evidence than a single static drawing:
“A spatial property may emerge as an invariant in
the movement whereas this might not be noticeable
in one static drawing”.

Love [2], on the other hand, questions the impact
of readily produced computer images on the
learner’s ability to generate his/her own mental
images, noting that “it is easy to become seduced by
the visualisations to the extent of thinking that
consideration of them is the purpose of using them
in geometry”.

Despite the strong feeling that the dynamic
imagery associated with use of the software has the
potential to play a significant part in geometric
reasoning, concern has been expressed that dynamic
geometry software is contributing to an empirical
approach to school geometry [3], [4]. Instead,
traditional geometry exercises have been adapted for
the computer, and, of greater concern, geometry is
being reduced to pattern-spotting in data generated
by dragging and measurement of screen drawings,

with little or no emphasis on theoretical geometry:
“school mathematics is poised to incorporate
powerful dynamic geometry tools in order merely to
spot patterns and generate cases”[5].

Although it appears that there are many instances
of dynamic geometry software being used merely to
collect empirical data, it is also possible to use the
software in ways that encourage geometric
reasoning [6], [7]. The construction of geometric
shapes which retain their properties and
relationships when dragged, focuses students’
attention on the relationships between properties.
Other activities may require students to explore,
make conjectures, and prove properties for a given
geometric figure, or to model and investigate a
dynamic physical situation in order to understand
the effect of changing parameters [8].

Different modes of dragging of dynamic
geometry figures may be used depending on the
information which the user hopes to gain. If, for
example, a student has constructed an isosceles
triangle, dragging may be used as a check that the
triangle will remain isosceles, confirming that the
triangle has been appropriately constructed [9], [10],
[11]. Dragging may also be used in exploratory
tasks, where a figure is dragged in order to satisfy a
particular visual constraint. This mode of dragging
is often used in association with tracing the path of a
point. Laborde and Laborde [12] suggest that this
exploration provides a starting point for the
conjecture that the path of point A is a circle, that in
turn may lead students to the construction of a circle
with the midpoint of BC as centre. Dragging may

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 258 Issue 2, Volume 8, February 2009

then be used as a check to confirm the conjecture.
Arzarello [13] assert that students’ use of dragging
when investigating a problem in a dynamic
geometry environment changes as they develop a
greater understanding of the problem, and that the
different modes of dragging play a part in the
progression to deductive reasoning.

2 Presentation of the proposed
informatics systems
In this paragraph will be presented the elaboration of
an educational informatics system for doing
geometry on a computer. In a way it replaces pencil,
paper, ruler and compass with equivalent computer
tools. With the mouse you “draw” in a window on
screen, i.e. you place points, connect them by lines,
erect perpendiculars, etc.

This functionality is not very exciting, but
already useful if you want to do exact constructions.
You can be sure that you exactly – only restricted
by the floating point accuracy of the computer – hit
an intersection point of two lines, or draw an exact
parallel to some other line. Also some constructions
that are tedious to do by hand are easily done with
the computer, for example inversions at a circle (or
conic). The additional possibility of rescaling a
figure can help you if the construction you are doing
exceeds the limits of the window.
For elaboration of the informatics educational
system shall be used the Java programming
language [14].

2.1 System’s analysis
The informatics system will be described in a clear
and concise manner by presenting the use cases,
using the UML (unified modeling language) [15].
Each use case is a sequence of related transactions
performed by an actor and the system in a dialogue.
Representation of the uses cases’ diagram is shown
in figure 1.

Fig. 1 The use cases’ diagram

Activity diagrams [16] are used:
 To capture actions to be performed when an

operation is executing (most common purpose);
 To capture the internal work in an objects;
 To show how a set of related actions may be

performed;
 To show how an instance of s use-case may be

performed;
 To show a business works in terms of actors,

workflows, organization, and objects.
For each use case presented in the previous

diagram we’ll build activitiy diagram. Each diagram
will specify the processes or algorithms which are
behind the analysed use case. Figure 2 will present
these diagrams.

Fig. 2 Activity diagrams

2.2 System’s designing
The conceptual modeling allows the identification
of the most important concepts for the informatics
system [17], [18]. Because classes means concepts,
will be used the following classes to identify the
plane geometry elements: point, line, semi-line,
segment, semi-plane, conic, ellipse, circle,
hyperbola, parabola, affine transformation,
symmetry, rotation, translation, inversion.

The existing inheritance relationships between
the classes previously presented can be represented
by means of relationship diagrams between classes
(Fig. 3).

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 259 Issue 2, Volume 8, February 2009

Fig. 3 Inheritance relationships

Fig. 4 Composition relationships

Between the classes’ instances from the
previously presented architecture there are mainly
composition relationships. Further, we will present
these relationships by means of the relationship
diagrams between classes’ instances (Fig. 4).

The presented classes’ instances can be grouped
by related properities and methods. The grouping is
achieved by means of package. In figure 5 are
explicitely presented the structures of the package
which group objects from plane geometry. Between
classes and classes’ instances from a package there
are inheritance and composition relationships, which
where presented by means of the previous diagrams.

Fig. 5 Package diagram

The other two kinds of dynamic diagram fall into

a category called Interaction diagrams. They both
describe the flow of messages between objects.
However, sequence diagrams focus on the order in
which the messages are sent. They are very useful
for describing the procedural flow through many
objects. They are also quite useful for finding race
conditions in concurrent systems.

The sequence diagram [19] is used primarily to
show the interactions between objects in the
sequential order that those interactions occur. Much
like the class diagram, developers typically think
sequence diagrams were meant exclusively for them.
However, an organization's business staff can find
sequence diagrams useful to communicate how the
business currently works by showing how various
business objects interact. Besides documenting an
organization's current affairs, a business-level
sequence diagram can be used as a requirements
document to communicate requirements for a future
system implementation. During the requirements
phase of a project, analysts can take use cases to the
next level by providing a more formal level of
refinement. When that occurs, use cases are often
refined into one or more sequence diagrams. One of
the primary uses of sequence diagrams is in the

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 260 Issue 2, Volume 8, February 2009

transition from requirements expressed as use cases
to the next and more formal level of refinement. Use
cases are often refined into one or more sequence
diagrams.

The sequence diagrams for this software,
illustrates in figure 6, are made with ArgoUML-
0.24.

Fig. 6 Sequence diagrams

Collaboration diagram [20], on the other hand,
focus upon the relationships between the objects.
They are very useful for visualizing the way several
objects collaborate to get a job done and for
comparing a dynamic model with a static model.
Collaboration and sequence diagrams describe the
same information, and can be transformed into one
another without difficulty. The choice between the
two depends upon what the designer wants to make
visually apparent.

In figure 7, 8, 9, 10 and 11 are illustrates
collaboration diagrams.

Fig. 7 Collaboration diagrams

Fig. 8 Collaboration diagram for drawing the

orthocenter and the orthic triangle

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 261 Issue 2, Volume 8, February 2009

Fig. 9 Collaboration diagram for drawing the

incircle of a quadrilateral

Fig. 10 Collaboration diagram for drawing a

hyperbola

Fig. 11 Collaboration diagram for drawing the

tangent and the normal to an ellipse

2.3 Component diagram
A component represents a modular, replaceable
piece in the system [21]. Of primary importance are
two well-defined interfaces: The required interface
specifies formally which functionality the
component expects from its environment. The
provided interface specifies the functionality the
component is able to provide (to other components).

Fig. 12 Component diagram

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 262 Issue 2, Volume 8, February 2009

Ideally, the interfaces capture the required and
provided functionality in such a detailed manner
that allows to exchange two components
conforming to the same interfaces freely. As a
consequence, we could substitute one component by
another component without changing anything else
of the rest of the system (component is replaceable).

In principle, all parts of the system that are
modeled by a component can also be modeled by a
class. It is possible also for a class to express which
interface it provides and which it requires.

In figure 12 is presented the component diagram
wich is made with ArgoUML-0.24.

2.4 User interface
The program’s interface includes a menu bar, a bar
with buttons corresponding to the most important
operations and the drawing surface (Fig. 13).

Fig. 13 An example for a construction that is easy

with this software

Among the most important operations we mention :

 drawing-up of free points or points with
certain properties, i.e. the middle of a segment,
Newton’s Point, Miquel’s Point, Mathot’s Point;

 drawing-up of certain lines or lines which
fulfill certain conditions, i.e. the paralell to a line or
the perpendicular to a line (Fig. 14), Euler line,
Lemoine line, Newton line, Gauss line, Aubert line,
bimedians for a given quadrilateral;

 drawing-up of triangles which fulfill certain
conditions, i.e. orthic triangle, medial triangle;

 drawing-up of circles when is specified the
centre and radius or when are selected three points
which will identify the circle or circles which fulfill
certain conditions, i.e. the incircle and the three
excircles for a given triangle, Taylor’s circle;

 selection of the geometrical transformations
in plane: symmetry, rotation, translation, inversion,
homothety, i.e. rotation of a parallelogram, rotation
of a parabola, symmetry of a decagon, symmetry of
an ellipse, translation of an octagon, translation of a
hyperbola, homothety of a pentagon, homothety of
an ellipse, inversion of a circle;

 possibility to move the geometrical
construction;

 possibility to undertake parts of a geometrical
construction and keeping them in the button’s bar
for a possible further reutilisation.

Fig. 14 Parallel and perpendicular to a line

The Lemoine line is draw by the following

method of the class Triunghi2D (Fig. 15):

public Dreapta2D dr_Lemoine() {
Cerc2D C=new Cerc2D(cerc_circumscris());
Dreapta2D tgA=new Dreapta2D((new Dreapta2D(
O(),V[0])).perpendiculara(V[0]));
Punct2D A1=new Punct2D(tgA.intersectie(new
Dreapta2D(V[1],V[2])));
Dreapta2D tgB=new Dreapta2D((new Dreapta2D(
O(),V[1])).perpendiculara(V[1]));
Punct2D B1=new Punct2D(tgB.intersectie(new
Dreapta2D(V[0],V[2])));
return new Dreapta2D(A1,B1); }

Fig. 15 Lemoine Line

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 263 Issue 2, Volume 8, February 2009

The Medial triangle is draw by the following
method of the class Triunghi2D (Fig. 16):

public Triunghi2D triunghi_median() {
 Punct2D p1=new Punct2D(sg[0].mijloc());
 Punct2D p2=new Punct2D(sg[1].mijloc());
 Punct2D p3=new Punct2D(sg[2].mijloc());
 return new Triunghi2D(p1,p2,p3); }

Fig. 16 Medial triangle

The method of class Triunghi2D which obtains

the incircle (Fig. 17) is presented forwards:

public Cerc2D cerc_inscris() {
 double p=(sg[0].getLungime()+sg[1].getLungime()
+sg[2].getLungime())/2;
 double r=arie()/p;
 return new Cerc2D(I(),r); }

Fig. 17 The incircle and the three excircles for a

given triangle

The implementation of the method which obtains
Taylor’s circle (Fig. 18) can be as follows:

public Cerc2D cerc_Taylor() {
Punct2D A1=new Punct2D(picior_inaltime(V[0]));
Dreapta2D d1=new Dreapta2D((sg[0].getSuport()).
perpendiculara(A1));
Punct2D A2=new Punct2D(d1.intersectie(sg[0].
getSuport()));
d1=new Dreapta2D((sg[2].getSuport()).
perpendiculara(A1));
Punct2D A3=new Punct2D(d1.intersectie(sg[2].
getSuport()));
Punct2D B1=new Punct2D(picior_inaltime(V[1]));
d1=new Dreapta2D((sg[0].getSuport()).
perpendiculara(B1));
Punct2D B2=new Punct2D(d1.intersectie(sg[0].
getSuport()));
return new Cerc2D(A2,A3,B2); }

Fig. 18 Taylor’s circle

Fig. 19 Newton’s Point

The Newton’s Point is draw by the following

method of the class Patrulater2D (Fig. 19):

public Punct2D pct_Newton() {
 return new Punct2D(new Dreapta2D(
V[0],V[2]).intersectie(new Dreapta2D(V[1],V[3])));
 }

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 264 Issue 2, Volume 8, February 2009

Fig. 20 Miquel’s Point

The Miquel’s Point is draw by the following

method of the class Patrulater2D (Fig. 20):

public Punct2D pct_Miquel() {
 Triunghi2D t1=new Triunghi2D(V[0],V[3],
diagonala3().getExtremitate1());
 Triunghi2D t2=new Triunghi2D(V[0],V[1],
diagonala3().getExtremitate2());
 Triunghi2D t3=new Triunghi2D(V[3],V[2],
diagonala3().getExtremitate2());
 Cerc2D c1=new Cerc2D(t1.cerc_circumscris());
 Cerc2D c2=new Cerc2D(t2.cerc_circumscris());
 Cerc2D c3=new Cerc2D(t3.cerc_circumscris());
 Punct2D M;
 if (c1.tangente(c2)) M=new Punct2D(c1.
punct_tangenta(c2));
 else if (c1.tangente(c3)) M=new Punct2D(c1.
punct_tangenta(c3));
 else if (c3.tangente(c2)) M=new Punct2D(c3.
punct_tangenta(c2));
 else {
 Punct2D p1=new Punct2D();
 Punct2D p2=new Punct2D();
 Punct2D p3=new Punct2D();
 Punct2D p4=new Punct2D();
 c1.puncte_secante(c2,p1,p2);
 c1.puncte_secante(c3,p3,p4);
 if (p1.coincid(p3)||p1.coincid(p4)) M=new
Punct2D(p1);
 else M=new Punct2D(p2);
 }
 return M; }

The method of class Patrulater2D which obtains
the Mathot’s Point (Fig. 21) is presented forwards:

public Punct2D pct_Mathot() {
 Dreapta2D d1=new Dreapta2D((sg[2].getSuport()).
perpendiculara(sg[0].mijloc()));

 Dreapta2D d2=new Dreapta2D((sg[3].getSuport()).
perpendiculara(sg[1].mijloc()));
 return new Punct2D(d1.intersectie(d2)); }

Fig. 21 Mathot’s Point

Fig. 22 Bimedians for a given quadrilateral

The implementation of the method which obtains

bimedians for a given quadrilateral (Fig. 22) can be
as follows:

public Segment2D[] bimediane() {
Segment2D[] bm=new Segment2D[3];
 bm[0]=new Segment2D(sg[0].mijloc(),
sg[2].mijloc());
 bm[1]=new Segment2D(sg[1].mijloc(),
sg[3].mijloc());
 bm[2]=new Segment2D(diagonala(V[0]).mijloc(),
diagonala(V[1]).mijloc());
 return bm; }

The Newton Line is draw by the following
method of the class Patrulater2D (Fig. 23):

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 265 Issue 2, Volume 8, February 2009

public Dreapta2D dr_Newton() {
 return bimediane()[2].getSuport(); }

Fig. 23 Newton Line

The method of class Patrulater2D which obtains

the Gauss Line (Fig. 24) is presented forwards:

public Dreapta2D dr_Gauss() {
return new Dreapta2D(diagonala(V[0]).mijloc(),
diagonala(V[1]).mijloc()); }

Fig. 24 Gauss Line

Fig. 25 Aubert Line for a convex quadrilateral

The implementation of the method which obtains
Aubert Line for a quadrilateral (Fig. 25, Fig. 26) can
be as follows:

public Dreapta2D dr_Aubert() {
 Triunghi2D t1=new Triunghi2D(V[0],V[3],
diagonala3().getExtremitate1());
 Triunghi2D t2=new Triunghi2D(V[0],V[1],
diagonala3().getExtremitate2());
 return new Dreapta2D(t1.H(),t2.H()); }

Fig. 26 Aubert Line for a concave quadrilateral

Fig. 27 Rotation of a parallelogram

The method of class Izometrie2D which obtains

the rotation of a parallelogram (Fig. 27) is presented
forwards:

Paralelogram2D izometrie(Paralelogram2D P) {
 Punct2D[] A=new Punct2D[3];
 for (int i=0;i<3;i++)
A[i]=new Punct2D(izometrie(P.getVarf(i)));
 return new Paralelogram2D(A[0],A[1],A[2]); }

The method of class Omotetie2D which obtains
the homothety of a pentagon (Fig. 28) is presented
forwards:

public Poligon2D omotetie(Poligon2D P) {
 int n=P.getNrVarf();
 Punct2D[] A=new Punct2D[n];
 for (int i=0;i<n;i++)
A[i]=new Punct2D(omotetie(P.getVarf(i)));
 return new Poligon2D(n,A); }

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 266 Issue 2, Volume 8, February 2009

Fig. 28 Homothety of a pentagon

Fig. 29 Homothety of an ellipse

The method of class Omotetie2D which obtains

the homothety of an ellipse (Fig. 29) is presented
forwards:

public Elipsa2D omotetie(Elipsa2D E) {
 Punct2D P1=new Punct2D(omotetie(
E.getFocar1()));
 Punct2D P2=new Punct2D(omotetie(
E.getFocar2()));
 Elipsa2D E1=new Elipsa2D(P1,P2,Math.abs(raport)
*E.getA());
 Punct2D P[]=new Punct2D[73];
 int i;
 for (i=0;i<=72;i++) {
 P[i]=new Punct2D(E.calcul_puncte()[i]);
 P[i].setare(omotetie(P[i]));
 }
 E1.setare_puncte(P);
 return E1; }

3 Conclusion
The advantages of the presented software are:

 By the multitude of the offered facilities, this
mathematic software can be used successfully for

computer assisted training at geometry, both in the
pre-university and university environment;

 The software is useful both in the step of
acquiring new knowledges, the step of consolidating
the acquired knowledge, and in the assessment step;

 Is achieved a high technical level, being taken
into account all the methodical requirements;

 Are intended few exposure levels, depending
on the schoolchildren’s and students’ preparation
level;

 By the multitude of the offered options, the
application can replace successfully the paper and
the pencil for making the geometrical constructions.

Utilisation of the presented informatics system in
studying geometry will contribute to build-up and
develop the students’ informational culture. The
computer assisted training in the geometry
elements’ study process is also an efficient method
to increase the learning motivation of this discipline
and the quality of its acquiring.

References:
[1] C. Laborde, Visual phenomena in the

teaching/learning of geometry in a computer-
based environment, Perspectives on the teaching
of geometry for the 21st century, 1998, pp. 113-
121, Dordrecht, The Netherlands

[2] E. Love, The functions of visualization in
learning geometry, Exploiting mental images
with computers in mathematics education,
Proceedings of NATO Advanced Workshop,
1995, pp. 125-141, Berlin, Springer-Verlag

[3] E. Scalon, C. Tosunoglu, A. Jones, P.
Butcher, S. Ross, J. Greenberg, Learning with
computers : experiences of evaluation, Computer
Education, Elsevier Science, 1998

[4] A. Mcdougall, A. Squires, Empirical study of
a new paradigm for choosing educational
software, Computer Education, Elsevier Science,
1995, Vol. 25

[5] R. Noss, C. Hoyles, Windows on
mathematical meanings: Learning cultures and
computers, Mathematics Education Library, Vol.
17, 1996, Dordrecht, The Netherlands

[6] D. Glusac, D. Radosav, D. Karuovic, D. Ivin,
Pedagogical and Didactic-Methodical Aspects of
E-learning, 6th WSEAS International Conference
on E-ACTIVITIES, Tenerife, Spain, December
14-16, 2007, pp. 67-75

[7] A.R. Lupu, R. Bologa, G. Sabau, M.
Muntean, Integrated Information Systems in
Higher Education, WSEAS TRANSACTIONS on
COMPUTERS, Issue 5, Vol. 7, May 2008, pp.
473-482

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 267 Issue 2, Volume 8, February 2009

[8] L.Y. Por, A.B. Zaitun, An Adaptive User
Assessment Model for e-Learning, WSEAS
TRANSACTIONS on ADVANCES in
ENGINEERING EDUCATION, Issue 3, Vol. 5,
March 2008, pp. 158-167

[9] C.E. Iglesias, A.G. Carbajo, M.A. Sastre
Rosa, Interactive tools for Discrete Mathematics
e-learning, WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION,
Issue 2, Vol. 5, February 2008, pp. 97-103

[10] A. Ahmad, S.S. Salim, R. Zainuddin, A
Cognitive Tool to Support Mathematical
Communication in Fraction Word Problem
Solving, WSEAS TRANSACTIONS on
COMPUTERS, Issue 4, Vol. 7, April 2008, pp.
228-236

[11] D. Petcu, A. Eckstein, C. Giurgiu, Adapting a
Legacy Code for Ordinary Differential Equations
to Novel Software and Hardware Architectures,
WSEAS TRANSACTIONS on COMPUTERS,
Issue 5, Vol. 7, May 2008, pp.463-472

[12] C. Laborde, J.M. Laborde, What about a
learning environment where Euclidean concepts
are manipulated with a mouse?, Computers and
exploratory learning, 1995, pp. 241-262, Berlin,
Springer-Verlag

[13] F. Arzarello, C. Micheletti, F. Olivero, O.
Robutti, D. Paola, G. Gallino, Drawing in Cabri
and modalities of transition from conjectures to

proof in geometry, Proceedings of the 22nd
Psychology of Mathematics Education
Conference, Vol.2, pp. 32-39, 1998

[14] R. Silveira, R. Viccari, JADE – Java Agents
for Distance Education Framework, 8th Annual
International Distance Education Conference,
January 23-26, 2001

[15] G. Booch, J. Rumbaugh, I. Jacobson, The
Unified Modeling Language User Guide,
Addison Wesley, 1999

[16] R. Eshuis, R. Wieringa, A formal semantics
for UML activity diagrams – Formalising
workflow models, University of Twente,
Departament of Computer Science, 2001

[17] R. Pressman, Software Engineering - A
Practitioners Approach, McGraw-Hill, 2005

[18] M. Fowler, K. Scott, UML Distilled: A Brief
Guide to the Standard Object Modeling
Language, Addison Wesley, Readings MA, USA,
2000

[19] J. Rumbaugh, I. Jacobson, G. Booch, The
Unified Modeling Language Reference Manual,
Addison Wesley, 1999

[20] D. Rosenberg, K. Scott, Use case Driven
Object Modeling with UML, Addison Wesley,
1999

[21] J. Odell, Advanced Object Oriented
Analysis& Design using UML, Cambrige
University Press, 1998

WSEAS TRANSACTIONS on COMPUTERS
Anca Iordan, George Savii,
Manuela Panoiu, Caius Panoiu

ISSN: 1109-2750 268 Issue 2, Volume 8, February 2009

