
Modal Learning Neural Networks

DOMINIC PALMER-BROWN, SIN WEE LEE, CHRISINA DRAGANOVA, MIAO KANG

School of Computing and Technology

University of East London,

University Way, London, E16 2RD

UNITED KINGDOM

{ D.Palmer-brown, S.W.Lee, C.Draganova, M.Kang}@uel.ac.uk http://www.uel.ac.uk/cite

Abstract: This paper will explore the integration of learning modes into a single neural network structure in

which layers of neurons or individual neurons adopt different modes. There are several reasons to explore

modal learning. One motivation is to overcome the inherent limitations of any given mode (for example some

modes memorise specific features, others average across features, and both approaches may be relevant

according to the circumstances); another is inspiration from neuroscience, cognitive science and human

learning, where it is impossible to build a serious model without consideration of multiple modes; and a third

reason is non-stationary input data, or time-variant learning objectives, where the required mode is a function of

time. Two modal learning ideas are presented: The Snap-Drift Neural Network (SDNN) which toggles its

learning between two modes, is incorporated into an on-line system to provide carefully targeted guidance and

feedback to students; and an adaptive function neural network (ADFUNN), in which adaptation applies

simultaneously to both the weights and the individual neuron activation functions. The combination of the two

modal learning methods, in the form of Snap-drift ADaptive FUnction Neural Network (SADFUNN) is then

applied to optical and pen-based recognition of handwritten digits with results that demonstrate the effectiveness of

the approach.

Key-Words: - Modal Learning, Snap-drift, ADFUNN, SADFUNN, e-learning, Personalized Learning,

Diagnostic Feedback, Multiple Choice Questions

1. Modal Learning Neural Networks
Twenty years ago there were already several

forms of artificial neural network, each utilising

a different form of learning. But at that time it

was considered likely that one or at least a very

small number of forms of learning would

prevail and become ubiquitous. Along the way,

many forms of learning, notably Back-

propagation, Bayesian and Kernel methods

have been hailed as superior forms. However,

decades after the introduction of Kohonen

learning, SOMs, and Backpropagation they are

still being used alongside more recent methods

such as Bayesian and SVM. No single method

or mode prevails. A wide range of methods are

still in use, simply because there are significant

problems and datasets for which each method is

suitable and effective.

In this context, Modal learning arises from

the desire to equip a single neural network or

module with the power of several modes of

learning, to achieve learning results that no

single mode could achieve, through exploitation

of the complementary nature of each mode.

A mode is an adaptation method for learning

that could be applied in more than one type of

architecture or network. It is analogous to a

human mode of learning, such learning by

analogy or category learning. Modes of learning

map onto NN learning objectives. Well known

modes therefore include the Delta Rule,

Backpropagation (BP), Learning Vector

quantization (LVQ), and Hebbian Learning. In

contrast The Adaptive Resonance Theory

(ART) or Bayesian neural networks are more

than a mode of learning, they define

architectures and approaches to learning, within

which particular modes are used.

In general, the objective of learning may be

unknown, changing, difficult to express or

quantify, and even if it is easy to define in terms

of a desired learning outcome (eg. zero or

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 222 Issue 2, Volume 8, February 2009

minimal error), the learning agent’s objective

function must be expressed differently in terms

of the parameters of the learning machine (eg.

de/dw). Given the dislocation between the

actual objectives of learning and the objective

learning function of the learning agent, it is not

possible to know a-priori which is the optimal

learning mode to use.

For example, BP is good for approximation

and transformation, but if the features within

the data need to be assimilated (or memorised)

directly, then learning vector quantization or

SVM would be more appropriate. We are

unlikely to know in advance. But the learning

agent should be able to work out the most

effective mode during, and as part of, the

learning process.

Modal Learning (ML) contrasts with hybrid

and modular approaches in which each module

or network exhibits one mode, and modules are

bolted together with each designed to solve a

sub-problem. Limitations of one mode of

learning per ensemble of neurons include the

need for more neurons, layers or networks.

Even fixed task and data may benefit from

sequential or simultaneous application of more

than one mode, and data or task may be non-

stationary. Each mode is inherently limited

because it is tied to an objective function. A

simple illustration of the potential benefits of a

modal learning approach can be seen in the

following sequence of class boundaries in a 2D,

2 class problem (Figure 1). In it we see how it is

necessary to increase complexity to an extent

that is not justified by the data in order to find a

single mode solution.

Two Class Problem

v1 (distance)

X O

X O

O

X O O

o

X X

v2 (time)

v1 (distance)

X O

X O

O

X O O

o

X X

v2 (time)

v1 (distance)

X O

X O

O

X O O

o

X X

v2 (time)

v1 (distance)

X O

X O

O

X O O

o

X X

v2 (time)

Figure 1: Increasingly complex solution to a 2-

class problem

In contrast, a relatively simple and good margin

solution can be achieved by combining a

straight line (perceptron), a simple curve

(multilayer perceptron) and a cluster. This

requires 3 modes of learning, as follows:

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 223 Issue 2, Volume 8, February 2009

v1 (distance)

X O

X O

O

X O O

o

X X

v2 (time)

 Figure 2: 3 mode solution

Or by combining a curve (multilayer percepton)

and a cluster. This requires 2 modes of learning:

v1 (distance)

X O

X O

O

X O O

o

X X

v2 (time)

 Figure 3: 2 mode solution

Rather than trying to solve the whole problem

with a single mode of learning, a simpler learnt

solution is achievable by combining modes of

learning.

When we look at human and machine learning

in a wider context, there are many reasons and

motivations to consider modal learning, as it

allows for the spectrum of learning to be taken

into account, from memorisation to

generalisation.

2. Snap-drift Neural Network (SDNN)
The snap-drift algorithm, which combines the

two modes of learning (snap and drift) first

emerged as an attempt to overcome the

limitations of ART learning in non-stationary

environments where self-organisation needs to

take account of periodic or occasional

performance feedback. Since then, the snap-

drift algorithm has proved invaluable for

continuous learning in many applications.
The reinforcement versions [1], [2] of snap-

drift are used in the classification of user

requests in an active computer network

simulation environment whereby the system is

able to discover alternative solutions in

response to varying performance requirements.

The unsupervised snap-drift algorithm, without

any form of reinforcement, has been used in the

analysis and interpretation of data representing

interactions between trainee network managers

and a simulated network management system

[3]. New patterns of the user behaviour were

discovered.

Snap-drift in the form of a classifier [4] has

been used in attempting to discover and

recognize phrases extracted from Lancaster

Parsed Corpus (LPC) [5]. Comparisons carried

out between snap-drift and MLP with back-

propagation, show that the former is faster and

just as effective. It is also been used in Feature

Discovery in Speech. Results show that the

snap-drift Neural Network (SDNN) groups the

phonetics speech input patterns meaningfully

and extracts properties which are common to

both non-stammering and stammering speech,

as well as distinct features that are common

within each of the utterance groups, thus

supporting classification.

In most recent development, a supervised

version of snap-drift has been used in grouping

spatio-temporal variations associated with road

traffic conditions. Results show that the SDNN

used is bale to group read features such that

they correspond to the road class travelled even

under changing road traffic conditions.

One of the strengths of the SDNN is the

ability to adapt rapidly in a non-stationary

environment where new patterns (new candidate

road attributes in this case) are introduced over

time. The learning process utilises a novel

algorithm that performs a combination of fast,

convergent, minimalist learning (snap) and more

cautious learning (drift) to capture both precise

sub-features in the data and more general

holistic features. Snap and drift learning phases

are combined within a learning system that

toggles its learning style between the two

modes. On presentation of input data patterns at

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 224 Issue 2, Volume 8, February 2009

the input layer F1, the distributed SDNN

(dSDNN) will learn to group them according to

their features using snap-drift [2]. The neurons

whose weight prototypes result in them

receiving the highest activations are adapted.

Weights are normalised weights so that in effect

only the angle of the weight vector is adapted,

meaning that a recognised feature is based on a

particular ratio of values, rather than absolute

values. The output winning neurons from

dSDNN act as input data to the selection SDNN

(sSDNN) module for the purpose of feature

grouping and this layer is also subject to snap-

drift learning.

The learning process is unlike error

minimisation and maximum likelihood methods

in MLPs and other kinds of networks which

perform optimization for classification or

equivalents by for example pushing features in

the direction that minimizes error, without any

requirement for the feature to be statistically

significant within the input data. In contrast,

SDNN toggles its learning mode to find a rich

set of features in the data and uses them to

group the data into categories. Each weight

vector is bounded by snap and drift: snapping

gives the angle of the minimum values (on all

dimensions) and drifting gives the average

angle of the patterns grouped under the neuron.

Snapping essentially provides an anchor vector

pointing at the ‘bottom left hand corner’ of the

pattern group for which the neuron wins. This

represents a feature common to all the patterns

in the group and gives a high probability of

rapid (in terms of epochs) convergence (both

snap and drift are convergent, but snap is

faster). Drifting, which uses Learning Vector

Quantization (LVQ), tilts the vector towards the

centroid angle of the group and ensures that an

average, generalised feature is included in the

final vector. The angular range of the pattern-

group membership depends on the proximity of

neighbouring groups (natural competition), but

can also be controlled by adjusting a threshold

on the weighted sum of inputs to the neurons.

The output winning neurons from dSDNN act

as input data to the selection SDNN (sSDNN)

module for the purpose of feature grouping and

this layer is also subject to snap-drift learning.

3 E- learning Snap-Drift Neural

Network (ESDNN)
3.1 The ESDNN Architecture

In a recent application of snap-drift, ESDNN,

the unsupervised version of the snap-drift

algorithm is deployed [6], as shown in Figure 4.

Figure 4: 1 E-learning SDNN architecture

During training, on presentation of an input

pattern at the input layer, the dSDNN will learn

to group the input patterns according to their

general features. In this case, 5 F12 nodes,

whose weight prototypes best match the current

input pattern, with the highest net input are used

as the input data to the sSDNN module for

feature classification.

In the sSDNN module, a quality assurance

threshold is introduced. If the net input of a

sSDNN node is above the threshold, the output

node is accepted as the winner, otherwise a new

uncommitted output node will be selected as the

new winner and initialised with the current

input pattern.

The following is a summary of the steps that

occur in ESDNN:

Step 1: Initialise parameters: (α = 1, σ = 0)

Step 2: For each epoch (t)

For each input pattern

Step 2.1: Find the D (D = 5) winning nodes at

F12 with the largest net input

Step 2.2: Weights of dSDNN adapted

according to the alternative learning procedure:

(α,σ) becomes Inverse(α,σ) after every

successive epoch

Step 2.3 Process the output pattern of F12 as

input pattern of F21

Input

Pattern

(I)

F11 F12 F21 F22

dSDNN

(Feature Extraction)

sSDNN

(Feature Classification)

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 225 Issue 2, Volume 8, February 2009

Step 2.4: Find the node at F22 with the largest

net input

Step 2.5: Test the threshold condition:

IF (the net input of the node is greater than the

threshold)

THEN

Weights of the sSDNN output node adapted

according to the alternative learning procedure:

(α,σ) becomes Inverse(α,σ) after every

successive epoch

ELSE

An uncommitted sSDNN output node is

selected and its weights are adapted according

to the alternative learning procedure: (α,σ)

becomes Inverse(α,σ) after every successive

epoch

3.2 The ESDNN Learning Algorithm

The learning algorithm combines logical

intersection learning (snap) and Learning

Vector Quantisation (drift) (Kohonen, 1990). In

general terms, the snap-drift algorithm can be

stated as:

Snap-drift = α(pattern intersection) + σ(LVQ)

(1)

The top-down learning of both of the modules

in the neural system is as follows:

wJi
(new)

= α(I ∩ wJi
(old)

) + σ(wJi
(old)

 + β(I -

wJi
(old)

)) (2)

where wJi = top-down weights vectors; I =

binary input vectors, and β = the drift speed

constant = 0.1.

In successive learning epochs, the learning is

toggled between the two modes of learning.

When α = 1, fast, minimalist (snap) learning is

invoked, causing the top-down weights to reach

their new asymptote on each input presentation.

(2) is simplified as:

wJi
(new)

= I ∩ wJi
(old)

 (3)

This learns sub-features of patterns. In contrast,

when σ = 1, (2) simplifies to:

wJi
(new)

= wJi
(old)

+ β(I - wJi
(old)

) (4)

which causes a simple form of clustering at a

speed determined by β.

The bottom-up learning of the neural system

is a normalised version of the top-down

learning:

wIJ
(new)

 = wJi
(new)

/| wJi
(new)

| (5)

where wJi
(new)

 = top-down weights of the

network after learning.

In ESDNN, snap-drift is toggled between

snap and drift on each successive epoch. The

effect of this is to capture the strongest clusters

(holistic features), sub-features, and

combinations of the two.

4. E-learning System
4.1 Motivation
Formative assessment provides students with

feedback that highlights the areas for further

study and indicates the degree of progress [7].

This type of feedback needs to be timely and

frequent during the semester in order to really

help the students in learning of a particular

subject. One effective way to provide students

with immediate and frequent feedback is by

using Multiple Choice Questions (MCQs) set

up as web-based formative assessments and

given to students to complete after a

lecture/tutorial session. MCQs can be designed

with a purpose to provide diagnostic feedback,

which identifies misconceptions or adequately

understood areas of a given topic and explains

the source of misconceptions by comparing

with common mistakes. There are many studies

(e.g. [8], [9], [10], [11], [12]) investigating the

role different types of feedback and MCQs used

in web-based assessments, that report on

positive results from the use of MCQs in online

tests for formative assessments. However none

of these studies have employed any intelligent

analysis of the students’ responses or providing

diagnostic feedback in the online tests.

The ESDNN system ehances students

learning through providing diagnostic feedback

which is automatic, immediate and individual to

large numbers of students based on intelligent

analysis of real data. It thus encouraging

independent and deeper learning, and provides a

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 226 Issue 2, Volume 8, February 2009

tool for self-assessment that is accessible

anywhere and at anytime (eg. on the web).

The ESDNN is a simple tool that can be

incorporated into a VLE system or installed on

a PC, configured to run as a web server. The

student responses are recorded in a database and

can be used for monitoring the progress of the

students and for identifying misunderstood

concepts that can be addressed in following

face-to-face sessions. The collected data can be

also used to analyse how the feedback

influences the learning of individual students

and for retraining the neural network.

Subsequently the content of the feedback can be

improved. Once designed MCQs and feedbacks

can be reused for subsequent cohorts of

students.

4.2 E-Learning System Architecture

The E-learning system has been designed and

built using the JavaServer Faces Technology

(JSF), which is a component-based web

application framework that enables rapid

development. The JSF follows the Model-

View-Controller (MVC) design pattern and its

architecture defines clear separation of the user

interface from the application data and logic.

 The ESDNN is integrated within the web

application as part of the model layer. The

ESDNN is trained for each set of questions

offline with data available from previous years

of students, and the respective weight text files

are stored on the application server. The

feedback for each set of questions and each

possible set of answers is grouped according to

the classification from the ESDNN and written

in an XML file stored on the application server.

In order to analyse the progress of the

students in using the system they have to login

into the system with their student id numbers.

The set of answers, time and student id are

recorded in the database after each student’s

submission of answers. After login into the

system the students are prompt to select a

module and a topic and this leads to the screen

with a set of multiple choice questions specific

for the selected module and topic. On

submission of the answers the system converts

these into a binary vector which is fed into the

ESDNN. The ESDNN produces a group

number; the system retrieves the corresponding

feedback for this group from the XML feedback

file and sends it to the student’s browser. The

student is prompted to go back and try the same

questions again or select a different topic. A

high level architectural view of the system is

illustrated in Figure 5.

The features of the system can be surmised as

follows:

1. Log in by student ID which allows the

data to be collected and analysed.

2. Select a a particular topic from a number

of options.

3. Page with questions in a multiple choice

format

4. Classifications of the student response.

5. Displaying the corresponding feedback

6. Saving in a database the student ID,

answers, topic ID and time of completion of the

quiz.

7. Help which provides assistance to using

the system

Figure5: 2 E-learning system architecture

5. Trials and Results
5.1 Introduction

Client - Web Browser

Web/Application Server

Controller View

SDNN

Model Layer

Weights Feedback

Presentation Layer

Database

Persistence Layer

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 227 Issue 2, Volume 8, February 2009

During training the ESDNN was first trained

with the responses for 5 questions on a

particular topic in a module/subject. In this

case, the responses are obtained from previous

cohort of students on the topic 1 of the module,

Introduction to Computer System.

After training, appropriate feedback text is

written by academics for each of the group of

students’ responses that address the conceptual

errors implicit in combinations of incorrect

answers.

During the trial, a current cohort of students

is asked to provide responses on the same

questions and they will be given the feedback

on the combination of incorrect answers.

5.2 Trial Results and Analysis

A trial was conducted with 70 students. They

were allowed to make as many attempts at the

questions as they liked. On average they gave 7

sets of answers over 20 minutes.

Figure 6 illustrates the behaviour of students

in terms of what might be called learning states.

These states correspond to the output neurons

that are triggered by patterns of question topic

responses. In other words, the winning neuron

represents a state of learning because it captures

some commonality in a set of questions

responses. For example, if there are several

students who give the same answer (correct or

incorrect) to two or more of the questions, snap-

drift will form a group associated with one

particular output neuron to include all such

cases. That is an over simplification, because

some of those cases may be pulled in to other

‘stronger’ groups, but that would also be

characterized by a common feature amongst the

group of responses.

Figure 6 shows the knowledge state

transitions. Each time a student gives a new set

of answers, having received some feedback

associated with their previous state, which in

turn is based on their last answers, they are

reclassified into a new (or the same) state, and

thereby receive new (or the same) feedback.

The tendency is to undergo a state transition

immediately or after a second attempt.

A justification for calling the states ‘states of

knowledge’ is to be found in their self-

organization into the layers of Figure 6. A

student on state 14, for example has to go via

one of the states in the next layer such as state 9

before reaching the ‘state of perfect knowledge’

(state 25) which represents correct answers to

all questions. On average, and unsurprisingly,

the state-layer projecting onto state 25 (states

20, 1, 9 and 4) are associated with more correct

answers than the states in the previous layer.

Students often circulate within layers before

proceeding to the next layer. The may also

return to previous layer, but that is less

common. The commonest finishing scores are

3, 4 and 5 out of 5 correct answers; the

commonest starting scores are 0,1,2,and 3. The

average time spent on the questions was about

17 minutes, and the average increase in score

was about 25%.

The feedback texts are composed around the

pattern groupings and are aimed at

misconceptions that may have caused the

incorrect answers common within the pattern

group. An example of a typical response to the

questions is:

1. A common characteristic of all computer

systems is that they

 lower the operating costs of companies

that use them

 destroy jobs

 increase the efficiency of the companies

that use them

 process inputs in order to produce

outputs

 are used to violate our personal freedoms

2. A digital computer system generates, stores,

and processes data in

 a hexadecimal form

 a decimal form

 an octal form

 a binary form

 none of the above forms

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 228 Issue 2, Volume 8, February 2009

3. All modern, general purpose computer

systems, require

 at least one CPU and memory to hold

programs and data

 at least one CPU, memory to hold

programs and data and I/O devices

 at least one CPU, memory to hold

programs and data and long-term storage

 at least one CPU, I/O devices and long

term storage

 at least one CPU, memory to hold

programs and data, I/O devices and long-term

storage

4. Babbage’s 19th Century Analytical Engine

is significant in the context of computing

because it

 was the first digital computer

 was the first device which could be used

to perform calculations

 contained all the essential elements of

today’s computers

 could process data in binary form

 was the first electronic computer

5. According to Von Neumann s stored

program concept

 program instructions can be fetched from

a storage device directly into the CPU

 data can be fetched from a storage device

directly into the CPU

 memory locations are addressed by

reference to their contents

 memory can hold programs but not data

 both program instructions and data are

stored in memory while being processed

This is classified into Group (state) 14, which

generates the following feedback:

State 14 Feedback

1.John Von Neumann, whose architecture forms

the basis of modern computing, identified a

number of major shortcomings in the ENIAC

design. Chief amongst these was the difficulty of

rewiring ENIAC's control panels every time a

program or its data needed changing. To

overcome this problem, Von Neumann proposed

his stored program concept. This concept

allows programs and their associated data to be

changed easily.

2.Memory acts as a temporary storage location

for both program instructions and data. Data,

including program instructions, are copied

from storage devices to memory and viceversa.

This architecture was first proposed by John

von Neumann.

3.Much of the flexibility of modern computer

systems derives from the fact that memory is

addressed by its location number without any

regard for the data contained within. This is a

crucial element of the Von Neumann

architecture.

Prompted by the group 14 feedback the student

is able, either immediately or after some

reflection, to improve their answer to the

question 5 to “both program instructions and

data are stored in memory while being

processed”. This gives rise to the state 9

feedback below, and after perhaps another

couple of attempted answers they correct their

answer to question 3, to achieve the correct

answers to all questions.

State 9 Feedback

The work of a modern computer system can be

described in terms of an input-process-output

model (IPO). To implement this model, a

computer needs at least one means of both input

and output and a means of processing the input.

The design of Charles Babbage's Analytical

Engine, which preceded the first digital

computers by more than 100 years, also

included a means of input (punched cards), a

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 229 Issue 2, Volume 8, February 2009

means of output (a printer) and a means of

processing the input (a device which Babbage

called the 'mill'). Babbage was a genuine

visionary.

Figure 6: Knowledge state transitions

6. Some Motivations for an Adaptive

Function Mode of Learning
Artificial neural network learning is typically

accomplished via adaptation between neurons.

The computational assumption has tended to be

that the internal neural mechanism is fixed.

However, there are good computational and

biological reasons for examining the internal

neural mechanisms of learning.

Recent neuroscience suggests that

neuromodulators play a role in learning by

modifying the neuron’s activation function [13],

[14] and with an adaptive function approach it

is possible to learn linearly inseparable

problems fast, even without hidden nodes. In

this paper we describe an adaptive function

neural network (ADFUNN) and combine it with

the unsupervised learning method snqp-drift.

Previously, we applied ADFUNN to several

linearly inseparable problems, including the

popular linearly inseparable Iris problem and it

was solved by a 3 • 4 ADFUNN [15] network

without any hidden neuron. Natural language

phrase recognition on a set of phrases from the

Lancaster Parsed Corpus (LPC) [5] was also

demonstrated by a 735 • 41 ADFUNN network

with no hidden node. Generalisation rises to

100% with 200 training patterns (out of a total

of 254) within 400 epochs.

A novel combination of ADFUNN and the

online snap-drift learning algorithm [1, 2]

(SADFUNN) is applied to optical and pen-

based recognition of handwritten digits [16, 17]

tasks in this paper. The unsupervised single

layer Snap-Drift is very effective in extracting

distinct features from the complex cursive-letter

datasets, and it helps the supervised single layer

ADFUNN to solve these linearly inseparable

problems rapidly without any hidden neurons.

Experimental results show that in combination

within one network (SADFUNN), these two

modal learning methods are more powerful and

yet simpler than MLPs.

7. A single layer adaptive function

network (ADFUNN)
ADFUNN [15, 22] was introduced as a novel

modal learning adaptive function neural

network. It is developed to overcome linear

inseparability limitation in a single weight layer

supervised network, based on a single layer of

linear piecewise function neurons, as shown in

Figure 7.

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 230 Issue 2, Volume 8, February 2009

Figure 7: Adapting the linear piecewise

neuronal activation function in ADFUNN

We calculate ∑aw, and find the two

neighbouring f-points that bound ∑aw. Two

proximal f-points are adapted separately, on a

proximal-proportional basis. The proximal-

proportional value P1 is (Xn+1 - x)/(Xn+1 –

Xn) and value P2 is (x - Xn)/(Xn+1 - Xn).

Thus, the change to each point will be in

proportion to its proximity to x. We obtain the

output error and adapt the two proximal f-points

separately, using a function modifying version

of the delta rule, as outlined in following to

calculate ∆f.

The following is a general learning rule for

ADFUNN:

The weights and activation functions are
adapted in parallel, using the following
algorithm:

A = input node activation, E = output node
error.
WL, FL: learning rates for weights and
functions.

Step1: calculate output error, E, for input, A.
Step2: adapt weights to each output neuron:

 ∆w = WL • Fslope • A • E
 w' = w + ∆w
 weights normalisation

Step3: adapt function for each output neuron:
 ∆f (∑aw) = FL • E
 f'1 = f1 + ∆f • P1, f'2 = f2 + ∆f • P2

Step4: f (∑aw) = f' (∑aw);
 w = w'.

Step5: randomly select a pattern to train
Step6: repeat step 1 to step 5 until the output

error tends to a steady state.

8. Snap-drift ADaptive FUnction

Neural Network (SADFUNN) on

Optical and Pen-Based Recognition of

Handwritten Digits
SADFUNN is shown in Figure 8. Input patterns

are introduced at the input layer F1, the

distributed SDNN (dSDNN) learns to group

them. The winning F2 nodes, whose prototypes

best match the current input pattern, are used as

the input data to ADFUNN. For each output

class neuron in F3, there is a linear piecewise

function. Functions and weights and are adapted

in parallel. We obtain the output error and adapt

the two nearest f-points, using a function

modifying version of the delta rule on a

proximal-proportional basis.

Figure 8: Architecture of the SADFUNN

network

8.1. Optical and Pen-Based Recognition of

Handwritten Digits Datasets

These two complex cursive-letter datasets are

those of handwritten digits presented by

Alpaydin et. al [16, 17]. They are two different

representations of the same handwritten digits.

250 samples per person are collected from 44

people who filled in forms which were then

randomly divided into two sets: 30 forms for

training and 14 forms by distinct writers for

writer-independent test.

The optical one was generated by using the set

of programs available from NIST [18] to extract

normalized bitmaps of handwritten digits from

a pre-printed form. Its representation is a static

image of the pen tip movement that have

occurred as in a normal scanned image. It is an

8 x 8 matrix of elements in the range of 0 to 16

which gives 64 dimensions. There are 3823

training patterns and 1797 writer-independent

testing patterns in this dataset.

The Pen-Based dataset is a dynamic

representation where the movement of the pen

as the digit is written on a pressure-sensitive

tablet. It is generated by a WACOM PL-100V

pressure sensitive tablet with an integrated LCD

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 231 Issue 2, Volume 8, February 2009

display and a cordless stylus. The raw data

consists of integer values between 0 and 500 at

the tablet input box resolution, and they are

normalised to the range 0 to 100. This dataset’s

representation has eight(x, y) coordinates and

thus 16 dimensions are needed. There are 7494

training patterns and 3498 writer-independent

testing patterns.

8.2. Snap-drift ADaptive FUnction Neural

Network (SADFUNN) on Optical and Pen-

Based Recognition of Handwritten Digits

In ADFUNN, weights and activation functions

are adapted in parallel using a function

modifying version of delta rule. If Snap-Drift

and ADFUNN run at the same time, the initial

learning in ADFUNN will be redundant. It can

only optimise once Snap-Drift has converged;

and therefore ADFUNN learning starts when

Snap-drift learning has finished.

All the inputs are scaled from the range of {0,

16} to {0, 1} for the optical dataset and from

{0, 100} to {0, 1} for best learning results.

Training patterns are passed to the Snap-Drift

network for feature extraction. After a couple of

epochs (feature extraction learned very fast in

this case, although 7494 patterns need to be

classify, but every 250 samples are from the

same writer, many similar samples exist), the

learned dSDNN is ready to supply ADFUNN

for pattern recognition. The training patterns are

introduced to dSDNN again but without

learning. The winning F2 nodes, whose

prototypes best match the current input pattern,

are used as the input data to ADFUNN.

Figure 9: The processing of converting the

dynamic (pen-based) and static (optical)

representations

In this single layer ADFUNN, the 10 digits are

the output classes. Weights are initialised to 0.

F-points are initialised to 0.5. Each F point is

simply the value of the activation function for a

given input sum. F points are equally spaced,

and the function value between points is on the

straight line joining them. A weight limiter is

also applied to ensure that the adaptation to

weights will not be too large in order to ensure

stability. The two learning rates FL and WL are

equal to 0.1 and 0.000001 respectively. These

training patterns’ ∑awj has a known range of [-

1, 1]. It has a precision of 0.01, so 2001 points

encode all training patterns for output.

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 232 Issue 2, Volume 8, February 2009

Figure 10: Digit 1 learned function in optical

dataset using SADFUNN

Figure 11: Digit 1 learned function in pen-based

dataset using SADFUNN

Now the network is ready to learn using the

general learning rule of ADFUNN outlined in

section 2. By varying the number of snap-drift

neurons (features) and winning features number

in F2, within 200 epochs in each run, about

99.53% and 99.2% correct classifications for

the best can be achieved for the training data for

the optical and pen-based datasets respectively.

We get the following output neuron functions

(only a few learned functions listed here due to

space limitation):

Figure 12: Digit 8 learned function in optical

dataset using SADFUNN

Figure 13: Digit 8 learned function in pen-based

dataset using SADFUNN

9. Results

We test our network using the two writer-

independent testing data for both of the optical

recognition and pen-based recognition tasks.

Performance varies with a small number of

parameters, including learning rates FL, WL,

the number of snap-drift neurons (features)

and the number of winning features.

Figure 14: The performance of training and testing

for optical dataset using SADFUNN

Figure 15: The performance of training and testing

for pen-based dataset using SADFUNN

A large total number of features has a positive

effect on the overall performance, however too

many may limit generalisation if there is too

much memorisation. The above performance

charts show how the generalisation changes

along with the total number of features.

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 233 Issue 2, Volume 8, February 2009

The following are examples of some

misclassified patterns from SADFUNN for

optical recognition case.

Figure 16: Digit 9 misclassified to digit 5

As we can see above a digit 9 pattern was

misclassified to digit 5 which has the largest

output. The upper part of digit 5 is almost

looped, making the 5 similar to a 9.

Figures 17 and 18 illustrate similar confusions

Figure 17: Digit 2 misclassified to digit 8

Figure 18: Digit 3 misclassified to digit 9

10. Related Work on the same data

Using multistage classifiers involving a

combination of a rule-learner MLP with an

exception-learner k-NN [19], the authors of the

two datasets reported 94.25% and 95.26%

accuracy on the writer-independent testing data

for optical recognition and pen-based

recognition datasets respectively [16, 17].

Patterns are passed to a MLP with 20 hiddens,

and all the rejected patterns are passed to a k-

nearest neighbours with k = 9 for a second

phase of learning.

For the optical recognition task, 23% of the

writer-independent test data are not classified

by the MLP. They will be passed to k-NN to

give a second classification. In our single

network combination of a single layer Snap-

Drift and a single layer ADFUNN (SADFUNN)

network only 5.01% patterns were not classified

on the testing data. SADFUNN proves to be a

highly effective network with fast feature

extraction and pattern recognition ability.

Similarly, with the pen-based recognition task,

30% of the writer-independent test data are

rejected by the MLP, whereas only 5.4% of

these patterns were misclassified by

SADFUNN.

Their original intention was to combine

multiple representations (dynamic pen-based

recognition data and static optical recognition

data) of a handwritten digit to increase

classification accuracy without increasing the

system’s complexity and recognition time. By

combing the two datasets, they get 98.3%

accuracy on the writer-independent testing data.

However, we don’t experiment with this on

SADFUNN because they have already proved

the combination of multiple presentations works

better than single one, and also because

SADFUNN has already exhibited extremely

high generalisation ability compared to a MLP,

and it is easy and fast to train and implement.

Zhang and Li [20] propose an adaptive

nonlinear auto-associative modelling (ANAM)

based on Locally Linear Embedding (LLE) for

learning both intrinsic principal features of each

concept separately. LLE algorithm is a modified

k-NN to preserve local neighbourhood relation

of data in both the embedded Euclidean space

and the intrinsic one. In ANAMs, training

samples are projected into the corresponding

subspaces. Based on the evaluation of

recognition criteria on a validation set, the

parameters of inverse mapping matrices of each

ANAM are adaptively obtained. And then that

of the forward mapping matrices are calculated

based on a similar framework. 1.28% and

4.26% error rates can be obtained by ANAM

for optical recognition and pen-based

recognition respectively. However, given its

complex calculation of forward mapping and

inverse mapping matrices, many subspaces are

needed and also suboptimal auto-associate

models need to be generated. SADFUNN is

computationally much more efficient, simpler

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 234 Issue 2, Volume 8, February 2009

and achieves similar results. It will be a straight

forward process to apply it to many other

domains.

A feed forward neural network trained by

Quickprop algorithm, which is a variation of

error back propagation is used for on-line

recognition of handwritten alphanumeric

characters by Chakraborty [21]. Some distorted

samples in numerals 0 to 9 are used which are

different from the dataset used in this paper.

Good generalization capability of the extracted

feature set is reported.

11. Conclusions

In this paper, following on from recent work in

our research programme on modal forms of

neural network learning [3], [22], [23], [24] we

explored unsupervised Snap-Drift and its

combination with a supervised ADFUNN, to

perform classification. In addition to

performing effective unsupervised analysis,

based on groupings of patterns that share both

holistic and specific similarities, Snap-Drift also

proves very effective and rapid in extracting

distinct features from the complex datasets such

as the cursive-letter datasets. Experiments show

only a couple of epochs are enough for the

feature classification. It helps the supervised

single layer ADFUNN to solve these linearly

inseparable problems rapidly without any

hidden neuron. In combination within one

network (SADFUNN), these two methods, each

of which contain two modes of learning,

together exhibited higher generalisation abilities

than MLPs, despite being much more

computationally efficient, since there is no

propagation of errors. In SADFUNN it is also

easier to optimise the number of hidden nodes

since performance increases when nodes are

added and then levels off, whereas with back-

propagation methods it tends to increase then

decrease.

Acknowledgements

Part of this work was supported by HEFCE E-

Learning Funds. We also acknowledge the input

to the project of Mike Kretsis, who wrote the

student feedbacks.

References

[1] Lee, S. W., Palmer-Brown, D., Tepper, J.,

and Roadknight, C. M., Snap-Drift: Real-time,

Performance-guided Learning, Proceedings of

the International Joint Conference on Neural

Networks (IJCNN’2003), 2003, Volume 2, pp.

1412 – 1416.

[2] Lee, S. W., Palmer-Brown, D., and

Roadknight, C. M., Performance-guided Neural

Network for Rapidly Self-Organising Active

Network Management, Neurocomputing,

Volume 61, pp. 5 – 20.

[3] Donelan, H., Pattinson, Palmer-Brown, D.,

and Lee, S. W., The Analysis of Network

Manager’s Behaviour using a Self-Organising

Neural Networks, Proceedings of The 18th

European Simulations Multiconference, 2004,

pp. 111 – 116.

[4] Lee, S. W., and Palmer-Brown, D., Phrase

Recognition using Snap-Drift Learning

Algorithm, Proceedings of The International

Joint Conference on Neural Networks, 2005,

Volume 1, pp. 588-592.

[5] R. Garside, G. Leech and T. Varadi, Manual

of Information to Accompany the Lancaster

Parsed Corpus: Department of English,

University of Oslo, 1987.

[6] Lee, S. W., and Palmer-Brown, D., Phonetic

Feature Discovery in Speech using Snap-Drift,

Proceedings of International Conference on

Artificial Neural Networks (ICANN'2006), S.

Kollias et al. (Eds.): ICANN 2006, Part II,

LNCS 4132, pp. 952 – 962.

[7] Brown G., J. Bull and M. Pendlebury,

Assessing Students Learning in Higher

Education, Routledge, London, 1997

[8] Higgins E, Tatham L, Exploring the

potential of Multiple Choice Questions in

Assessment, Learning & Teaching in Action,

Vol 2, Issue 1, 2003

[9] Payne, A., Brinkman, W.-P. and Wilson, F.,

Towards Effective Feedback in e-Learning

Packages: The Design of a Package to Support

Literature Searching, Referencing and Avoiding

Plagiarism, Proceedings of HCI2007 workshop:

Design, use and experience of e-learning

systems, 2007, pp. 71-75.

[10] Dafoulas, G.A., The role of feedback in

online learning communities, Fifth IEEE

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 235 Issue 2, Volume 8, February 2009

International Conference on Advanced Learning

Technologies, 5-8 July 2005, pp. 827 – 831.

[11] Iahad, N.; Dafoulas, G.A.; Kalaitzakis, E.;

Macaulay, L.A., Evaluation of online

assessment: the role of feedback in learner-

centered e-learning, Proceedings of the 37th

Annual Hawaii International Conference on

System Sciences (HICSS'04) - Track 1 -

Volume 1, 2004, pp. 10006.1

[12] Race, P., The Open Learning Feedback, 2
nd

Ed, London:Kogan Page Ltd, 1994

[13] Scheler G., “Regulation of neuromodulator

efficacy: Implications for whole-neuron and

synaptic plasticity”, Progress in Neurobiology,

Vol.72, No.6, 2004.

[14] Scheler G., “Memorization in a neural

network with adjustable transfer function and

conditional gating”, Quantitative Biology,

Vol.1, 2004.

[15] Palmer-Brown D., Kang M., “ADFUNN:

An adaptive function neural network”, the 7
th

International Conference on Adaptive and

Natural Computing Algorithms (ICANNGA05),

Coimbra, Portugal, 2005.

[16] Alpaydin E., Alimoglu F., for Optical

Recognition of Handwritten Digits and

Alpaydin E., Kaynak C., for Pen-Based

Recognition of Handwritten Digits

http://www.ics.uci.edu/~mlearn/databases/optdi

gits/

 [17] Alpaydin E., Kaynak C., Alimoglu F.,

“Cascading Multiple Classifiers and

Representations for Optical and Pen-Based

Handwritten Digit Recognition”, IWFHR,

Amsterdam, The Netherlands, September 2000.

[18] Garris M.D., et al, NIST Form-Based

Handprint Recognition System, NISTIR 5469,

1991.

[19] Achtert E., Bohm C., Kroger P., Kunath P.,

Pryakhin A. and Renz M., "Efficient reverse k-

nearest neighbour search in arbitrary metric

spaces", Proceedings of the 2006 ACM

SIGMOD international conference on

Management of data, 2006, Pages 515 – 526.

[20] Zhang J., Li Z., “Adaptive Nonlinear Auto-

Associative Modeling through Manifold

Learning”, PAKDD, 2005, pp.599-604.

[21] Chakraborty B. and Chakraborty G., “A

New Feature Extraction Technique for On-line

Recognition of Handwritten Alphanumeric

Characters”, Information Sciences, Volume

148, Issues 1-4, December 2002, pp.55-70.

[22] Kang M., Palmer-Brown D., “An Adaptive

Function Neural Network (ADFUNN) for

Phrase Recognition”, the International Joint

Conference on Neural Networks (IJCNN05),

Montréal, Canada, 2005.

[23] Lee S. W., Palmer-Brown D., Roadknight

C. M., “Performance-guided Neural Network

for Rapidly Self-Organising Active Network

Management (Invited Paper)”, Journal of

Neurocomputing, 61C, 2004, pp. 5 – 20

 [24] Dominic Palmer-Brown and Sin Wee Lee.

Continuous Reinforced Snap-Drift Learning in

a Neural Architecture for Proxylet Selection in

Active Computer Networks. International

Journal of Simulation Systems, Science &

Technology. Special Issue on: Intelligent

Systems. Volume 6, Number 9, August 2005

WSEAS TRANSACTIONS on COMPUTERS
Dominic Palmer-Brown, Sin Wee Lee,
Chrisina Draganova, Miao Kang

ISSN: 1109-2750 236 Issue 2, Volume 8, February 2009

