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Abstract: This paper will explore the integration of learning modes into a single neural network structure in 

which layers of neurons or individual neurons adopt different modes. There are several reasons to explore 

modal learning. One motivation is to overcome the inherent limitations of any given mode (for example some 

modes memorise specific features, others average across features, and both approaches may be relevant 

according to the circumstances); another is inspiration from neuroscience, cognitive science and human 

learning, where it is impossible to build a serious model without consideration of multiple modes; and a third 

reason is non-stationary input data, or time-variant learning objectives, where the required mode is a function of 

time. Two modal learning ideas are presented: The Snap-Drift Neural Network (SDNN) which toggles its 

learning between two modes, is incorporated into an on-line system to provide carefully targeted guidance and 

feedback to students; and an adaptive function neural network (ADFUNN), in which adaptation applies 

simultaneously to both the weights and the individual neuron activation functions. The combination of the two 

modal learning methods, in the form of Snap-drift ADaptive FUnction Neural Network (SADFUNN) is then 

applied to optical and pen-based recognition of handwritten digits with results that demonstrate the effectiveness of 

the approach. 
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1. Modal Learning Neural Networks  
Twenty years ago there were already several 

forms of artificial neural network, each utilising 

a different form of learning. But at that time it 

was considered likely that one or at least a very 

small number of forms of learning would 

prevail and become ubiquitous. Along the way, 

many forms of learning, notably Back-

propagation, Bayesian and Kernel methods 

have been hailed as superior forms. However, 

decades after the introduction of Kohonen 

learning, SOMs, and Backpropagation they are 

still being used alongside more recent methods 

such as Bayesian and SVM. No single method 

or mode prevails. A wide range of methods are 

still in use, simply because there are significant 

problems and datasets for which each method is 

suitable and effective.  

In this context, Modal learning arises from 

the desire to equip a single neural network or 

module with the power of several modes of 

learning, to achieve learning results that no 

single mode could achieve, through exploitation 

of the complementary nature of each mode. 

A mode is an adaptation method for learning 

that could be applied in more than one type of 

architecture or network. It is analogous to a 

human mode of learning, such learning by 

analogy or category learning. Modes of learning 

map onto NN learning objectives. Well known 

modes therefore include the Delta Rule, 

Backpropagation (BP), Learning Vector 

quantization (LVQ), and Hebbian Learning. In 

contrast The Adaptive Resonance Theory 

(ART) or Bayesian neural networks are more 

than a mode of learning, they define 

architectures and approaches to learning, within 

which particular modes are used. 

In general, the objective of learning may be 

unknown, changing, difficult to express or 

quantify, and even if it is easy to define in terms 

of a desired learning outcome (eg. zero or 
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minimal error), the learning agent’s objective 

function must be expressed differently in terms 

of the parameters of the learning machine (eg. 

de/dw). Given the dislocation between the 

actual objectives of learning and the objective 

learning function of the learning agent, it is not 

possible to know a-priori which is the optimal 

learning mode to use. 

For example, BP is good for approximation 

and transformation, but if the features within 

the data need to be assimilated (or memorised) 

directly, then learning vector quantization or 

SVM would be more appropriate. We are 

unlikely to know in advance. But the learning 

agent should be able to work out the most 

effective mode during, and as part of, the 

learning process. 

Modal Learning (ML) contrasts with hybrid 

and modular approaches in which each module 

or network exhibits one mode, and modules are 

bolted together with each designed to solve a 

sub-problem. Limitations of one mode of 

learning per ensemble of neurons include the 

need for more neurons, layers or networks.  

Even fixed task and data may benefit from 

sequential or simultaneous application of more 

than one mode, and data or task may be non-

stationary. Each mode is inherently limited 

because it is tied to an objective function. A 

simple illustration of the potential benefits of a 

modal learning approach can be seen in the 

following sequence of class boundaries in a 2D, 

2 class problem (Figure 1). In it we see how it is 

necessary to increase complexity to an extent 

that is not justified by the data in order to find a 

single mode solution. 

Two Class Problem
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Figure 1: Increasingly complex solution to a 2-

class problem 

In contrast, a relatively simple and good margin 

solution can be achieved by combining a 

straight line (perceptron), a simple curve 

(multilayer perceptron) and a cluster. This 

requires 3 modes of learning, as follows: 
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       Figure 2: 3 mode solution 

Or by combining a curve (multilayer percepton) 

and a cluster. This requires 2 modes of learning: 
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        Figure 3: 2 mode solution 

Rather than trying to solve the whole problem 

with a single mode of learning, a simpler learnt 

solution is achievable by combining modes of 

learning. 

When we look at human and machine learning 

in a wider context, there are many reasons and 

motivations to consider modal learning, as it 

allows for the spectrum of learning to be taken 

into account, from memorisation to 

generalisation.  

 

2. Snap-drift Neural Network (SDNN) 
The snap-drift algorithm, which combines the 

two modes of learning (snap and drift) first 

emerged as an attempt to overcome the 

limitations of ART learning in non-stationary 

environments where self-organisation needs to 

take account of periodic or occasional 

performance feedback. Since then, the snap-

drift algorithm has proved invaluable for 

continuous learning in many applications. 
The reinforcement versions [1], [2] of snap-

drift are used in the classification of user 

requests in an active computer network 

simulation environment whereby the system is 

able to discover alternative solutions in 

response to varying performance requirements. 

The unsupervised snap-drift algorithm, without 

any form of reinforcement, has been used in the 

analysis and interpretation of data representing 

interactions between trainee network managers 

and a simulated network management system 

[3]. New patterns of the user behaviour were 

discovered. 

Snap-drift in the form of a classifier [4] has 

been used in attempting to discover and 

recognize phrases extracted from Lancaster 

Parsed Corpus (LPC) [5]. Comparisons carried 

out between snap-drift and MLP with back-

propagation, show that the former is faster and 

just as effective. It is also been used in Feature 

Discovery in Speech. Results show that the 

snap-drift Neural Network (SDNN) groups the 

phonetics speech input patterns meaningfully 

and extracts properties which are common to 

both non-stammering and stammering speech, 

as well as distinct features that are common 

within each of the utterance groups, thus 

supporting classification.  

In most recent development, a supervised 

version of snap-drift has been used in grouping 

spatio-temporal variations associated with road 

traffic conditions. Results show that the SDNN 

used is bale to group read features such that 

they correspond to the road class travelled even 

under changing road traffic conditions.    

One of the strengths of the SDNN is the 

ability to adapt rapidly in a non-stationary 

environment where new patterns (new candidate 

road attributes in this case) are introduced over 

time. The learning process utilises a novel 

algorithm that performs a combination of fast, 

convergent, minimalist learning (snap) and more 

cautious learning (drift) to capture both precise 

sub-features in the data and more general 

holistic features. Snap and drift learning phases 

are combined within a learning system that 

toggles its learning style between the two 

modes. On presentation of input data patterns at 
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the input layer F1, the distributed SDNN 

(dSDNN) will learn to group them according to 

their features using snap-drift [2]. The neurons 

whose weight prototypes result in them 

receiving the highest activations are adapted.  

Weights are normalised weights so that in effect 

only the angle of the weight vector is adapted, 

meaning that a recognised feature is based on a 

particular ratio of values, rather than absolute 

values. The output winning neurons from 

dSDNN act as input data to the selection SDNN 

(sSDNN) module for the purpose of feature 

grouping and this layer is also subject to snap-

drift learning. 

The learning process is unlike error 

minimisation and maximum likelihood methods 

in MLPs and other kinds of networks which 

perform optimization for classification or 

equivalents by for example pushing features in 

the direction that minimizes error, without any 

requirement for the feature to be statistically 

significant within the input data. In contrast, 

SDNN toggles its learning mode to find a rich 

set of features in the data and uses them to 

group the data into categories. Each weight 

vector is bounded by snap and drift: snapping 

gives the angle of the minimum values (on all 

dimensions) and drifting gives the average 

angle of the patterns grouped under the neuron.  

Snapping essentially provides an anchor vector 

pointing at the ‘bottom left hand corner’ of the 

pattern group for which the neuron wins. This 

represents a feature common to all the patterns 

in the group and gives a high probability of 

rapid (in terms of epochs) convergence (both 

snap and drift are convergent, but snap is 

faster). Drifting, which uses Learning Vector 

Quantization (LVQ), tilts the vector towards the 

centroid angle of the group and ensures that an 

average, generalised feature is included in the 

final vector. The angular range of the pattern-

group membership depends on the proximity of 

neighbouring groups (natural competition), but 

can also be controlled by adjusting a threshold 

on the weighted sum of inputs to the neurons. 

The output winning neurons from dSDNN act 

as input data to the selection SDNN (sSDNN) 

module for the purpose of feature grouping and 

this layer is also subject to snap-drift learning. 

 

3 E- learning Snap-Drift Neural 

Network (ESDNN)  
3.1 The ESDNN Architecture   

In a recent application of snap-drift, ESDNN, 

the unsupervised version of the snap-drift 

algorithm is deployed [6], as shown in Figure 4. 
 

  

 

 

 

 

 

 

 

 

 
 

Figure 4: 1 E-learning SDNN architecture 

 

During training, on presentation of an input 

pattern at the input layer, the dSDNN will learn 

to group the input patterns according to their 

general features. In this case, 5 F12 nodes, 

whose weight prototypes best match the current 

input pattern, with the highest net input are used 

as the input data to the sSDNN module for 

feature classification. 

In the sSDNN module, a quality assurance 

threshold is introduced. If the net input of a 

sSDNN node is above the threshold, the output 

node is accepted as the winner, otherwise a new 

uncommitted output node will be selected as the 

new winner and initialised with the current 

input pattern. 

The following is a summary of the steps that 

occur in ESDNN: 

 

Step 1: Initialise parameters: (α = 1, σ = 0) 

Step 2: For each epoch (t) 

For each input pattern 

Step 2.1: Find the D (D = 5) winning nodes at 

F12 with the largest net input 

Step 2.2: Weights of dSDNN adapted 

according to the alternative learning procedure: 

(α,σ) becomes Inverse(α,σ) after every 

successive epoch 

Step 2.3 Process the output pattern of F12 as 

input pattern of F21 

Input 

Pattern 

(I) 

F11 F12 F21 F22 

dSDNN 

(Feature Extraction) 

 

sSDNN 

(Feature Classification) 
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Step 2.4: Find the node at F22 with the largest 

net input 

Step 2.5: Test the threshold condition: 

IF (the net input of the node is greater than the 

threshold) 

THEN 

Weights of the sSDNN output node adapted 

according to the alternative learning procedure: 

(α,σ) becomes Inverse(α,σ) after every 

successive epoch 

ELSE 

An uncommitted sSDNN output node is 

selected and its weights are adapted according 

to the alternative learning procedure: (α,σ) 

becomes Inverse(α,σ) after every successive 

epoch 
 

 

3.2 The ESDNN Learning Algorithm  

The learning algorithm combines logical 

intersection learning (snap) and Learning 

Vector Quantisation (drift) (Kohonen, 1990). In 

general terms, the snap-drift algorithm can be 

stated as: 

 

Snap-drift = α(pattern intersection) + σ(LVQ)    

(1) 

 

The top-down learning of both of the modules 

in the neural system is as follows: 

 

wJi
(new) 

= α(I ∩ wJi
(old)

) + σ( wJi
(old)

 + β(I - 

wJi
(old)

))  (2) 

  

where wJi = top-down weights vectors; I = 

binary input vectors, and β = the drift speed 

constant = 0.1. 

In successive learning epochs, the learning is 

toggled between the two modes of learning. 

When α = 1, fast, minimalist (snap) learning is 

invoked, causing the top-down weights to reach 

their new asymptote on each input presentation. 

(2) is simplified as: 

 

wJi
(new) 

= I ∩ wJi
(old)

                          (3) 

 

This learns sub-features of patterns. In contrast, 

when σ = 1, (2) simplifies to: 

 

wJi
(new) 

= wJi
(old) 

+ β(I - wJi
(old)

)                       (4) 

 

which causes a simple form of clustering at a 

speed determined by β. 

The bottom-up learning of the neural system 

is a normalised version of the top-down 

learning: 

 

wIJ
(new)

 = wJi
(new) 

/| wJi
(new)

|                        (5) 

 

where wJi
(new) 

 = top-down weights of the 

network after learning. 

In ESDNN, snap-drift is toggled between 

snap and drift on each successive epoch. The 

effect of this is to capture the strongest clusters 

(holistic features), sub-features, and 

combinations of the two. 

 

4. E-learning System 
4.1 Motivation 
Formative assessment provides students with 

feedback that highlights the areas for further 

study and indicates the degree of progress [7]. 

This type of feedback needs to be timely and 

frequent during the semester in order to really 

help the students in learning of a particular 

subject. One effective way to provide students 

with immediate and frequent feedback is by 

using Multiple Choice Questions (MCQs) set 

up as web-based formative assessments and 

given to students to complete after a 

lecture/tutorial session. MCQs can be designed 

with a purpose to provide diagnostic feedback, 

which identifies misconceptions or adequately 

understood areas of a given topic and explains 

the source of misconceptions by comparing 

with common mistakes. There are many studies 

(e.g. [8], [9], [10], [11], [12]) investigating the 

role different types of feedback and MCQs used 

in web-based assessments, that report on 

positive results from the use of MCQs in online 

tests for formative assessments. However none 

of these studies have employed any intelligent 

analysis of the students’ responses or providing 

diagnostic feedback in the online tests. 

The ESDNN system ehances students 

learning through providing diagnostic feedback 

which is automatic, immediate and individual to 

large numbers of students based on intelligent 

analysis of real data. It thus encouraging 

independent and deeper learning, and provides a 
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tool for self-assessment that is accessible 

anywhere and at anytime (eg. on the web).  

The ESDNN is a simple tool that can be 

incorporated into a VLE system or installed on 

a PC, configured to run as a web server.  The 

student responses are recorded in a database and 

can be used for monitoring the progress of the 

students and for identifying misunderstood 

concepts that can be addressed in following 

face-to-face sessions.  The collected data can be 

also used to analyse how the feedback 

influences the learning of individual students 

and for retraining the neural network. 

Subsequently the content of the feedback can be 

improved. Once designed MCQs and feedbacks 

can be reused for subsequent cohorts of 

students. 

4.2 E-Learning System Architecture 

The E-learning system has been designed and 

built using the JavaServer Faces Technology 

(JSF), which is a component-based web 

application framework that enables rapid 

development.  The JSF follows the Model-

View-Controller (MVC) design pattern and its 

architecture defines clear separation of the user 

interface from the application data and logic. 

    The ESDNN is integrated within the web 

application as part of the model layer. The 

ESDNN is trained for each set of questions 

offline with data available from previous years 

of students, and the respective weight text files 

are stored on the application server. The 

feedback for each set of questions and each 

possible set of answers is grouped according to 

the classification from the ESDNN and written 

in an XML file stored on the application server.  

In order to analyse the progress of the 

students in using the system they have to login 

into the system with their student id numbers. 

The set of answers, time and student id are 

recorded in the database after each student’s 

submission of answers. After login into the 

system the students are prompt to select a 

module and a topic and this leads to the screen 

with a set of multiple choice questions specific 

for the selected module and topic. On 

submission of the answers the system converts 

these into a binary vector which is fed into the 

ESDNN. The ESDNN produces a group 

number; the system retrieves the corresponding 

feedback for this group from the XML feedback 

file and sends it to the student’s browser.  The 

student is prompted to go back and try the same 

questions again or select a different topic.  A 

high level architectural view of the system is 

illustrated in Figure 5.  

 

The features of the system can be surmised as 

follows: 

1. Log in by student ID which allows the 

data to be collected and analysed. 

2. Select a a particular topic from a number 

of options. 

3. Page with questions in a multiple choice 

format  

4. Classifications of the student response. 

5. Displaying the corresponding feedback  

6. Saving in a database the student ID, 

answers, topic ID and time of completion of the 

quiz. 

7. Help which provides assistance to using 

the system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5: 2 E-learning system architecture 

 

5. Trials and Results  
5.1 Introduction  

Client - Web Browser 

Web/Application Server 

Controller View 

SDNN 

Model Layer 

Weights Feedback 

Presentation Layer 

Database 

Persistence Layer 
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During training the ESDNN was first trained 

with the responses for 5 questions on a 

particular topic in a module/subject. In this 

case, the responses are obtained from previous 

cohort of students on the topic 1 of the module, 

Introduction to Computer System.  

After training, appropriate feedback text is 

written by academics for each of the group of 

students’ responses that address the conceptual 

errors implicit in combinations of incorrect 

answers. 

During the trial, a current cohort of students 

is asked to provide responses on the same 

questions and they will be given the feedback 

on the combination of incorrect answers.  

 

5.2 Trial Results and Analysis   

A trial was conducted with 70 students. They 

were allowed to make as many attempts at the 

questions as they liked. On average they gave 7 

sets of answers over 20 minutes.  

Figure 6 illustrates the behaviour of students 

in terms of what might be called learning states. 

These states correspond to the output neurons 

that are triggered by patterns of question topic 

responses. In other words, the winning neuron 

represents a state of learning because it captures 

some commonality in a set of questions 

responses. For example, if there are several 

students who give the same answer (correct or 

incorrect) to two or more of the questions, snap-

drift will form a group associated with one 

particular output neuron to include all such 

cases. That is an over simplification, because 

some of those cases may be pulled in to other 

‘stronger’ groups, but that would also be 

characterized by a common feature amongst the 

group of responses.  

Figure 6 shows the knowledge state 

transitions. Each time a student gives a new set 

of answers, having received some feedback 

associated with their previous state, which in 

turn is based on their last answers, they are 

reclassified into a new (or the same) state, and 

thereby receive new (or the same) feedback. 

The tendency is to undergo a state transition 

immediately or after a second attempt.  

A justification for calling the states ‘states of 

knowledge’ is to be found in their self-

organization into the layers of Figure 6.  A 

student on state 14, for example has to go via 

one of the states in the next layer such as state 9 

before reaching the ‘state of perfect knowledge’ 

(state 25) which represents correct answers to 

all questions. On average, and unsurprisingly, 

the state-layer projecting onto state 25 (states 

20, 1, 9 and 4) are associated with more correct 

answers than the states in the previous layer. 

Students often circulate within layers before 

proceeding to the next layer. The may also 

return to previous layer, but that is less 

common. The commonest finishing scores are 

3, 4 and 5 out of 5 correct answers; the 

commonest starting scores are 0,1,2,and 3. The 

average time spent on the questions was about 

17 minutes, and the average increase in score 

was about 25%. 

The feedback texts are composed around the 

pattern groupings and are aimed at 

misconceptions that may have caused the 

incorrect answers common within the pattern 

group.  An example of a typical response to the 

questions is: 

 

1. A common characteristic of all computer 

systems is that they 

  lower the operating costs of companies 

that use them  

 destroy jobs 

 increase the efficiency of the companies 

that use them 

 process inputs in order to produce 

outputs 

 are used to violate our personal freedoms   

2. A digital computer system generates, stores, 

and processes data in 

 a hexadecimal form 

 a decimal form 

 an octal form 

 a binary form 

 none of the above forms   
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3. All modern, general purpose computer 

systems, require 

 at least one CPU and memory to hold 

programs and data 

 at least one CPU, memory to hold 

programs and data and I/O devices 

 at least one CPU, memory to hold 

programs and data and long-term storage 

 at least one CPU, I/O devices and long 

term storage 

 at least one CPU, memory to hold 

programs and data, I/O devices and long-term 

storage   

4. Babbage’s 19th Century Analytical Engine 

is significant in the context of computing 

because it 

 was the first digital computer 

 was the first device which could be used 

to perform calculations 

 contained all the essential elements of 

today’s computers 

 could process data in binary form 

 was the first electronic computer   

5. According to Von Neumann s stored 

program concept 

 program instructions can be fetched from 

a storage device directly into the CPU 

 data can be fetched from a storage device 

directly into the CPU 

 memory locations are addressed by 

reference to their contents 

 memory can hold programs but not data 

 both program instructions and data are 

stored in memory while being processed   

 

This is classified into Group (state) 14, which 

generates the following feedback: 

 
State 14 Feedback 

 
1.John Von Neumann, whose architecture forms 

the basis of modern computing, identified a 

number of major shortcomings in the ENIAC 

design. Chief amongst these was the difficulty of 

rewiring ENIAC's control panels every time a 

program or its data needed changing. To 

overcome this problem, Von Neumann proposed 

his stored program concept. This concept 

allows programs and their associated data to be 

changed easily.  
 
2.Memory acts as a temporary storage location 

for both program instructions and data. Data, 

including program instructions, are copied 

from storage devices to memory and viceversa. 

This architecture was first proposed by John 

von Neumann.  
 
3.Much of the flexibility of modern computer 

systems derives from the fact that memory is 

addressed by its location number without any 

regard for the data contained within. This is a 

crucial element of the Von Neumann 

architecture. 
 
Prompted by the group 14 feedback the student 

is able, either immediately or after some 

reflection, to improve their answer to the 

question 5 to “both program instructions and 

data are stored in memory while being 

processed”. This gives rise to the state 9 

feedback below, and after perhaps another 

couple of attempted answers they correct their 

answer to question 3, to achieve the correct 

answers to all questions. 
 
State 9 Feedback 
 
The work of a modern computer system can be 

described in terms of an input-process-output 

model (IPO). To implement this model, a 

computer needs at least one means of both input 

and output and a means of processing the input. 

The design of Charles Babbage's Analytical 

Engine, which preceded the first digital 

computers by more than 100 years, also 

included a means of input (punched cards), a 
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means of output (a printer) and a means of 

processing the input (a device which Babbage 

called the 'mill'). Babbage was a genuine 

visionary. 

 

 

 
Figure 6: Knowledge state transitions 

 

 

 

6. Some Motivations for an Adaptive 

Function Mode of Learning 
Artificial neural network learning is typically 

accomplished via adaptation between neurons. 

The computational assumption has tended to be 

that the internal neural mechanism is fixed. 

However, there are good computational and 

biological reasons for examining the internal 

neural mechanisms of learning.  

Recent neuroscience suggests that 

neuromodulators play a role in learning by 

modifying the neuron’s activation function [13], 

[14] and with an adaptive function approach it 

is possible to learn linearly inseparable 

problems fast, even without hidden nodes. In 

this paper we describe an adaptive function 

neural network (ADFUNN) and combine it with 

the unsupervised learning method snqp-drift. 

Previously, we applied ADFUNN to several 

linearly inseparable problems, including the 

popular linearly inseparable Iris problem and it 

was solved by a 3 • 4 ADFUNN [15] network 

without any hidden neuron. Natural language 

phrase recognition on a set of phrases from the 

Lancaster Parsed Corpus (LPC) [5] was also 

demonstrated by a 735 • 41 ADFUNN network 

with no hidden node. Generalisation rises to 

100% with 200 training patterns (out of a total 

of 254) within 400 epochs. 

A novel combination of ADFUNN and the 

online snap-drift learning algorithm [1, 2] 

(SADFUNN) is applied to optical and pen-

based recognition of handwritten digits [16, 17] 

tasks in this paper. The unsupervised single 

layer Snap-Drift is very effective in extracting 

distinct features from the complex cursive-letter 

datasets, and it helps the supervised single layer 

ADFUNN to solve these linearly inseparable 

problems rapidly without any hidden neurons. 

Experimental results show that in combination 

within one network (SADFUNN), these two 

modal learning methods are more powerful and 

yet simpler than MLPs. 
 

7. A single layer adaptive function 

network (ADFUNN) 
ADFUNN [15, 22] was introduced as a novel 

modal learning adaptive function neural 

network. It is developed to overcome linear 

inseparability limitation in a single weight layer 

supervised network, based on a single layer of 

linear piecewise function neurons, as shown in 

Figure 7. 
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Figure 7:  Adapting the linear piecewise 

neuronal activation function in ADFUNN 
 

We calculate ∑aw, and find the two 

neighbouring f-points that bound ∑aw. Two 

proximal f-points are adapted separately, on a 

proximal-proportional basis. The proximal-

proportional value P1 is (Xn+1 - x)/(Xn+1 – 

Xn) and value P2 is (x - Xn)/(Xn+1 - Xn). 

Thus, the change to each point will be in 

proportion to its proximity to x. We obtain the 

output error and adapt the two proximal f-points 

separately, using a function modifying version 

of the delta rule, as outlined in following to 

calculate ∆f. 
 

The following is a general learning rule for 

ADFUNN: 

 
The weights and activation functions are 
adapted in parallel, using the following 
algorithm: 

 
A = input node activation, E = output node 
error. 
WL, FL: learning rates for weights and 
functions. 

 
Step1: calculate output error, E, for input, A. 
Step2: adapt weights to each output neuron: 

       ∆w = WL • Fslope • A • E 
       w' = w + ∆w 
       weights normalisation 

Step3: adapt function for each output neuron: 
        ∆f (∑aw) = FL • E 
        f'1 = f1 + ∆f • P1, f'2 = f2 + ∆f • P2 

Step4: f (∑aw) = f' (∑aw);  
        w = w'. 

Step5: randomly select a pattern to train  
Step6: repeat step 1 to step 5 until the output 

error tends to a steady state. 

 

 

8. Snap-drift ADaptive FUnction 

Neural Network (SADFUNN) on 

Optical and Pen-Based Recognition of 

Handwritten Digits 
SADFUNN is shown in Figure 8. Input patterns 

are introduced at the input layer F1, the 

distributed SDNN (dSDNN) learns to group 

them. The winning F2 nodes, whose prototypes 

best match the current input pattern, are used as 

the input data to ADFUNN. For each output 

class neuron in F3, there is a linear piecewise 

function. Functions and weights and are adapted 

in parallel. We obtain the output error and adapt 

the two nearest f-points, using a function 

modifying version of the delta rule on a 

proximal-proportional basis. 

 

 
 

Figure 8:  Architecture of the SADFUNN 

network 
 

8.1. Optical and Pen-Based Recognition of 

Handwritten Digits Datasets 

These two complex cursive-letter datasets are 

those of handwritten digits presented by 

Alpaydin et. al [16, 17]. They are two different 

representations of the same handwritten digits. 

250 samples per person are collected from 44 

people who filled in forms which were then 

randomly divided into two sets: 30 forms for 

training and 14 forms by distinct writers for 

writer-independent test. 

The optical one was generated by using the set 

of programs available from NIST [18] to extract 

normalized bitmaps of handwritten digits from 

a pre-printed form. Its representation is a static 

image of the pen tip movement that have 

occurred as in a normal scanned image. It is an 

8 x 8 matrix of elements in the range of 0 to 16 

which gives 64 dimensions. There are 3823 

training patterns and 1797 writer-independent 

testing patterns in this dataset. 

The Pen-Based dataset is a dynamic 

representation where the movement of the pen 

as the digit is written on a pressure-sensitive 

tablet.  It is generated by a WACOM PL-100V 

pressure sensitive tablet with an integrated LCD 
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display and a cordless stylus. The raw data 

consists of integer values between 0 and 500 at 

the tablet input box resolution, and they are 

normalised to the range 0 to 100. This dataset’s 

representation has eight(x, y) coordinates and 

thus 16 dimensions are needed. There are 7494 

training patterns and 3498 writer-independent 

testing patterns. 

 

8.2. Snap-drift ADaptive FUnction Neural 

Network (SADFUNN) on Optical and Pen-

Based Recognition of Handwritten Digits 

In ADFUNN, weights and activation functions 

are adapted in parallel using a function 

modifying version of delta rule. If Snap-Drift 

and ADFUNN run at the same time, the initial 

learning in ADFUNN will be redundant. It can 

only optimise once Snap-Drift has converged; 

and therefore ADFUNN learning starts when 

Snap-drift learning has finished. 

All the inputs are scaled from the range of {0, 

16} to {0, 1} for the optical dataset and from 

{0, 100} to {0, 1} for best learning results. 

Training patterns are passed to the Snap-Drift 

network for feature extraction. After a couple of 

epochs (feature extraction learned very fast in 

this case, although 7494 patterns need to be 

classify, but every 250 samples are from the 

same writer, many similar samples exist), the 

learned dSDNN is ready to supply ADFUNN 

for pattern recognition. The training patterns are 

introduced to dSDNN again but without 

learning. The winning F2 nodes, whose 

prototypes best match the current input pattern, 

are used as the input data to ADFUNN. 

 

 

 
 

Figure 9:  The processing of converting the 

dynamic (pen-based) and static (optical) 

representations 

 

In this single layer ADFUNN, the 10 digits are 

the output classes. Weights are initialised to 0. 

F-points are initialised to 0.5. Each F point is 

simply the value of the activation function for a 

given input sum. F points are equally spaced, 

and the function value between points is on the 

straight line joining them. A weight limiter is 

also applied to ensure that the adaptation to 

weights will not be too large in order to ensure 

stability. The two learning rates FL and WL are 

equal to 0.1 and 0.000001 respectively. These 

training patterns’ ∑awj has a known range of [-

1, 1]. It has a precision of 0.01, so 2001 points 

encode all training patterns for output. 
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Figure 10:  Digit 1 learned function in optical 

dataset using SADFUNN 

 

 
 

Figure 11: Digit 1 learned function in pen-based 

dataset using SADFUNN 

 

Now the network is ready to learn using the 

general learning rule of ADFUNN outlined in 

section 2. By varying the number of snap-drift 

neurons (features) and winning features number 

in F2, within 200 epochs in each run, about 

99.53% and 99.2% correct classifications for 

the best can be achieved for the training data for 

the optical and pen-based datasets respectively. 

We get the following output neuron functions 

(only a few learned functions listed here due to 

space limitation): 
 

 
 

Figure 12: Digit 8 learned function in optical 

dataset using SADFUNN 

 

 
 

Figure 13: Digit 8 learned function in pen-based 

dataset using SADFUNN 

 

9. Results 
 

We test our network using the two writer-

independent testing data for both of the optical 

recognition and pen-based recognition tasks. 

Performance varies with a small number of 

parameters, including learning rates FL, WL, 

the number of   snap-drift neurons (features) 

and the number of winning features. 
 

 
 

Figure 14: The performance of training and testing 

for optical dataset using SADFUNN 

 
 

Figure 15: The performance of training and testing 

for pen-based dataset using SADFUNN 

 

A large total number of features has a positive 

effect on the overall performance, however too 

many may limit generalisation if there is too 

much memorisation. The above performance 

charts show how the generalisation changes 

along with the total number of features. 
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The following are examples of some 

misclassified patterns from SADFUNN for 

optical recognition case.  

 

 
 

Figure 16: Digit 9 misclassified to digit 5 

 

As we can see above a digit 9 pattern was 

misclassified to digit 5 which has the largest 

output. The upper part of digit 5 is almost 

looped, making the 5 similar to a 9. 

Figures 17 and 18 illustrate similar confusions 

 

 

 
 

Figure 17: Digit 2 misclassified to digit 8 

 

 
 

Figure 18: Digit 3 misclassified to digit 9 

 

 

10. Related Work on the same data 
 

Using multistage classifiers involving a 

combination of a rule-learner MLP with an 

exception-learner k-NN [19], the authors of the 

two datasets reported 94.25% and 95.26% 

accuracy on the writer-independent testing data 

for optical recognition and pen-based 

recognition datasets respectively [16, 17]. 

Patterns are passed to a MLP with 20 hiddens, 

and all the rejected patterns are passed to a k-

nearest neighbours with k = 9 for a second 

phase of learning. 

For the optical recognition task, 23% of the 

writer-independent test data are not classified 

by the MLP. They will be passed to k-NN to 

give a second classification. In our single 

network combination of a single layer Snap-

Drift and a single layer ADFUNN (SADFUNN) 

network only 5.01% patterns were not classified 

on the testing data. SADFUNN proves to be a 

highly effective network with fast feature 

extraction and pattern recognition ability. 

Similarly, with the pen-based recognition task, 

30% of the writer-independent test data are 

rejected by the MLP, whereas only 5.4% of 

these patterns were misclassified by 

SADFUNN. 

Their original intention was to combine 

multiple representations (dynamic pen-based 

recognition data and static optical recognition 

data) of a handwritten digit to increase 

classification accuracy without increasing the 

system’s complexity and recognition time. By 

combing the two datasets, they get 98.3% 

accuracy on the writer-independent testing data. 

However, we don’t experiment with this on 

SADFUNN because they have already proved 

the combination of multiple presentations works 

better than single one, and also because 

SADFUNN has already exhibited extremely 

high generalisation ability compared to a MLP, 

and it is easy and fast to train and implement. 

Zhang and Li [20] propose an adaptive 

nonlinear auto-associative modelling (ANAM) 

based on Locally Linear Embedding (LLE) for 

learning both intrinsic principal features of each 

concept separately. LLE algorithm is a modified 

k-NN to preserve local neighbourhood relation 

of data in both the embedded Euclidean space 

and the intrinsic one. In ANAMs, training 

samples are projected into the corresponding 

subspaces. Based on the evaluation of 

recognition criteria on a validation set, the 

parameters of inverse mapping matrices of each 

ANAM are adaptively obtained. And then that 

of the forward mapping matrices are calculated 

based on a similar framework. 1.28% and 

4.26% error rates can be obtained by ANAM 

for optical recognition and pen-based 

recognition respectively. However, given its 

complex calculation of forward mapping and 

inverse mapping matrices, many subspaces are 

needed and also suboptimal auto-associate 

models need to be generated. SADFUNN is 

computationally much more efficient, simpler 
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and achieves similar results. It will be a straight 

forward process to apply it to many other 

domains. 

A feed forward neural network trained by 

Quickprop algorithm, which is a variation of 

error back propagation is used for on-line 

recognition of handwritten alphanumeric 

characters by Chakraborty [21]. Some distorted 

samples in numerals 0 to 9 are used which are 

different from the dataset used in this paper. 

Good generalization capability of the extracted 

feature set is reported. 

 

11. Conclusions 
 

In this paper, following on from recent work in 

our research programme on modal forms of 

neural network learning [3], [22], [23], [24] we 

explored unsupervised Snap-Drift and its 

combination with a supervised ADFUNN, to 

perform classification.  In addition to 

performing effective unsupervised analysis, 

based on groupings of patterns that share both 

holistic and specific similarities, Snap-Drift also 

proves very effective and rapid in extracting 

distinct features from the complex datasets such 

as the cursive-letter datasets. Experiments show 

only a couple of epochs are enough for the 

feature classification. It helps the supervised 

single layer ADFUNN to solve these linearly 

inseparable problems rapidly without any 

hidden neuron. In combination within one 

network (SADFUNN), these two methods, each 

of which contain two modes of learning, 

together exhibited higher generalisation abilities 

than MLPs, despite being much more 

computationally efficient, since there is no 

propagation of errors. In SADFUNN it is also 

easier to optimise the number of hidden nodes 

since performance increases when nodes are 

added and then levels off, whereas with back-

propagation methods it tends to increase then 

decrease. 
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